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The main focus of this study is to examine the peristaltic behaviour of an Eyring-Powell 
fluid within a non-uniform porous channel. The investigation focuses on 
comprehending the characteristics of the channel walls that impact the fluid dynamics. 
By incorporating the convective boundary conditions into the series Perturbation 
method, solutions for the governing non-linear equations on velocity, temperature, 
and stream function are obtained. The study improves accessibility through parametric 
assessment, and the results are shown graphically using MATLAB R2023a software. 
Significant insights are obtained from the study, especially concerning natural 
phenomena such as blood flow in tiny arteries, which may be used for management or 
intervention in dysfunctional situations. The investigation results show that fluid 
characteristics are greatly affected by porous parameters and different viscosities. 
Also, fluid flow improves as the porous parameter increases, i.e., Darcy number. The 
enhancement in the convective heat and mass transfer coefficient decreases the 
temperature and concentration of the fluid, respectively. 
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1. Introduction 
 

Peristalsis is a physiological phenomenon characterised by the rhythmic contraction and 
relaxation of muscles within tubular structures, such as the oesophagus, digestive tract, and 
particular blood vessels. The organised wave-like movement in these tubes moves things along, 
which helps with digestion and blood flow. Peristalsis is a biological mechanism that is exclusive to 
living organisms. In biological systems, the peristaltic mechanism is the transmission of muscle 
contractions in wave-like patterns. These waves move the content forward by applying a propulsive 
force to travel longitudinally through tubular structures.  Streamline processes, such as the 
transportation of food through the digestive tract, are achieved by ensuring unidirectional flow and 
smooth coordination of the material in the medium flow. Ayukawa and Takabatake [1] investigated 
the patterns of peristaltic flow in a two-dimensional setting. Siddiqui and Schwarz [2] explored the 
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peristaltic motion of second-order fluids, which yielded crucial knowledge regarding the flow. 
Comparini and Mannucci [3] investigated the interplay between Bingham and Newtonian fluids. 
Based on their work, critical observations were made on the behaviour of different fluid types in 
peristaltic systems. Elshehawey et al., [4] studied the peristalsis of generalized Newtonian fluid in a 
porous medium by considering so slip boundary condition. Further peristaltic fluxes were examined 
by Hayat et al., [5] through the application of magnetohydrodynamics (MHD) on the behaviour of 
Johnson-Segalman fluid. The effect of heat transfer, slip circumstances, and wall characteristics on 
MHD peristaltic transport was examined by Srinivas et al., [6]. The aim was to investigate the 
pragmatic consequences of these variables in actual circumstances. 

Material porosity is the ratio of its vacant spaces, or pores, to its overall volume. The porosity 
parameter controls fluid flow, heat transfer, and transport phenomena in porous media, including 
rocks, soils and artificial materials. The intrinsic void volume in the material is known as Porosity. The 
capacity of a medium to facilitate fluid transmission is heavily influenced by its porosity. Further, the 
effect of porosity on heat transfer within the porous medium is critical. This is important for 
geothermal reservoirs and heat exchangers. Porous medium/porosity affects many scientific, 
technical, and environmental fields. Porosity characterisation and understanding are essential for 
accurate prediction and efficient optimisation of fluid flow, heat transfer, and mass transport in 
porous materials. Ramesh and Devakar [7] studied the MHD peristaltic transport characteristics of 
fluids exhibiting couple-stress properties across porous media. The study examined inclined 
asymmetric channels and heat conduction, which is relevant to the industry. Sankad and Nagathan 
[8] led a research investigation to augment knowledge regarding unsteady MHD peristaltic flows of 
fluids in porous media, emphasising fluids exhibiting a couple of stress characteristics. Gudekote and 
Choudhari [9] conducted a study investigating the impact of slip effects on the peristaltic transport 
of Casson fluids within inclined elastic tubes featuring porous walls. Peristaltic slip flow in inclined 
porous conduits was investigated in the research conducted by Lakshminarayana et al., [10], with a 
particular emphasis on Bingham fluids. This research possesses substantial pertinence 
about industrial applications. Further heat and mass transport in MHD peristaltic fluxes through 
compliant porous channels were investigated in the study reported by Vaidya et al., [11] and Tanveer 
et al., [12] by considering convective boundary. Abuiyada et al., [13] examined the impact of 
activation energy and chemical reaction on the MHD peristaltic flow of Jeffery nanofluids through a 
porous medium in an inclined symmetric channel. The effects of diffusion thermography, Joule 
heating, radiation, viscous dissipation, heat generation/absorption, activation energy, and thermal 
diffusion are also investigated.  

Muscles contract and relax during peristalsis to move substances in tubular structures. Variable 
fluid parameters, such as viscosity and thermal conductivity, impact the process. Viscosity measures 
the fluid's flow resistance. Variable viscosity is a liquid's capacity to change flow resistance under 
different conditions. A rise in viscosity amplifies the resistance of fluids during peristaltic motion, 
which may necessitate additional exertion to propel liquids through a conduit. Varying viscosity slows 
peristaltic waves and reduces peristalsis. To comprehend peristalsis, the relationship between stress, 
strain rate, and viscosity is critical in non-Newtonian fluids. Material thermal conductivity 
impacts heat production during peristalsis. Muscle contractions modify energy transfer and thermal 
conductivity within the conduit. Variable thermal conductivity affects fluid and tissue temperature 
distribution, which may affect peristalsis-related physiological systems also affects peristalsis fluid 
interactions, biomechanics, energy consumption, heat production, and fluid transmission efficiency. 
These changes affect gastrointestinal and biomechanics. The investigations conducted previously by 
Pascal et al., [14], Lathif et al., [15], Khan et al., [16,17], Gudekote et al., [18], Khan et al., [19], Prasad 
et al., [20] and Mukhopadhyay et al., [21] covers various aspects of fluid flow, including heat transfer 
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with variable fluid properties. These studies provide significant contributions to the understanding 
of these intricate phenomena. The investigators undertook an in-depth examination to determine 
the effect of various liquid properties on this phenomenon. 

Fluid heat transmission is crucial for natural and artificial phenomena. The primary heat 
transmission mechanisms are conduction, convection, and radiation. Solids exhibit more conductivity 
than fluids due to higher intermolecular spacing. Conduction occurs in fluids with temperature 
gradients. Heat transfer by fluid motion, such as liquids and gases, is called Convection. Radiation is 
the transmission of heat via electromagnetic waves. Contrary to conduction and convection, this heat 
transfer method operates based on the temperature difference between the fluid and its 
environment. The heat conductivity of the liquid has a significant impact on the process. Peristalsis, 
which promotes blood flow and nutrient absorption, may increase heat transmission between blood 
and tissues and affect local temperature conditions in the digestive system. Scholars analyse 
peristalsis-related heat transport through computational simulations and mathematical models. By 
identifying heat-generating processes and forecasting temperature fluctuations, these models aid in 
comprehending the thermal impacts on peristaltic motion. Although peristalsis does not involve 
direct heat transfer, physiological processes, therapeutic applications, and biomechanical research 
must understand its heat-related aspects. Vajravelu et al., [22] investigated the influence of heat 
transmission on the peristaltic transport of a Jeffrey fluid through a porous stratum oriented 
vertically. This work expands the understanding of the uses of porous media. Alarabi et al., [23] 
explored the heat transfer phenomena in the peristaltic flow of viscoelastic fluid within eccentric 
cylinders using the homotopy perturbation approach. Dar and Elangovan [24] studied the effect of 
an angled magnetic field on heat and mass transfer in the peristaltic flow of stress fluids. The 
investigation adds to the existing corpus of information about magnetic effects in this particular 
setting. A study was undertaken by Abdulhadi and Ahmed [25] to examine the impact of radial 
magnetic fields on the peristaltic transport of a Jeffrey fluid through curved channels. The 
investigation has produced noteworthy results concerning the possible application of magnetic fields 
in peristalsis. Khan et al., [26] analysed Williamson nanofluid's heat and mass transfer by considering 
the effects of variable viscosity and inclined Lorentz force over a stretching sheet. Magesh and 
Kothandapani [27] examined heat and mass transfer in non-Newtonian fluid motion caused by 
peristaltic pumping in asymmetrically curved channels. The study analysed the significance of non-
Newtonian behaviours in curved geometries. Vaidya et al., [28] conducted more studies to evaluate 
peristaltic transport. The study emphasises the importance of heat transport and slide effects in an 
axisymmetric porous tube. 

The linear relationship between attrition stress and average velocity in neutronic fluids deviates 
from that observed in Eyring-Powell rheology. In this fluid model, the Powell-Eyring and Eyring 
rheological models are implemented. The non-Newtonian nature of Eyring-Powell fluid causes its 
viscosity to vary in response to changes in flow rate. Eyring-Powell fluid and other non-Newtonian 
liquids characterise their flow, adhesion, and dispersion by their densities. Flow velocity, conversely, 
determines the thickness of Newtonian fluids. The Eyring model is elucidated through the application 
of quantum chemistry. According to this idea, liquid particles are structurally organised. The 
destruction or repairs of these structures affect the deposit. A corrective term is incorporated into 
the Powell-Eyring component to accommodate viscoelastic effects. This segment improves the 
representation of liquid behaviour, specifically in cases where accelerations deviate substantially 
from the reference acceleration. The Eyring-Powell fluid model applies to biomechanics, chemistry, 
and fluid dynamics. This is the common term for the movement of complex fluids, such as those 
found in biological systems, industrial processes, and polymers. The consistency index, reference 
twisting index, and activation energy are all components of Eyring-Powell fluid numbers. Predicting 
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the rheological parameters of the Eyring-Powell fluid under different flow conditions is of the utmost 
importance. Engineers and researchers employ this model to investigate the properties of non-
Newtonian fluids and improve processes that incorporate them. Adapting the Eyring-Powell fluid 
model in the study becomes crucial as it facilitates investigating intricate rheological characteristics 
of various substances. Many researchers have carried out studies on the Eyring-Powell fluid as seen 
in the literature [29-39]. 

Further research is necessary to comprehend the collective influence of various factors on Eyring-
Powell fluid peristaltic transport. It is crucial to comprehend the relative significance of different 
elements to derive practical implications and adapt the Eyring-Powell fluid model to accommodate 
physiological investigations. To fill this void, the present work explores heat transfer in a non-uniform 
channel with convective boundary conditions during the peristalsis of Eyring-Powell fluid in a porous 
media. To comprehend the relationship between the permeability of the medium and its 
surroundings, which affects biological processes, including nutrient distribution and spatial 
temperature within the porous medium, it is vital to account for convective heat exchange at channel 
boundaries. The present investigation is utilised in drug transport model delivery optimisation to 
examine the impact of temperature on the dispersion of medications in porous media. 

 
2. Mathematical Formulations 
 

The problem is quantitatively described using the continuity, momentum, temperature, and 
concentration equations, which are the fundamental equations of fluid dynamics. Consider the flow 
of viscous incompressible Eyring-Powell fluid through a non-uniform two-dimensional channel. 
 
The wall deformation expression for the geometry of the channel is given as, 
 

𝐻′(𝑥′, 𝑡′) = 𝑎′(𝑥′) + 𝑏′ 𝑠𝑖𝑛 [
2𝜋

𝜆
(𝑥′ − 𝑐𝑡′)]                       (1) 

 
Where 𝐻′ is the non-uniform wave in which 𝑡′ is the time, 𝑎′(𝑥′) = 𝑎′ + 𝑚′𝑥′ with 𝑚′ ≪ 1 which 
represent the channels half-width at any axial distance 𝑥′ , 𝑎′ is the non-uniform radius, 𝑚′ is the 
constant depending on the length of the channel, 𝑐 is the wave speed, 𝜆 is the wave length and 𝑏′ is 
the wave amplitude. Figure 1 shows geometry of the physical model. 
 

 
Fig. 1. Geometry of the physical model 



CFD Letters 

17, Issue 1 (2025) 114-139 

118 
 

The Eyring-Powell fluid model is used to explore non-Newtonian flow shear. In the Eyring–Powell 
fluid model, the stress tensor is defined by Akbar [30] as follows: 

 

𝑆′ = 𝜇𝛻 𝑉 +
1

𝛽1
 𝑠𝑖𝑛ℎ−1 [

1

𝑐1
𝛻 𝑉]           (2) 

 

𝑠𝑖𝑛ℎ−1 [
1

𝑐1
𝛻 𝑉] ≅

1

𝑐1
𝛻 𝑉 −

1

6
(

1

𝑐1
𝛻 𝑉)

3

 , |
1

𝑐1
𝛻 𝑉|

5

≪ 1,        (3) 

 
Where 𝜇 is related to the shear viscosity measurement, 𝛽1 and 𝑐1 account for the fluid model 
representatives. 𝛻 is the vector differential operator and 𝑉 is the velocity component. 
 
2.1 Governing Equations 
 

For the fluid flowing in the fixed frame, the incompressibility conditions for the governing 
equation are given as, 

 
Continuity equation: 
 
 𝜕�̂�

𝜕𝑥′ +
𝜕�̂�

𝜕𝑦′ = 0                    (4) 

 
Momentum equation: 
 

𝜌 [
𝜕�̂�

𝜕𝑡′ + �̂�  
𝜕�̂�

𝜕𝑥′ + 𝑣
𝜕�̂�

𝜕𝑦′] =  −
𝜕𝑝′

𝜕𝑥′ +  
𝜕𝑆′

𝑥′𝑥′

𝜕𝑥′ +  
𝜕𝑆′

𝑥′𝑦′

𝜕𝑦′ −
𝜇

𝑘
(�̂� + 𝑐)                                         (5) 

 

𝜌 [
𝜕�̂�

𝜕𝑡′ + �̂�
𝜕�̂�

𝜕𝑥′ + 𝑣
𝜕�̂�

𝜕𝑦′] =  −
𝜕𝑝′

𝜕𝑦′ +  
𝜕𝑆′

𝑥′𝑦′

𝜕𝑥′ +  
𝜕𝑆′

𝑦′𝑦′

𝜕𝑦′                                                         (6) 

 
Energy equation:  
 

𝜌𝐶𝑃 [
𝜕𝑇′

𝜕𝑡′ + 𝑣
𝜕𝑇′

𝜕𝑥′ + �̂�
𝜕𝑇′

𝜕𝑦′] =
𝜕

𝜕𝑥′ (𝐾(𝑇′)
𝜕𝑇′

𝜕𝑥′) +
𝜕

𝜕𝑦′ (𝐾(𝑇′)
𝜕𝑇′

𝜕𝑦′) + 𝑆′
𝑥′𝑥′  

𝜕�̂�

𝜕𝑥′  + 𝑆′
𝑦′𝑦′  

𝜕�̂�

𝜕𝑦′  +

                                                         𝑆′
𝑥′𝑦′ (

𝜕�̂�

𝜕𝑦′ +
𝜕�̂�

𝜕𝑥′)                                                                (7)    

 
Concentration equation: 
 

 [
𝜕𝐶′

𝜕𝑡′
+ 𝑣

𝜕𝐶′

𝜕𝑥′
+ �̂�

𝜕𝐶′

𝜕𝑦′
] = 𝐷𝑚 [

𝜕2𝐶′

𝜕𝑥′2 +
𝜕2𝐶′

𝜕𝑦′2] +
𝐷𝑚𝐾𝑇

𝑇𝑚
 [

𝜕2𝑇′

𝜕𝑥′2 +
𝜕2𝑇′

𝜕𝑦′2]                                   (8)    

 
Where �̂�, �̂� are velocity components in axial and radial directions of the fixed frame respectively. 𝑝′ 
is the pressure, 𝜌 is the fluid density,  𝑆′

𝑥′𝑥′  , 𝑆′
𝑥′𝑦′ ,  𝑆′

𝑦′𝑦′   are extra stress components, while 

𝑇′ denotes temperature , 𝐶′ denotes concentration, 𝐶𝑃 denotes the specific heat at constant 
volume and 𝐾(𝑇′) denotes variable  thermal conductivity, 𝑇𝑚 the mean temperature,  𝐷𝑚 the 
coefficient of mass diffusivity, and 𝐾𝑇 the thermal diffusion ratio. 
 
The above-mentioned dimensional parameters are non-dimensionalised using the following. 
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𝑥 =
𝑥′

𝜆
 , 𝑦 =

𝑦′

𝑎′  ,   𝑤 =
�̂�

𝑐
 ,   𝑣 =

𝜆�̂�

𝑐𝑎′  , 𝑆𝑥𝑥 =
𝑎′𝑆′

𝑥′𝑥′

𝑐 𝜇
 , 𝑆𝑥𝑦 =

 𝑎′𝑆′
𝑥′𝑦′

𝑐 𝜇
 , 𝑆𝑦𝑦 =

 𝑎′𝑆′
𝑦′𝑦′

𝑐 𝜇
  , 𝑡 =

𝑐 𝑡′

𝜆
  ,   

𝑅𝑒 =
𝑎 𝑐 𝜌

𝜇
 ,   𝜗 =

𝜇0

𝜌
  ,   𝑝 =

𝑎′2
𝑝′

𝑐 𝜆 𝜇
  , 𝜃 =

𝑇′−𝑇′
0

𝑇1−𝑇0
  , 𝑃𝑟 =  

𝜇 𝐶𝑃

𝑘1
 𝐸𝑐 =

𝑐2

𝛿𝑇0
, 𝐵𝑟 = 𝐸𝑐 𝑃𝑟 , 𝛿 =

𝑎′

𝜆
   

𝜙 =
𝐶′−𝐶′

0

𝐶′
0

, 𝜇0
′ =

𝜇0

𝜇
, 𝑆𝑟 =

𝜌𝐷𝑚𝐾𝑇(𝑇′−𝑇′
0)

𝑇𝑚𝐶′
0

, 𝑆𝑐 =
𝜇

𝜌𝐷𝑚
 , 𝐷𝑎 =

𝑘

𝑎′2
 𝜇

 , 𝐵 =
1

𝜇𝛽1𝑐1
 , 𝐴 =

𝐵𝑐2

2 𝑎′2𝑐1
2 ,   

𝐸1 = −
𝜏𝑎′3

𝜆𝜇0
3𝑐

,  𝐸2 =
𝑚1 𝑎′3

𝑐

𝜆3𝜇0 
 , 𝐸3 =

 𝑚2𝑎′3

𝜆2𝜇0 
, 𝐸4 =

𝑚3𝑎′3

𝜆5𝜇0𝑐
, 𝐸5 =

𝐻′𝑎′3

𝜆𝜇0 𝑐
 ,,  𝜖 =

𝑏′

𝑎′  , 𝜓 =
𝜓′

𝑎′𝑐
,   

 𝐵ℎ =
ℎ1𝑎′

𝑘
, 𝐵𝑚 =

ℎ2𝑎′

𝐷𝑚
 , ℎ =

𝐻′

𝑎′ = 1 + 𝑚𝑥 +  𝜖 𝑠𝑖𝑛(2𝜋(𝑥 − 𝑡))          (9) 

 
Where, 𝐸1 is Wall tension parameter, 𝐸2 is Mass characterization parameter, 𝐸3 is Wall damping 
force parameter, 𝐸4 is Wall rigidity parameter, 𝐸5 is Wall elasticity parameter, 𝑆𝑐 is Schmidt number, 
𝑆𝑟 is Soret number, 𝐵𝑟 is Brinkman number, 𝐵ℎ is Convective Heat Transfer Coefficient, 𝐵𝑚 is 
Convective Mass Transfer Coefficient, 𝐴 is Eyring–Powell fluid parameter, 𝐵 is Eyring–Powell fluid 
material parameter, 𝐷𝑎 is Darcy Number, 𝛽 is Velocity slip parameter, 𝜖 is Amplitude ratio, 𝛼 is 
Coefficient of Variable Viscosity, 𝜈 is Coefficient of Variable thermal conductivity, 𝑚 is non-uniform 
parameter, 𝑡 is time, 𝑥 is non-dimensional axial distance,  𝑃𝑟 is Prandlt number, 𝐸𝑐 is Ecart number, 
𝑅𝑒 is Reynolds number, 𝛿 is wave number. 

The governing equations can be expressed in a non-dimensional form by utilizing the quantities 
provided in Eq. (9) as, 

 

𝛿
 𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
= 0                      (10) 

𝑅𝑒 [𝛿𝑣
 𝜕𝑤

𝜕𝑥
+ 𝑤

 𝜕𝑤

𝜕𝑦
] =  −

𝜕𝑝

𝜕𝑥
+  𝛿

𝜕𝑆𝑥𝑥

𝜕𝑥
+  

𝜕𝑆𝑥𝑦

𝜕𝑦
−

1

𝐷𝑎
 (𝑤 + 1)                (11) 

 

𝑅𝑒 𝛿 [𝛿𝑣 
 𝜕𝑣

𝜕𝑥
+ 𝑤

 𝜕𝑣

𝜕𝑦
] =  −

𝜕𝑝

𝜕𝑦
+ 𝛿2  

𝜕𝑆𝑥𝑦

𝜕𝑥
+ 𝛿 

𝜕𝑆𝑦𝑦

𝜕𝑦
                                                        (12) 

 

𝑅𝑒 𝛿 [𝛿𝑣
𝜕𝜃

𝜕𝑥
+ 𝑤

𝜕𝜃

𝜕𝑦
] = 𝐸𝑐 [(𝛿𝑆𝑥𝑥  

𝜕𝑤

𝜕𝑥
 + 𝑆𝑦𝑦  

𝜕𝑣

𝜕𝑦
 ) + 𝑆𝑥𝑦 (𝛿

𝜕𝑣

𝜕𝑥
+

𝜕𝑤

𝜕𝑦
)] +  

 
1

𝑃𝑟
  [𝛿2 𝜕

𝜕𝑥
(𝐾(𝜃)

𝜕𝜃

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐾(𝜃)

𝜕𝜃

𝜕𝑦
)]                                     

(13) 

  

𝑅𝑒 [𝛿 𝑣
𝜕𝜎

𝜕𝑥
+ 𝑤

𝜕𝜎

𝜕𝑦
] =

1

𝑆𝑐
[𝛿2 𝜕2𝜎

𝜕𝑥2 +
𝜕2𝜎

𝜕𝑦2] + 𝑆𝑟 [𝛿2 𝜕2𝜃

𝜕𝑥2 +
𝜕2𝜃

𝜕𝑦2]         (14) 

 

Introducing the dimensionless stream function 𝜓 using 𝑤 =
𝜕𝜓

𝜕𝑦
 and 𝑣 = −𝛿

𝜕𝜓

𝜕𝑦
 and by 

implementing long wavelength and small Reynolds number assumptions, Eq. (10) to Eq. (14) takes 
the form. 

 
𝜕𝑝

𝜕𝑥
=

𝜕𝑆𝑥𝑦

𝜕𝑦
−

1

𝐷𝑎
(

𝜕𝜓

𝜕𝑦
+ 1)                            (15) 

 
𝜕𝑝

𝜕𝑦
= 0                                    (16) 

 
𝜕

𝜕𝑦
{𝑘(𝜃)

𝜕𝜃

𝜕𝑦
} + 𝐵𝑟 𝑆𝑥𝑦

𝜕2𝜓

𝜕𝑦2 = 0                           (17)  

 



CFD Letters 

17, Issue 1 (2025) 114-139 

120 
 

𝜕2𝜎

𝜕𝑦2
+ 𝑆𝑐𝑆𝑟

𝜕2𝜃

𝜕𝑦2
= 0                        (18) 

 
𝑆𝑥𝑦 

gives the constitutive equation of Eyring-Powell fluid as  

 

𝑆𝑥𝑦 =    {𝜇(𝑦) + 𝐵} 
𝜕2𝜓

𝜕𝑦2 −  
𝐴

3
(

𝜕2𝜓

𝜕𝑦2)
3

                     (19) 

 
2.2 Boundary Conditions 
 

Peristalsis refers to the dynamic interplay between a fluid medium (such as blood or digestive 
liquids) and the structure of a biological conduit (such as the intestines or blood vessels). The fluid's 
interaction with the channel walls is governed by boundary conditions, which take slip, viscosity, and 
the physical properties of the walls into account. Peristalsis is a process that incorporates not just 
fluid dynamics but also the transfer of mass and heat. Temperature, concentration, and other 
pertinent boundary conditions are essential for simulating these transfer events within the biological 
conduit. It is imperative to comprehend boundary conditions' impact on therapeutic applications. It 
provides treatment planning and medical diagnosis with information regarding the potential effects 
of conduit wall characteristics or changes in physiological parameters on peristaltic motion. 

Let 𝑦’ =  0 be the lowest static wall for the porous channel. The top wavy wall of the permeable 
channel and the interfacial wavy area are represented by 𝑦’ =  𝐻’(𝑥, 𝑡). 
 
Let the porous boundary conditions imposed on the lower and upper walls be given as: 
 
𝜕�̂�

 𝜕𝑦′
= 0 at 𝑦’ = 0 and −

√𝑘

𝑏′ 𝑆′𝑥′𝑦′ = −(�̂� + 𝑐) at 𝑦′ = 𝐻′(𝑥, 𝑡)               (20) 

 
Convective heat exchange occurring at upper and lower isothermal walls of the channel is given by:  
 
𝜕𝑇′

 𝜕𝑦′
= 0 at 𝑦’ = 0 and −𝑘

𝜕𝑇′

𝜕𝑦′ = ℎ1(𝑇′ − 𝑇′
0) at 𝑦’ =  𝐻′(𝑥, 𝑡)               (21) 

 
The concentration profile at the lower static wall and upper wall of the porous channel is 

governed by the following conditions:  
 

𝜕𝐶′

 𝜕𝑦′
= 0 at 𝑦’ =  0  and −𝐷

𝜕𝐶′

𝜕𝑦′
= ℎ2(𝐶′ − 𝐶0

′) at 𝑦’ =  𝐻′(𝑥, 𝑡)              (22) 

 
Porous and convective conditions must be employed to mimic and optimise various technical and 

natural systems, including heat transmission, filtration, environmental studies, and biological 
systems. Chemical reactors, energy systems, food processing, and bioreactors require convective 
boundary conditions to model and improve ecological restoration. 

Introducing the dimensionless stream function 𝜓 using 𝑣 =
𝜕𝜓

𝜕𝑦
 and 𝑤 = −𝛿

𝜕𝜓

𝜕𝑦
 and by 

implementing long wavelength and small Reynolds number assumptions to equations, the non-
dimensional convective boundary conditions are given by,  

 
𝜕2𝜓

 𝜕𝑦2 = 0 ,
𝜕𝜃

𝜕𝑦
= 0 ,

𝜕𝜙

𝜕𝑦
= 0  𝑎𝑡  𝑦 =0                                                                                             (23) 
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𝜕𝜓

 𝜕𝑦
+

√𝐷𝑎

𝛽
𝑆𝑥𝑦 = −1 , 𝐵ℎ𝜃 +

𝜕𝜃

𝜕𝑦
= 0 , 𝐵𝑚𝜙 +

𝜕𝜙

𝜕𝑦
= 0   at 𝑦 = ℎ                              (24) 

 
 Further 𝜇(𝑦) and 𝑘(𝜃) are the variable viscosity and thermal conductivity which are considered 

as a function of 𝑦 and 𝜃 and is given by,  
 

𝜇(𝑦) = 𝑒−𝛼𝑦 = 1 − 𝛼𝑦 + 𝑂(𝛼2)                   (25) 
 

𝑘(𝜃) = 𝑒𝜈𝜃 = 1 + 𝜈𝜃 + 𝑂(𝜈2 )                   (26) 
 
3. Solution Methodology: Perturbation Technique 

 
The mathematical formulation introduced in the preceding section is solved in this section. Due 

to the nonlinear nature of the system, it is impossible to derive a closed-form solution. The formulas 
for streamlines and temperature are instead derived using a perturbation approach, emphasising low 
values of the Eyring-Powell fluid parameter 𝐴. Thus, the following solution is considered. 

 
𝜓 =  𝜓0 + 𝐴 𝜓1 + 𝑂(𝐴2)                               (27a) 
 
𝜃 =  𝜃0 + 𝐴 𝜃1 + 𝑂(𝐴2)                               (27b) 
 
By ignoring 𝑂(𝐴2), Zeroth and First order system of equations are obtained. 
 
Equation for streamlines of zeroth order is given by 
 

(𝑃 +
1

𝐷𝑎
)  𝑦 +

1

𝐷𝑎
𝜓0 =    {1 − 𝛼 𝑦 + 𝐵} 

𝜕2𝜓0

𝜕𝑦2                                                                                            (28) 

 
With boundary conditions 
 

 
𝜕2𝜓0

𝜕𝑦2
= 0    𝑎𝑡    𝑦 = 0  𝑎𝑛𝑑      

𝜕𝜓0

𝜕𝑦
+

√𝐷𝑎

𝛽
(1 − 𝛼 𝑦 + 𝐵)

𝜕2𝜓0

𝜕𝑦2
= −1    𝑎𝑡    𝑦 = ℎ                          (29) 

 
Equation for streamlines of first order is given by 
 

(1 − 𝛼 𝑦 + 𝐵) 
𝜕2𝜓1

𝜕𝑦2 −
1

𝐷𝑎
𝜓1 −  

1

3
(

𝜕2𝜓0

𝜕𝑦2 )
3

= 0                                                                                        (30) 

 
With boundary conditions 
 

 
𝜕2𝜓1

𝜕𝑦2 = 0 𝑎𝑡 𝑦 = 0 𝑎𝑛𝑑 
𝜕𝜓1

𝜕𝑦
+

√𝐷𝑎

𝛽
{(1 − 𝛼 𝑦 + 𝐵) 

𝜕2𝜓1

𝜕𝑦2 −  
1

3
(

𝜕2𝜓0

𝜕𝑦2 )
3

} = 0 𝑎𝑡 𝑦 =  ℎ                   (31) 

 
Equation for temperature of zeroth order is given by 
 
𝜕𝜃0

𝜕𝑦
+ 𝜈 𝜃0

𝜕𝜃0

𝜕𝑦
+ ∫ 𝐵𝑟  {(1 − 𝛼 𝑦 + 𝐵) (

𝜕2𝜓0

𝜕𝑦2 )
2

}  𝜕𝑦 = 0                             (32) 

 
With boundary conditions 
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𝜕𝜃0

𝜕𝑦
= 0      at    𝑦 = 0       and      𝐵ℎ𝜃0 +

𝜕𝜃0

𝜕𝑦
= 1  at  𝑦 = ℎ                                        (33) 

 
Equation for temperature of first order is given by 
 

 
𝜕𝜃1

𝜕𝑦
+ 𝜈 𝜃0

𝜕𝜃1

𝜕𝑦
+ 𝜈 𝜃1

𝜕𝜃0

𝜕𝑦
+ ∫ 𝐵𝑟  {2(1 − 𝛼 𝑦 + 𝐵) (

𝜕2𝜓0

𝜕𝑦2
) (

𝜕2𝜓1

𝜕𝑦2
) −  

1

3
(

𝜕2𝜓0

𝜕𝑦2
)

4

} 𝜕𝑦 = 0             (34) 

 
With boundary conditions 
 
𝜕𝜃1

𝜕𝑦
= 0      at    𝑦 = 0    and     𝐵ℎ 𝜃1 +

𝜕𝜃1

𝜕𝑦
= 0   at    𝑦 = ℎ                                             (35) 

 
Since the equations are non-linear, the double perturbation approach is employed to find the 

solutions. 
 

𝜓𝑖 = Σ𝛼𝑗𝜓𝑖𝑗  , where  0 ≤ 𝑗 ≤ 𝑛 , 𝑖 = {0,1}                          (36) 

 

𝜃𝑖 = Σ 𝜈𝑗   𝜃𝑖𝑗  , where  0 ≤ 𝑗 ≤ 𝑛 , 𝑖 = {0,1}                              (37) 

 
Higher order terms are disregarded to simplify solutions for streamlines and temperature, i.e., 

𝑂(𝛼1
2) 𝑎𝑛𝑑 𝑂(𝛼2

2). The resulting streamline and temperature equations are as follows. 
 

𝜓0 =  𝜓00 + 𝛼 𝜓01                                        (38a) 
 
 𝜓1 =  𝜓10 + 𝛼 𝜓11                                                     (38b) 
 
𝜃0 = 𝜃00 + 𝜈 𝜃01                                            (39a)  
 
𝜃1 = 𝜃10 + 𝜈 𝜃11                                                          (39b) 
 
Substituting Eq. (38a) in Eq. (28) and Eq. (29),  
 
The equation for zeroth order stream function, along with porous boundary conditions, is derived as 
 

𝜕2𝜓00

𝜕𝑦2 −
1

𝐷𝑎(1+𝐵)
𝜓00 =

(𝑃−
1

𝐷𝑎
) 

(1+𝐵)
𝑦                 

 
𝜕2𝜓00

𝜕𝑦2 = 0   at    𝑦 = 0  and      
𝜕𝜓00

𝜕𝑦
+

√𝐷𝑎

𝛽
(1 + 𝐵)

𝜕2𝜓00

𝜕𝑦2 = −1    at    𝑦 = ℎ                          (40) 

 
The equation for first order stream function along with porous boundary conditions is derived as 
 

 
𝜕2𝜓01

𝜕𝑦2 −
1

𝐷𝑎(1+𝐵)
𝜓01 = 𝑦 

𝜕2𝜓00

𝜕𝑦2                                   

              
𝜕2𝜓01

𝜕𝑦2 = 0    at    𝑦 = 0  and  
𝜕𝜓01

𝜕𝑦
+

√𝐷𝑎

𝛽
 (1 + 𝐵)

𝜕2𝜓01

𝜕𝑦2 + 𝛽1𝑦 
𝜕2𝜓00

𝜕𝑦2 = 0    at  𝑦 = ℎ                    (41) 
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Substituting Eq. (38b) in Eq. (30) and Eq. (31), 
 
The equation for zeroth order stream function, along with porous boundary conditions, is derived as 
 
𝜕2𝜓10

𝜕𝑦2 −
1

𝐷𝑎(1+𝐵)
𝜓10 =  

1

3(1+𝐵)
(

𝜕2𝜓00

𝜕𝑦2 )
3

                                                                                    

 

 
𝜕2𝜓10

𝜕𝑦2 = 0   at  𝑦 = 0  and   
𝜕𝜓10

𝜕𝑦
+

√𝐷𝑎

𝛽
{(1 + 𝐵) 

𝜕2𝜓10

𝜕𝑦2 −  
1

3
(

𝜕2𝜓00

𝜕𝑦2 )
3

} = 0    at  𝑦 = ℎ               (42) 

 
The equation for first order stream function along with porous boundary conditions is derived as 
 

 
𝜕2𝜓11

𝜕𝑦2 −
1

𝐷𝑎(1+𝐵)
𝜓11 =

1

(1+𝐵)
[𝑦 

𝜕2𝜓10

𝜕𝑦2 +  (
𝜕2𝜓00

𝜕𝑦2 )
2

( 
𝜕2𝜓10

𝜕𝑦2 )]              

                                        
𝜕2𝜓11

𝜕𝑦2 = 0  at 𝑦 = 0 and 
𝜕𝜓11

𝜕𝑦
+

√𝐷𝑎

𝛽
{(1 + 𝐵) 

𝜕2𝜓1

𝜕𝑦2 − 𝑦 
𝜕2𝜓10

𝜕𝑦2 −  (
𝜕2𝜓00

𝜕𝑦2 )
2

( 
𝜕2𝜓10

𝜕𝑦2 )} = 0 at 𝑦 = ℎ           (43) 

 
Combining the solved equations, i.e., Eq. (40) - Eq. (43) with corresponding boundary conditions, 

the expression for stream function is obtained as, 
 

 𝜓 = 𝜓00 + 𝛼 𝜓01 + 𝐴 𝜓10 + 𝐴 𝛼 𝜓11                  (44) 
 

Utilising equation 𝑤 =
𝜕𝜓

𝜕𝑦
, solution for velocity is obtained.   

 
Similarly, on using Eq. (39a) in Eq. (32) and Eq. (33). The equation for the zeroth order temperature 

expression along with convective boundary conditions is derived as 

 
𝜕𝜃00

𝜕𝑦
+ ∫ 𝐵𝑟  {(1 − 𝛼𝑦 + 𝐵) (

𝜕2𝜓0

𝜕𝑦2 )
2

}  𝜕𝑦 = 0     

              
𝜕𝜃00

𝜕𝑦
= 0   at    𝑦 = 0   and   𝐵ℎ𝜃00 +

𝜕𝜃00

𝜕𝑦
= 1   at   𝑦 = ℎ                                     (45) 

 
The equation for the first order temperature expression along with convective boundary 

conditions is derived as 
 

𝜕𝜃01

𝜕𝑦
+ 𝜃00

𝜕𝜃00

𝜕𝑦
= 0     

                 

 
𝜕𝜃01

𝜕𝑦
= 0  at  𝑦 = 0   and   𝐵ℎ 𝜃01 +

𝜕𝜃01

𝜕𝑦
= 0    at   𝑦 = ℎ                                             (46) 

 
Substituting Eq. (39b) in Eq. (34) and Eq. (35), 

The equation for the zeroth order temperature expression along with convective boundary 
conditions is derived as 

 
𝜕𝜃10

𝜕𝑦
+ ∫ 𝐵𝑟  {2(1 − 𝛼 𝑦 + 𝐵) (

𝜕2𝜓0

𝜕𝑦2 ) (
𝜕2𝜓1

𝜕𝑦2 ) −  
1

3
(

𝜕2𝜓0

𝜕𝑦2 )
4

} 𝜕𝑦 = 0               
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𝜕𝜃10

𝜕𝑦
= 0  at    𝑦 = 0    and   𝐵ℎ 𝜃10 +

𝜕𝜃10

𝜕𝑦
= 0   at    𝑦 = ℎ                (47) 

 
The equation for the first order temperature expression along with convective boundary 

conditions is derived as  
 

𝜕𝜃11

𝜕𝑦
+ 𝜃00

𝜕𝜃10

𝜕𝑦
+ 𝜃10

𝜕𝜃00

𝜕𝑦
= 0   

                
𝜕𝜃11

𝜕𝑦
= 0   at  𝑦 = 0    and  𝐵ℎ 𝜃11 +

𝜕𝜃11

𝜕𝑦
= 0    at    𝑦 = ℎ                      (48) 

 

By solving Eq. (45) - Eq. (48) and substituting in Eq. (27), the expression for temperature function 
is obtained as 

 
i.e.,  𝜃 = 𝜃00 + 𝜈𝜃01 + 𝐴 𝜃10 + 𝐴 𝜈 𝜃11                            (49) 
 

Due to the complexity of the problem, solution for 𝜃 is obtained through MATLAB coding. The 
concentration solution can be obtained by applying the solution for 𝜃 to the solution of Eq. (11) in 
MATLAB programming. 

 
3.1 Expression for Different Waveforms  

 
The nondimensional expressions for sinusoidal, square, triangular, and trapezoidal wave forms 

are given as:  
 

i. Sinusoidal wave:  

ℎ(𝑥, 𝑡) = 1 + 𝑚𝑥 + 𝜖 Sin [
2𝜋

𝜆
(𝑥 − 𝑐𝑡)]  

 
ii. Square wave:  

ℎ(𝑥, 𝑡) = 1 + 𝑚𝑥 + 𝜖 [
4

𝜋
∑

(−1)𝑖+1

(2𝑖−1)
∞
𝑖=1 Cos[(2𝑖 − 1)2𝜋(𝑥 − 𝑐𝑡)]]  

 
iii. Triangular wave:  

ℎ(𝑥, 𝑡) = 1 + 𝑚𝑥 + 𝜖 [
8

𝜋3
∑

(−1)𝑖+1

(2𝑖−1)2
∞
𝑖=1 Sin[(2𝑖 − 1)2𝜋(𝑥 − 𝑐𝑡)]]  

 
iv. Trapezoidal wave 

ℎ(𝑥, 𝑡) = 1 + 𝑚𝑥 + 𝜖 [
32

𝜋2
∑

𝑆𝑖𝑛(
𝜋

8
)(2𝑖−1)

(2𝑖−1)2
∞
𝑖=1 Sin[(2𝑖 − 1)2𝜋(𝑥 − 𝑐𝑡)]]  

 
4. Graphical Analysis 
 

Utilising the perturbation technique, the preceding section derived a semi-analytical solution for 
the heat and mass transfer of Eyring-Powell fluid characteristics in a non-uniform channel through 
which the fluid moves under varying conditions. The effects of varying fluid parameters are examined 
in this section. Table 1 illustrates the default values of physical parameters, MATLAB R2023a 
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provides graphical representations of physiological activity metrics along with flow quantities. 
Figures 2–12 further illustrate the effects of physiological factors on velocity, temperature, 
concentration, and bolus formation. 
 

Table 1  
Default values of physical parameters 
Parameters  Default values taken  Range of values [34] 

𝐸1 0.2 0.01 ≤ 𝐸1 ≤ 1 
𝐸2 0.2 0.01 ≤ 𝐸2 ≤ 1 
𝐸3 0.1 0.1 ≤ 𝐸3 ≤ 1 
𝐸4 0.001 0.0 ≤ 𝐸4 ≤ 1 
𝐸5 0.1 0.0 ≤ 𝐸5 ≤ 1 
𝑆𝑐 0.5 0.1 ≤ 𝑆𝑐 ≤ 2 
𝑆𝑟 0.5 0.1 ≤ 𝑆𝑟 ≤ 1.5 
𝐵𝑟 2 0.1 ≤ 𝐵𝑟 ≤ 7 
𝐵ℎ  1.5 0 ≤ 𝐵ℎ ≤ 100 
𝐵𝑚 1.5 0 ≤ 𝐵𝑚 ≤ 100 
𝐴 0.01 0 ≤ 𝐴 ≤ 0.5 
𝐵 2 0 ≤ 𝐵 ≤ 6 
𝑡 0.1 0.1 ≤ 𝑡 ≤ 0.5 
𝑥 0.2 0 ≤ 𝑥 ≤ 1.5 
𝐷𝑎 0.2 0.01 ≤ 𝐷𝑎 ≤ 3 
𝛽 0.2 0 ≤ 𝑥 ≤ 1.5 
𝜖 0.3 0.1 ≤ 𝜖 ≤ 1.5 
𝛼 0.02 𝛼 ≪ 1 
𝜈 0.02 𝜈 ≪ 1 
𝑚 0.1 0 ≤ 𝑚 ≤ 1 

 
4.1 Flow Characteristics with Different Waveforms 
 

Figure 2 - Figure 8 illustrate the impact of several key parameters on velocity profiles with 
different Waveforms. The waveforms are drawn to analyse the effectiveness and performance in 
various fluid dynamics applications, particularly in the blood flow in the cardiovascular system. The 
standard waveforms like Sinusoidal, Square, Triangular and Trapezoidal are drawn to analyse the 
effect of pertinent parameters on flow characteristics. The influence of the porosity parameter on 
fluid velocity is shown in Figure 2(a-d), which shows an improvement in velocity profiles when this 
parameter is increased. Higher porosity improves the fluid flow space, allowing for higher velocity. 
On the other hand, restricted permeability can raise fluid resistance and lower velocities. In Figure 
3(a-d), the fluid flow decreases noticeably when the velocity slip parameter increases. Figure 4(a-d) 
shows the velocity connected with the Eyring-Powell Fluid Parameter 𝐴. It is evident that an increase 
in parameter 𝐴 also results in an increase in velocity. In contrast, a decrease in velocity results from 
an increase in Eyring-Powell Fluid Parameter 𝐵, as seen in Figure 5(a-d). Figures 6(a-d) and 7(a-d) 
concentrate on the parameters 𝛼 and 𝑚, that influence velocity profiles. Figure 6(a-d) reveals that 
the coefficient of variable viscosity improves velocity profiles, whereas Figure 7(a-d) illustrates the 
non-uniform parameter increases velocity profiles proportionally. The velocity profile is impacted by 
an increase in the degree of non-uniformity brought on by spatial differences in the fluid or channel 
geometry. The effects of wall tension, mass characterisation, wall-damping, rigidity, and elasticity 
parameters on velocity profiles are explored in detail (See Figure 8(a-d)). Increased wall tension and 
mass characterisation factors result in higher velocity profiles. On the other hand, velocity profiles 
decrease as the wall-damping value is increased. The wall rigidity and elasticity characteristics show 
similar effects. It can be noted from the figures that square waves have higher velocity when 
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compared to other waveforms. Trapezoidal waves also give better velocity profiles than triangular 
and sinusoidal waveforms.  

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Velocity Profile for variations in Darcy Number (𝐷𝑎) for different waveforms (a) 
Sinusoidal (b) Square (c) Triangular (d) Trapezoidal 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 3. Velocity Profile for variations in velocity slip parameter (𝛽) for different waveforms (a) 
Sinusoidal (b) Square (c) Triangular (d) Trapezoidal 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 4. Velocity Profile for variations in of Material parameter (𝐴) for different waveforms (a) 
Sinusoidal (b) Square (c) Triangular (d) Trapezoidal 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Velocity Profile for variations in Material Parameter (𝐵) for different waveforms (a) 
Sinusoidal (b) Square (c) Triangular (d) Trapezoidal 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 6. Velocity Profile for variations in Coefficient of Variable Viscosity (𝛼) for different 
waveforms (a) Sinusoidal (b) Square (c) Triangular (d) Trapezoidal 

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7. Velocity Profile for variations in non-Uniform Parameter (𝑚) for different waveforms (a) 
Sinusoidal (b) Square (c) Triangular (d) Trapezoidal 
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(a) 

 

 
(b) 

 

 
(c) 
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(d) 

Fig. 8. Velocity Profile for variations in Wall Properties (𝐸1 − 𝐸5) for different waveforms (a) 
Sinusoidal (b) Square (c) Triangular (d) Trapezoidal 

 
4.2 Heat Transfer Analysis 
 

Figure 9(a) - Figure 9(g) are the graphical representations of temperature profiles, providing 
insight into the influence of numerous factors. Figure 9(a) and Figure 9(b) highlight the parameters 
𝐷𝑎 and 𝛽. It is shown that temperature profiles and 𝐷𝑎 are directly correlated, and temperature 
profiles increase with a rise in the slip parameters. It is evident from Figure 9(c) that temperature 
profiles decrease as the material parameter 𝐵 increases. There is a positive correlation between 
rising temperature profiles and increasing variable thermal conductivity, as shown in Figure 9(d). 
Temperature profiles show a decline with increasing convective heat transfer parameters (See Figure 
9(e)). A notable temperature increase with an increase in the Brinkman number is seen in the drawing 
in Figure 9(f). With a greater Brinkman number, there may be an increase in fluid flow through the 
porous media. Increasing flow rates leads to higher temperatures due to viscous energy dissipation. 
Higher temperature profiles result from increased wall tension and mass characterisation, as seen in 
Figure 9(g). In contrast, when the wall-damping value increases, temperature profiles drop. Similar 
effects can be found for wall rigidity and elasticity parameters. 
 

 
(a) 

 
(b) 
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(f) 

 

 
(g) 

Fig. 9. Variation of temperature profiles for (a) Darcy Number (b) Velocity Slip Parameter  
         (c) Material Parameter 𝐵 (d) Variable Thermal Conductivity (e) Convective Heat Transfer 

Coefficient (f) Brickman Number (g) Wall Properties 
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4.3 Mass Transfer Analysis 
 
Figure 10(a) - Figure 10(g) are intended to demonstrate the effect of critical parameters on 

concentration profiles. The lower concentration in Figure 10(a) is associated with a higher porous 
parameter. Figure 10(b) shows an opposite trend for material parameter 𝐵. Figure 10(c) and Figure 
10(d) show varying effects for convective heat and mass transfer parameters, respectively. Increases 
in the convective heat parameter result in lower concentration profiles, whereas increases in the 
convective mass parameter result in higher concentration profiles. The variations in concentration 
profiles for Schmidt and Soret numbers are shown in Figure 10(e) and Figure 10(f), respectively. 
Greater Schmidt numbers restrict the mass transfer efficiency and may thin concentration boundary 
layers by decreasing concentration diffusion compared to momentum diffusion. Higher Soret 
numbers may result in reduced concentration gradients due to the greater influence of thermal 
processes on mass diffusion. Thus, as Schmidt and Soret numbers increase, concentration 
profiles decrease. Figure 10(g) shows that increased wall tension and mass characterisation result in 
reduced concentration profiles. On the other hand, concentration profiles are improved when the 
wall-damping value is raised. Similar effects are observed for wall rigidity and elasticity parameters. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

 
(g) 

Fig. 10. Variation of Concentration profiles for (a) Darcy Number (b) Material Parameter 𝐵   
(c) Convective Heat Transfer Coefficient (d) Convective Mass Transfer Coefficient (e) Soret  
Number (f) Schmidt Number (g) Wall Properties 

 
4.4 Trapping Phenomenon 

 
The peristaltic trapping phenomenon includes temporarily confined biological fluids inside 

certain areas or structures while muscle contractions and relaxations propagate via tubular organs 
such as the digestive system. The trapping phenomenon is essential for a better understanding of 
fluid transport as it provides insight into the formation and movement of boluses, or tiny masses or 
material clusters, in constrained flow configurations. Figure 11 - Figure 14 show graphical 
representations and studies of many parameters impacting trapping during peristalsis. Figure 11 
depicts different flow patterns corresponding to different values of the fluid parameter 𝐴, indicating 
a reduction in boluses as 𝐴 increases. The fluid parameter 𝐵 and bolus production have a reverse 
relationship in Figure 12, where an increase in 𝐵 results in increased bolus formation. Figure 13 and 
Figure 14 examine the effects of parameters 𝐷𝑎 and 𝛽 on trapped boluses, showing different effects 
on bolus production according to changes to the porosity and velocity slip parameters. From Figure 
15, an increase in size of the bolus can be noted for a rise in non-uniform parameters. 
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(a)                                                                                 (b) 

Fig. 11. Variation of streamlines for (a) 𝐴 = 0.1 and (b) 𝐴 =  0.4 

 

 
(a)                                                                                 (b) 

Fig. 12. Variation of streamlines for (a) 𝐵 = 2.0 and (b) 𝐵 =  2.5 

 

 
(a)                                                                                 (b) 

Fig. 13. Variation of streamlines for (a) 𝐷𝑎 = 0.1 and (b) 𝐷𝑎 = 0.2 
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(a)                                                                                 (b) 

Fig. 14. Variation of streamlines for (a) 𝛽 = 0.2 and (b) 𝛽 =  0.3 
 

 
(a)                                                                                 (b) 

Fig. 15. Variation of streamlines for (a) 𝑚 = 0.1 and (b) 𝑚 =  0.2 

 
5. Validation of the Study 
 

Elshehawey et al., [4] investigate the peristaltic mechanism of Newtonian fluid through porous 
medium. Perturbation method is utilized to obtain the solution of axial velocity and pressure gradient 
component. The study also investigates the effect of frictional force on fluid flow. The present 
investigation involves the study of peristalsis of Eyring Powell fluid in a porous medium. Heat and 
Mass Transfer effect is investigated by considering porous and convective boundary conditions. Wall 
properties and variable liquid properties are also investigated. The current model is validated with 
the solution obtained for axial velocity in the study by Elshehawey et al., [4] on setting fluid 
parameters 𝐴 = 0 and 𝐵 = 0, and coefficient of variable viscosity 𝛼 = 0. It has been noticed that the 
present study is in good agreement with Elshehawey et al., [4]. 
 
6. Conclusion Remarks 
 

The present mathematical methodology investigates the dynamics of peristaltic transport and 
Eyring-Powell fluids in porous media, thereby contributing significant theoretical understanding. 
Convective boundary conditions were incorporated into a non-uniform channel model to investigate 
these phenomena. Analyses of fluid motion were conducted by analysing velocity profiles of 
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trapezoidal, square, and triangular waveforms. The influence of fluctuations in various parameters 
on velocity, temperature, concentration, and streamlines are visually represented through graphs. 
The following is an overview of the model investigation: 
 

i. Changes in embedding parameters, especially the Eyring-Powell fluid parameters, 
significantly impact the flow fields. 

ii. Formation of bolus is impacted distinctly by velocity slip parameter and Darcy number 
variations. 

iii. Enhancement of the Convective Heat Transfer Coefficient reduces the temperature field, 
whereas rising slip parameter and Darcy numbers increases. 

iv. Square Waves gives better velocity profile than other waveforms. 
v. In numerous instances, considering increasing Soret and Schmidt numbers leads to a 

reduction in concentration profiles. 
vi. Damping force parameter increases the temperature profiles, although wall tension and mass 

characterization parameters does not vary. This state impacts various biological and 
physiological systems and is crucial to system thermodynamics. 

vii. An increase in porosity results in an improvement in fluid flow space, which in turn leads to 
an increase in velocity profiles. 

 
This model focuses on the peristaltic flow of Eyring-Powell Fluid with Variable fluid properties. 

The study considered the viscosity varying with the thickness of the fluid layers. This study can be 
extended by considering variable viscosity with respect to temperature. The study can also be 
extended by considering slip boundary conditions as it has many biological importance. 
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