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Abstract Because of the increasing demand for energy in the recent period, it has 
become necessary to intensify the study in the field of evaluating the performance of 
the gas station under the first and second laws efficiency. The energy and exergy losses 
of gas stations are represented by the compressor, combustion chamber, and turbine. 
Therefore, this work aims to analyze the energy and exergy of a 55 MW Taza gas power 
station. The investigation demonstrated that the most significant misfortunes of the 
exergy happened in the combustion chamber, where was 66.5MW the most minimal 
misfortunes in the compressor 5MW while the misfortunes in the turbine 8.4MW. The 
thermal efficiency of the gas turbine power plant was 33.06%, while the exergy 
efficiency was 32.39%. The novelty of the current work concentrated on obtaining the 
Grassmann graph for each component. 
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1. Introduction 
 

The expanding interest for vitality has driven specialists to look to diminish the warm misfortunes 
as a rule, and the influence plants misfortunes specifically in light of the fact that it is significant in 
gathering the world's vitality needs in the local and mechanical use. The reception of vitality 
examination on a quantitative premise just, as in the investigation of the principal law of 
thermodynamics, does not give a far-reaching impression of the examination of any power station. 
The kind of vitality can be dictated by the accessible or conceivable work, which is known as the 
exergy. The reception of the Second Law of thermodynamics as a premise in the examination of 
intensity stations could be more far-reaching than the main law by applying the law to ascertain the 
misfortunes of the exergy through every part of the (GTPP) by Bejan and Dincer [1, 2]. The way toward 
deciding misfortunes enables us to maintain a strategic distance from the reversibility of strategies 
and accordingly improve the general productivity of the plant. To decide the misfortunes of the 
exergy to any influence station, it is important to decide the sort of loss of physical such as grinding 
or synthetic, for example, burning, and therefore locate the best answer for lessening these 
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misfortunes, can be seen in review papers by several authors [3-5]. A few examinations have been 
directed to decide the misfortunes of the vitality in (GTPP). Every one of these investigations 
demonstrated that misfortunes are most prominent in the ignition chamber on account of the 
enormous contrast in temperature and that misfortunes are a component of the temperature of 
passage to the turbine, was also conducted by [6-7]. The impact of encompassing temperature 
positively affects the proficiency of exergy by Ebadi and Bandpy [8]. The high entry temperature of 
the compressor has a negative effect. Therefore, air-cooling systems being used, which improves the 
efficiency of the first and second laws of thermodynamics by Ehyaei et al., [9].  Another study was 
conducted to show the effect of fog system on the efficiency of the first and second law and its effects 
on the environment. The results proved that using this system increases energy production and 
improves the second law efficiency by Ehyaei et al., [10]. The rise in temperature often affects 
performance. I used a heat pump to cool the air entering the station. The results proved that the use 
of the heat pump improves energy productivity as well as reduces oxygen losses by Yazdi et al., [11]. 
A new study was conducted designing three NSGA-II, MOPSO, and MOEA-D algorithms to analyze the 
energy and exergy of a gas power plant. The results showed that the greatest losses to the exergy 
are in the combustion chamber, noting that the best results were achieved in the NSGA-II algorithm 
by Shamoushaki et al., [12]. A study was conducted to analyze the performance of a gas station and 
the effect of operational and design variables on CO2 emissions. It turns out that higher entry 
temperature and greater compression ratio reduce CO2 emissions by Shamoushaki and Ehyaei [13]. 
We conducted previous studies to analyze energy and exergy in the traditional way by Ahmed et al., 
[14] and using Sankey and Grassmann diagrams, respectively. This study is a continuation of previous 
work as shown in by Khan [15]. The methodology of exergy analysis can be found in one of the states 
of art studies in the field of Absorption cycles optimization, the study was seek to show the relation 
between the (EDR) and the volume flow rate of (CNG & LPG) within the double effect of parallel and 
series flow direct-fired absorption systems with lithium bromide–water. The results showed that 
(COP) of parallel flow cycle was (3-6%) higher than series one, and the minimum (EDR) of parallel 
flow cycle is around (4%) less than while energy consumption was (2-3%) low than the series one by 
Azhar and Siddiqui [16]. Finally, another study conducted on finding and comparing between the 
optimum parameters in different components of the lithium bromide-water based single to triple 
effect direct and indirect fired vapour absorption systems in order to get higher exergy effect with 
lower exergy destruct. It seeks revealing that the double effect cycle shows higher exergy 
effectiveness when the temperature variance between the energy source and the generator is (6-
37°C); however triple effect cycle performs well at (≅ 37°C) by Azhar and Siddiqui [17].  

Gas stations are common in Iraq recently, because the ambient temperature rises in the summer 
to  50 °C and it drops in the winter to −10 °C which has a clear impact on the exergy losses. The 
previous literatures did not study of energy and exergy analysis in such conditions. So, this work came 
to study the energy and exergy analysis using the analytical method and the Grassmann chart, 
respectively. 
 
2. Methodology  
 

Series of analysis of initial data, necessary calculation, and graphical illustration of the results are 
shown in the methodology scheme Figure 1. The following calculations compliance with the 
technological scheme indicates a model to calculate every stage efficiency of the GTPP. For precision 
of the results, flow and Grassmann diagrams are the choice for both energy and exergy analysis. 
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Fig. 1. Algorithm of methodology 

 

2.1 System Description and Initial Data 
 
Data such as pressure, the power generated, the power produced, the temperature everything 

being equal, and mass stream rate (gas, air, and fuel) were taken from the information sheet books 
for (GTPP) [18]. The surrounding temperature is 280 K and the weight of 1.013 Bar. The GTPP of 55 
MW burden utilized within this particular examination is an open cycle single-shaft framework and is 
situated at TAZA, Iraq. The sketch diagram of the gas turbine unit appears in Figure 2. This unit 
comprises of Gas Turbine, Combustion Chamber, and an Air-Compressor. Working liquid parameters 
for the figures of exergy and energy, for example, temperature, weight, enthalpy, and mass stream 
rate, are situated at each point in Figure 2. 
 

 
Fig. 2. Sketch diagram of a single shaft (GTPP) 

 

2.2 Energy Analysis  
 
Thermal evaluation of gas turbine and compressor components comprises the tally of work and 

heat in accordance to the basic essentials of the thermodynamic energy equation, as reveal below.   
Compressor work: 
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𝑊𝐶 = 𝑚̇𝐶𝑝𝑎(𝑇3 − 𝑇2).                                                                                                                                      (1) 
 
Heat added: 
 
𝑞𝑎𝑑 = 𝑚̇𝐶𝑝𝑔(𝑇4 − 𝑇3).                                                                                                                                     (2) 

 
Turbine work: 
 
𝑊𝑇 = 𝑚̇𝐶𝑝𝑎(𝑇6 − 𝑇5).                                                                                                                                     (3) 
 
Heat rejected: 
 
𝑞𝑒𝑥 = 𝑚̇𝐶𝑝𝑔(𝑇7 − 𝑇6).                                                                                                                                     (4) 

 
Net work: 
 
𝑊_𝑛𝑒𝑡 = 𝑊_𝑇 − 𝑊_𝐶.                                                                                                  (5) 
 
Thermal efficiency:  
 

𝜂𝑡ℎ =
𝑊𝑛𝑒𝑡

𝑞𝑎𝑑
.                                                                                                                                                          (6) 

 
2.3 Exergy Analysis 

 
The modern thermodynamic analysis technology is Exergy analysis that employees and proceeds 

both the precept of mass and energy conservation with the entropy generation equation in order to 
carry out the analysis [2]. The sum of physical exergy, chemical exergy, kinetic exergy, and potential 
one for any system is the overall exergy as given in Eq. (7) [1].   

Exergy analysis concerns with evaluated the conditional property "Exergy" from combining the 
mass and energy conservation fundamentals with the second law of thermodynamics. 
 

𝐸̇𝑥 = 𝐸̇𝑥
𝑃𝐻 + 𝐸̇𝑥

𝐶𝐻 + 𝐸̇𝑥
𝐾𝑁 + 𝐸̇𝑥

𝑃𝑇 .                                                                                                                     (7) 
 
Assuming potential and kinetic exergy approximated zero. Know we can get physical exergy from the 
following equation: 
 

𝐸̇𝑥
𝑃𝐻 = 𝑚̇[𝑐𝑝(𝑇𝑖 − 𝑇𝑜) − 𝑇𝑜(𝑠𝑖 − 𝑠𝑜)],                                                                                                           (8) 

 

𝑠𝑖 − 𝑠𝑜 = 𝑐𝑝̅ 𝑙𝑛 (
𝑇𝑖

𝑇𝑜
) − 𝑅𝑙𝑛 (

𝑃𝑖

𝑃𝑜
),                                                                                                                     (9) 

 
𝑐𝑝̅ = 𝑎 + 𝑏𝑇 + 𝑐𝑇2 + 𝑑𝑇3.                                                                                                                           (10) 

 
The chemical exergy of hydrocarbon fuel 𝐶𝑎𝐻𝑏 is shown below [19]: 
 
𝑒𝑓

−𝐶𝐻

LHV
≅ 1.033 + 0.019 −

𝑏

𝑎
−

0.098

𝑎
.                                                                                                             (11) 
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Exergy destruction is given by: 
 

𝐸̇𝐷 = 𝐸̇𝑥𝑖𝑛
− 𝐸̇𝑥𝑜𝑢𝑡

.                                                                                                                                          (12) 

 
While the second law efficiency for each part of the station can be expressed by: 
 

𝜂ΙΙ =
𝐸̇𝑥𝑜𝑢𝑡

𝐸̇𝑥𝑖𝑛

.                                                                                                                                                        (13) 

 
Finally, the total second law efficiency can be expressed by: 
 

𝜂ΙΙ,total =
𝑊̇𝐺𝑇,𝑛𝑒𝑡

𝐸̇𝑥𝑐𝑐
.                                                                                                                                             (14) 

 
3. Results and discussion 
 

The outcomes are demonstrating and specified in Table 1 and Table 2 and presented in Figure 3 
by Grassmann diagram. 
 

Table 1 
Exergy destruction rate & Exergy efficiency of (GTPP) components 

Exergy efficiency (%) Exergy destruction rate (%) References 

Gas turbine Combustion 
Chamber 

Air compressor Gas turbine Combustion 
chamber 

Air compressor  

65.27 54.05 93.07 10.12 86.38 3.53 Igbong et al., [20] 
96.39 45.46 92.05 3.02 93.34 3.63 Egware  et al., [21] 
9617 45.85 91.95 3.21 93.10 3.69 Al-Taha et al., [22] 
60.35 30.67 70.2 26.74 61.25 12.04 Abam et al., [23] 
98.50 87.00 91.00 7.20 92.00 17.81 Siahaya et al., [24] 
92.48 75.71 82.56 16.65 71.03 12.33 Al-Doori [25] 
97 77 94 10.8 83.4 5.4 Current research 

 
Table 2 
First and second law efficiency of (GTPP) 

Second law efficiency (%) First law efficiency (%) References NO 

30.81 31.05 Igbong et al., [20] 1 
32.25 33.77 Al-Doori [25] 2 
32.39 33.06 Current research 3 

 
The exergy input and exergy distraction in the combustion chamber, turbine, compressor, and 

exhaust are appearing in the "Grassmann diagram" GTPP in Figure 3. 
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Fig. 3. Grassmann diagram of Taza GTPP 

 
Figure 3 and Table 1 demonstrate the Exergy devastation rate and the Exergy proficiency for all 

GTPP segments. The greatest exergy annihilation happens in the ignition chamber, and it is equivalent 
to 66.5 MW with exergy devastation rate and second law productivity of (83.4%) and (77%) 
individually. It was trailed by the gas turbine with 8.4 MW with exergy pulverization rate and second 
law effectiveness of (10.8%) and (97%) separately. The base exergy devastation happens in the 
blower, and it is equivalent to 5 MW with exergy pulverization rate and second law productivity of 
(5.4%) and (94%) individually. It tends to be chosen that the most extreme exergy demolition rate 
and the base exergetic effectiveness are situated in the burning chamber. The base exergy 
pulverization rate is situated in the blower, and the greatest energetic effectiveness is situated in the 
gas turbine. Table 2 demonstrates the first law proficiency and second law productivity of the GTPP, 
the principal law effectiveness is 33.06%, and the second law productivity is 32.39%. Ordinarily, this 
affirms with the aftereffects of references that organize in Table 2. The most extreme exergy 
demolition rate and the base exergetic proficiency happen in the burning chamber brought about by 
deficient ignition and warmth misfortune to the surrounding [26]. The exergy proficiency of the 
(GTPP) is lower than the vitality productivity given the irreversibility in the framework. 
 
4. Conclusions 
 

In this study, the exhibition of a GTPP was assessed by utilizing vitality and exergy examination. 
The outcomes are spoken to with the stream and Grassmann graph. Through the outcomes, it was 
discovered that the most extreme and the base exergy losses were up to 83.4% or 66.5 MW, which 
take place in the ignition chamber, and 5.4% or 5 MW, which take place noticeable all around the 
blower. The Exergy productivity of the Air blower, Combustion Chamber, and Gas turbine is 97%,77%, 
and 94% individually. The exergy productivity and warm effectiveness of the GTPP are 32.25% and 
33.77%, individually. It very well may be chosen that exergy losses happened because of the 
irreversibility due to temperature contrasts between the burning chamber and the surrounding 
temperature. 
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