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The steady flow of a thermo-viscous incompressible fluid bounded between porous 
parallel plates is examined in this paper. The governing equations of the flow are 
coupled in the velocity and temperature field. The solutions of velocity and 
temperature are obtained using a powerful and most elegant method called 
perturbation technique. The closed form solutions of the velocity and temperature 
distributions are obtained when thermo-stress coefficient is far less compared to 
strain thermal conductivity coefficient and coefficient of cross viscosity. The variations 
of velocity and temperature distributions on the flow field have been discussed with 
the help of illustrations. The effect of various flow parameters on the flow field have 
been discussed with the help of graphs. The rate of variation of the velocity is observed 
as far less when compare to the temperature of the fluid. This effect is due to the 
porosity and suction/injection of the flow passes through the horizontal parallel plates. 
This study includes the applications in extraction of petrol and oils from porous rocks, 
chemical reactors, and human cardiovascular system and in several engineering 
devices such as heat and mass exchanges. The results of the present study will 
hopefully enable a better understanding of nuclear and clinical applications. 
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1. Introduction 

 
The non-Newtonian nature of materials has been the subject of extensive study for over one and 

half centuries. It is only in last seven or eight decades that serious attempts have been made to 
extend this investigation in the realm of non-linearity. The failure of the linear theories in predicting 
to a reasonable extent the mechanical behaviour of materials such as liquid polymers, fluid plastic, 
the molten metals etc., subjected to stresses has been the motivating force behind study of the non-
linear theories for material description. Some of the non-liner theories proposed so far (listed in 
references) have not taken into account the strong dependence of visco-elastic behaviour upon 
thermal conduction i.e. interaction/interrelation between mechanical and non-mechanical (such as 
thermal, chemical, electromagnetic etc.) effects even though the large amount data of experimental 
evidence indicate a strong dependence of visco-elastic nature of the fluid upon thermal behaviour. 
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For example, materials such as solid propellants exhibit a mechanical behaviour at moderate 
temperature variations, whereas little or no correlation between them would be observed with that 
under the isothermal condition. 

The concept of thermo-viscous fluids which reflect the interaction between thermal and 
mechanical responses in fluids in motion due to external influences was introduced by Koh and 
Eringin[1] in 1963. For such a class of fluids, the stress-tensor ‘ t ’ and heat flux bivector ‘ h ’ are 
postulated as polynomial functions of the kinematic tensor, viz., and the rate of deformation tensor 
‘ d ’: 

 
2/)( ,, ijjiij uud +=  

 
and thermal gradient bivector ‘ b ’ 
 

kijkijb =  

 

Where iu  is the thi   component of velocity and   is the temperature field. 

 A second order theory of thermo-viscous fluids is characterized by the pair of thermo-mechanical 
constitutive relations: 
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and  
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With the constitutive parameters  i  , i  being polynomials in the invariants of  d  and b  in which 

the coefficients depend on density (  ) and temperature ( ) only. The fluid is Stokesian when the 

stress tensor depends only on the rate of deformation tensor and Fourier-heat-conducting when the 

heat flux bivector depends only on the temperature gradient-vector, the constitutive coefficients 1

and 3  may be identified as the fluid pressure and coefficient of viscosity respectively and 
5  as that 

of cross-viscosity. 
Flow of incompressible homogeneous thermo-viscous fluids satisfies the usual conservation 

equations: 
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 +−= iiijij qdtc ,

.

   

 
Where   
 

th

k kF =  Component of external force per unit mass, 

=c  Specific heat, 

 =Thermal energy source per unit mass  
th

i iq =  Component of heat flux bivector = 2/jkijk h  

=ijt  The components of stress tensor 

=ijd  The components of rate of deformation tensor 

 
The development of non-linear theory reflecting the interaction/interrelation between thermal 

and viscous effects has been preliminarily studied by Koh and Eringen [1] and Coleman et al., [7] 
studied Existence of caloric equations of state in thermodynamics. Langlois and William [2] examined 
steady flow of a slightly viscoelastic fluid between rotating spheres. Rivlin [3] examined the solution 
of problems in second order elasticity theory.  Yamamoto and Yoshida [4] studied flow through a 
porous wall with convective acceleration.  Beavers et al., [5] studied boundary conditions at a 
naturally permeable wall. A systematic rational approach for such class of fluids has been developed 
by Green and Nagdhi [6].  Coleman et al., [7] studied existence of caloric equations of state in 
thermodynamics. In 1965 Kelly [8] examined some simple shear flows of second order thermo-
viscous fluids. Pothanna et al., [9] studied flow of slightly thermo-viscous fluid in a porous slab 
bounded between two permeable parallel plates. Pothanna et al., [10] examined effect of strain 
thermal conductivity on slightly thermo-viscous fluid in a porous slab bounded between two parallel 
plates. The problem of steady flow of a second order thermo-viscous fluid over an infinite plate was 
studied by Nageswara Rao and Pattabhi Ramacharyulu [11]. Aparna et al., [12] studied uniform Flow 
of Viscous Fluid Past a Porous Sphere Saturated with Micro Polar Fluid. Aparna et al., [13] examined 
Flow generated by slow steady rotation of a permeable sphere in a micro-polar fluid. Aparna et al., 
[14] examined Viscous Fluid Flow Past a Permeable Cylinder. Aparna et al., [15] studied Rotary 
Oscillations of a Permeable Sphere in an Incompressible Couple Stress Fluid. Padmaja et al., [16] 
analyzed numerical solution of singularly perturbed two parameter problems using exponential 
splines. Pothanna et al., [17] examined a numerical study of coupled non-linear equations of thermo-
viscous fluid flow in cylindrical geometry.  Pothanna et al., [18] Analytical and Numerical Study of 
Steady Flow of Thermo-Viscous Fluid between Two Horizontal Parallel Plates in Relative Motion. 
Bakar et al., [19] studied stability analysis on mixed convection nano fluid flow in a permeable porous 
medium with radiation and internal heat generation. Juwari et al., [20] examined simulation of 
dispersion and explosion in petrol station using 3d computational fluid dynamics flacs software. 
Benkara-mostefa et al., [21] examined heat transfer and entropy generation of turbulent flow in 
corrugated channel using nano fluid. Pparasa et al., [22] investigated oscillatory flow of couple stress 
fluid flow over a contaminated fluid sphere with slip condition. Khan et al., [23] studied heat and 
mass transfer of williamson nano fluid flow yield by an inclined lorentz force over a nonlinear 
stretching sheet. Khan et al., [24] examined 3-D axisymmetric carreau nano fluid flow near the 
homann stagnation region along with chemical reaction: application fourier’s and fick’s laws. Khan et 
al., [25] investigated change in internal energy of carreau fluid flow along with ohmic heating: a von 
karman application. Chu et al., [26] examined thermal impact of hybrid nano fluid due to inclined 
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oscillatory porous surface with thermo-diffusion features. Li shuguang et al., [27] studied entropy 
optimized flow of sutterby nanomaterial subject to porous medium: buongiorno nano fluid model.  

Perturbation technique is most powerful and elegant method which is used to solve the many 
complexes, highly nono-linear and coupled differential equations. The problem in the present 
investigation studied using the perturbation technique. The solutions of governing equations 
obtained also presented in form of graphs and effect of various material parameters of problem 
discussed and explained with different numerical values. The present work is very much useful to the 
researchers and scientist to solve their industry and research related problems. Porous parallel plates 
are of immense practical importance in industrial and engineering systems. The human 
cardiovascular system and in several engineering devices such as heat and mass exchanges, chemical 
reactors, chromatography columns and other processing equipment. Owing to the wide range of 
applications, the interest in the study of flow characteristics in these configurations has grown 
enormously during the last decades. 

The theories proposed earlier have not been discussed the effects of thermo-viscous material 
parameters on the steady flow of a thermo-viscous incompressible fluid bounded between porous 
parallel plates. This paper attempts to study the effects of material parameters such as 
Suction/Injection parameter(S), thermo-mechanical interaction coefficient and thermal conductivity 
coefficient on the steady flow of a thermo-viscous incompressible fluid bounded between porous 
parallel plates in the absence of viscous dissipation.  
 
2. Mathematical Formulation  
 

Consider the steady flow of a second order thermo-viscous fluid characterized by constitute 
equations between two horizontal parallel porous plates (see Figure 1). The flow is generated by a 
constant pressure gradient in a direction parallel to the plates. Further, the plates are assumed to be 
porous allowing a constant injection at the lower plate and equal suction at the upper plate. Let v0 
be the injection/suction velocity.    

With reference to a coordinate system OXYZ with origin on the plate, the X-axis in the direction 
of the fluid flow, Y-axis   perpendicular to plates. The plates are represented by y=0 and y=h.  The two 
plates are maintained at constant temperatures  𝜃0 and 𝜃1respectively.      
           

 
Fig. 1. Physical model and co-ordinate system 
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Let the steady flow between the two plates is characterized by the velocity field [u(y), 𝑣0, 0] and 
temperature field 𝜃(y). This choice of velocity satisfies the continuity equation.  The equations of 
motion in the absence of external forces and internal energy sources reduces to  

 

ρv0
∂u

∂y
  = - 

∂p

∂x
  + μ  

∂2u

∂y2
 - α6 

∂θ

∂x
   

∂2θ

∂y2
                                                                   (1) 

   

μc 
∂

∂y
 (

∂u

∂y
)
2

 + ρFy =0                                                                                          (2) 

   

α8
∂

∂y
 (

∂θ

∂y
   

∂u

∂y
)  + ρFz = 0                                                                                     (3) 

 
And the energy equation reduces to 
 

ρc (u 
∂θ

∂x
  + v0   

∂θ

∂y
 )  =μ (

∂u

∂y
)
2

 - α6 
∂θ

∂x
  
∂u

∂y
  
∂θ

∂y
  +k 

∂2θ

∂y2 + β3 
∂θ

∂x
   

∂2u

∂y2                             (4)                                                                                                          

 
Together   with the boundary conditions:      
 
 u=0    𝜃  = 𝜃0   at      y=0   
 u=0   𝜃  = 𝜃1     at     y=h                                    (5) 
                                                                    
Introducing   the   non-dimensional quantities 
 

y = hY   ,   u = (𝜇/𝜌ℎ) U, T=  
𝜃−𝜃0

𝜃1−𝜃0
   ,     

𝜕𝜃

𝜕𝑥
  = 

𝜃1−𝜃0

ℎ
 c2    ,   - 

𝜕𝑝

𝜕𝑥
  =

𝜇2

𝜌ℎ3 c1     

𝑝𝑟  = 
𝑐𝜇

𝑘
 ,    S=  

𝜌ℎ𝑣0

𝜇
 ,    B3 = 

𝛽3

𝜌ℎ2𝑐
  ,  A1 = 

𝜇2

𝜌ℎ2𝑐( 𝜃1−𝜃0)
  ,  A6  = 

𝛼
6(𝜃1−𝜃0)2

𝜇2                         (6) 

 
Where c1   and   c2 are non-dimensional pressure and temperature gradient respectively. In terms of 
these non-dimensional quantities the momentum and energy equations reduces to 
 

S
dU

dY
 =c1 + 

d2U

dY2  -A6c2 
d2T

dY2                                                                                   (7) 

 

Uc2+ S
dT

dY
  =  A1 [(

dU

dY
)
2

− A6c2  
dU

dY
  

dT

dY
] + 

1

pr

d2T

dY2   +  B3C2
d2U

dY2                                    (8) 

 
The boundary conditions in Eq. (5) reduces to 
 
U (0) = 0         T (0) = 0                                                                                                   
U (1) = 0        T (1) = 1                         (9) 

 
The fluid is   assumed   at   slightly thermo-viscous in such a way that the interaction between the 

mechanical stress and thermal gradients characterized by coefficients 𝛼6, 𝛽3 of a lower order in 

magnitude compare to magnitude of viscous dispensation 𝜇2 𝑑2𝑈

𝑑𝑌2  and non Fourier heat transfer B3 

i.e. terms containing A6 in momentum and energy balance equation taken to be smaller than the 
other terms in the energy equation.  
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3. Perturbation  Method 
 
The velocity and temperature fields characterized by the perturbation method, by taking A6 as 

the perturbation parameter.     
 

U(Y) = U (0) (Y) + A6 U (1) (Y) + A6
2U (2) (Y) + A6

2U (2) (Y) + …………….                      (10) 
 
T(Y) =   T (0) (Y) + A6 T (1) (Y) + A6

2𝑇(2) (Y) + A6
2𝑇(2) (Y) + …………….                        (11) 

 
Substituting Eq. (10) and Eq. (11) in Eq.  (7)  and Eq.  (8) and collecting terms of like powers of A6, 

the successive approximations are as follows. 
 
3.1 Basics or Zeroth Order Approximation (i.e. Terms Independent of A6)  
 
The equations in this approximation are  
 

𝑆
𝑑𝑈(0)

𝑑𝑌
 = 𝑐1 +  

𝑑2𝑈(0)

𝑑𝑌2                                                                                          (12) 

 

𝑈(0)𝑐2+ 𝑆 
𝑑𝑇(0)

𝑑𝑌
  =   𝐴1 (

𝑑𝑈(0)

𝑑𝑌
)
2

 + 
1

𝑝𝑟

𝑑2𝑇(0)

𝑑𝑌2    +  𝐵3𝑐2  
𝑑2𝑈(0)

𝑑𝑌2                                    (13) 

 
With the boundary conditions: 
 
U (0) (0) = 0                              U (0) (1) = 0                                                         (14) 
 
T (0) (0) = 0                               T (0) (1) = 1                                                        (15) 
 
From Eq. (12) and using the boundary conditions in Eq. (14), the velocity distribution is obtained as 
 

U (0) (Y) =  
C1

S
  (Y −

1−eSY

1−eS )                                                                               (16)  

 
Employing this velocity distribution in Eq. (13) and using the boundary conditions in Eq. (15), the 

temperature distribution is obtained as  
 

T(0) (Y) =[
1 − 

𝐶1𝐶2

2 𝑆2
− 

𝐶1𝐶2

𝑝𝑟 𝑆3
+ 

𝐶1𝐶2

𝑆2(1−𝑒𝑆)
− 

𝐴1 𝐶1
2

𝑆3

−
𝑝𝑟𝐶1𝐶2(1−𝑒𝑆)

𝑆3(1−𝑝𝑟)
−

2𝑝𝑟𝐴1 𝐶1
2

𝑆3(1−𝑝𝑟)
− 

𝐵3𝐶1𝐶2𝑝𝑟

𝑆(1−𝑝𝑟)
−

𝑝𝑟𝐴1 𝐶1
2

2𝑆2(2−𝑝𝑟)
 
1+𝑒𝑆

1−𝑒𝑆

] (
1−eSprY

1−eSpr
) +

[
prC1C2

S
+ 

2 A1pr C1
2

S(1−eS)
+

B3C1C2prS

1−eS  ]  
1−eSY

S2(1−pr)
+

prA1 C1
2

2S2(2−pr)(1−eS)
2  (1 − e2SY) +  

C1C2

S2 Y2 +

 
1

Spr
[−

 prC1C2

S
 {−

1

Spr
+

1

1−eS
} +

prA1 C1
2

S2
]  Y 

(17) 

 
3.2 First Order Approximation (i.e. Terms Containing A6)  
 
The equations are    
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S 
dU(1)

dY
 =    

d2U(1)

dY2   − c2
d2T(0)

dY2                                                                            (18)  

                                                                                     

U(1)c2 + S  
dT(1)

dY
  = A1 [2 

dU(0)

dY
 
dU(1)

dY
− c2

dU(0)

dY
 
dT(0)

dY
] + 

1

pr

d2T(1)

dY2   +B3c2  
d2U(1)

dY2                         (19) 

 
With the boundary conditions: 
 
U (1) (0) = 0, U (1) (1) = 0                                                                               (20) 
 
T (1) (0) = 0, T (1) (1) = 0                                                                                 (21) 
 
Which are homogeneous conditions 

From the Eq. (16), Eq. (17), Eq. (18) and Eq. (19) together with boundary conditions in Eq. (20) 
and Eq. (21), the velocity field and temperature field are obtained as 

 

U (1) (Y) =  
prc1c2

2S3(1−eS)
 (c1 − c2)[(S + 2)(1 − eSY) − Y(SY + 2)(1 − eS)] 

                 -−
c1c2

S3(1−eS)
[c2 + 2A1prc1 +

pS

1−eS
(c1 − c2)] [(1 − eSY) − Y(1 − eS)] 

                  +
prc1c2

S2(1−pr)(1−eS)2
 [
(2pr − 1)B3c2S

2 + prc2(1 − eS)

+c1(1 − pr + 2A1)
]  

                  +
𝑝𝑟𝐴1𝑐1

2𝑐2(𝑝−1)

𝑆2(2−𝑝𝑟)(1−𝑒𝑆)
3 [(𝑒𝑆 − 𝑒𝑆𝑌) − 𝑒2𝑆(1 − 𝑒𝑆𝑌) + 𝑒2𝑆𝑌(1 − 𝑒𝑆)]                        

                  +
𝑝𝑟𝑐2

(1−𝑝𝑟)(1−𝑒𝑆𝑝𝑟)(1−𝑒𝑆)
 

[
 
 
 
 
 1 − 

𝐶1𝐶2

2 𝑆2 − 
𝐶1𝐶2

𝑝𝑟 𝑆3 + 
𝐶1𝐶2

𝑆2(1−𝑒𝑆)

− 
𝐴1 𝐶1

2

𝑆3 −
𝐶1𝐶2𝑝𝑟(1−𝑒𝑆)

𝑆3(1−𝑝𝑟)
−

2𝑝𝑟𝐴1 𝐶1
2

𝑆3(1−𝑝𝑟)

− 
𝐵3𝐶1𝐶2𝑝𝑟

𝑆(1−𝑝𝑟)
−

𝑝𝑟𝐴1 𝐶1
2

2𝑆2(2−𝑝𝑟)
 
1+𝑒𝑆

1−𝑒𝑆 ]
 
 
 
 
 

[
(𝑒𝑆 − 𝑒𝑆𝑝𝑟) − 𝑒𝑆𝑌(1 − 𝑒𝑆𝑝𝑟)

+𝑒𝑆𝑝𝑟𝑌(1 − 𝑒𝑆)
]         

      

T(1) (Y)= 
1

𝑠𝑝𝑟
 {

[𝑎1 + (
1

2
+

1

𝑆𝑝𝑟
) 𝑎2 + (

1

3
+

1

𝑆𝑝𝑟
+

2

𝑆2𝑝𝑟
2) 𝑎3] [1 − 𝑒𝑆𝑝𝑟𝑌]

− [𝑎1𝑌 + (
𝑌2

2
+

𝑌

𝑆𝑝𝑟
) 𝑎2 + (

𝑌3

3
+

𝑌2

𝑆𝑝𝑟
+

2𝑌

𝑆2𝑝𝑟
2) 𝑎3] [1 − 𝑒𝑆𝑝𝑟]

}  

                + 
1

𝑆2(1−𝑝𝑟)
 [𝑎4 −

2−𝑝𝑟

𝑆(1−𝑝𝑟)
𝑎8] [(1 − 𝑒𝑆)(1 − 𝑒𝑆𝑝𝑟𝑌) − (1 − 𝑒𝑆𝑝𝑟)(1 − 𝑒𝑆𝑌)]                       

               + 
1

2𝑆2(2−𝑝𝑟)
 [𝑎5 +

4−𝑝𝑟

2𝑆(2−𝑝𝑟)
𝑎9] [(1 − 𝑒2𝑆)(1 − 𝑒𝑆𝑝𝑟𝑌) − (1 − 𝑒𝑆𝑝𝑟)(1 − 𝑒2𝑆𝑌)]                    

               + a6   
1

3𝑆2(3−𝑝𝑟)
[(1 − 𝑒𝑆𝑝𝑟)(1 − 𝑒3𝑆𝑌) − (1 − 𝑒3𝑆)(1 − 𝑒𝑆𝑝𝑟𝑌)]     

               + a7  
1

𝑆𝑝𝑟
  [𝑌𝑒𝑆𝑝𝑟𝑌(1 − 𝑒𝑆𝑝𝑟) − 𝑒𝑆𝑝𝑟(1 − 𝑒𝑆𝑝𝑟𝑌)]   

              + a10 
1

𝑆2(1+𝑝𝑟)
 [𝑒𝑆(1+𝑝𝑟)(1 − 𝑒𝑆𝑝𝑟𝑌) + 𝑒𝑆𝑝𝑟𝑌(1 − 𝑒𝑆𝑌) − 𝑒𝑆𝑝𝑟(1 − 𝑒𝑆(1+𝑝𝑟)𝑌)]          

 
Here  𝑎1 , 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6, 𝑎7, 𝑎8, 𝑎9 and 𝑎10 and which are given. 

The velocity and temperature distribution up to the first order approximation in 𝐴6 are as follows. 
 

The velocity distribution  
 
U(Y) = U (0) (0)   + A6 U (1) (0)                                                                                                                                                                                                                                                            
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and the temperature distribution 
 
T(Y) = T (0) (Y) + A6 T (1) (Y) 
 
4. Results and Discussion 

 
Numerical estimates of the velocity and temperature fields was carried for different values of 

strain thermal conductivity coefficient  𝐵3 = (1,3,5) and also the Suction/Injection parameter S= 
(0.3, 0.4, 0.5) taking  𝐶1 = 1, A1 = 1, 𝑝𝑟 = 1.5 and A6 = 0.001 and these are illustrated graphically. 

To get the physical insight in to the problem the velocity and temperature fields have been 
discussed by assigning numerical values to various material parameters such as the Suction/Injection 

parameter(S) , thermo-mechanical interaction coefficient )( 6a , the strain thermal conductivity 

coefficient )( 3b , cross viscosity coefficient )( c and Prandtl number )( rp  which characterise the flow 

phenomena . The influences of these parameters on the velocity and temperature have been studied 
and are presented graphically. 

Figure 2, Figure 3 and Figure 4 shows the curvature of the velocity profile reduces as suction 
parameter increases. This is independent of thermo-viscous nature of the fluid. As the values of ‘y’ 
increases the fluid velocity up to middle of the plate and then decreases to attain the velocity of the 
upper plate and all the velocity profiles coincides at the upper plate. 
 

 
Fig. 2.  Variations of the velocity profiles )(YU  with S, 6A   and 13 =B  

 

 
Fig. 3.  Variations of the velocity profiles )(YU  with S, 6A   and 33 =B  
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Fig. 4. Variations of the velocity profiles )(YU  with S, 6A   and 53 =B  

 
As suction parameter increases the temperature decreases and it is maximum at the middle of 

the plate. As B3 increases the fluid gets heated slowly at the beginning of channel and rises up to 
middle of the plate and then decreases to attain the temperature of the upper plate. This is illustrated 
in Figure 5, Figure 6 and Figure 7.   As the values of ‘y’ increases the fluid temperature up to middle 
of the plate and then decreases to attain the temperature of the upper plate and all the velocity 
profiles coincides at the upper plate. 

The rate of increase of temperature as the values of Suction/Injection parameter (S) is at faster 
rate when compare to the rate of increase of velocity of the fluid. 
 

 
Fig. 5. Variations of the temperature profiles )(YT  with S, 6A   and 13 =B  

 

 
Fig. 6.  Variations of the temperature profiles )(YT  with S, 6A   and 33 =B  
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Fig. 7. Variations of the temperature profiles )(YT  with S, 6A   and 53 =B  

 
5. Conclusions 

 
In this paper, the steady flow of a thermo-viscous incompressible fluid bounded between 

infinitely stretched porous parallel plates is examined in this paper the resulting governing steady, 
non-linear and coupled equations have been solved by using Perturbation technique. The 
computations are carried out for different values of thermo-mechanical interaction coefficient, strain 
thermal conductivity coefficient, Suction/Injection parameter and for the fixed values of remaining 
physical parameters. 

 
i. The fluid velocity increases with the increase of Suction/Injection parameter up to the center 

of the channel and then decreases.  
ii. The fluid temperature increases with the increase of strain thermal conductivity coefficient 

up to the center of the channel and then decreases. 
iii. Both the fluid velocity and temperature increases, as the values of ‘y’ increases up to middle 

of the plate and then decreases.  
iv. The rate of increase of velocity is far less when compared to the temperature of the fluid. 
v. The present work can be extended to thermos-viscous flows in porous medium. 

vi. The flows in porous medium as the future work can also be obtain the numerical solutions 
using MATLAB and MATHEMATICA solvers. 

vii. The present study can also be extended to solve the governing equations in cylindrical and 
spherical geometry. 
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