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Here we study the thermal modulation effect on nanofluid convection and discuss heat 
and mass transfer in the layer. The non-uniform time-periodic boundary conditions of 

the system are considered. A weak non-linear stability analysis has been performed 

and obtained heat and mass transfer coefficients as a function of the system 

parameters. The Ginzburg Landau model was employed to derive nanofluid convective 
amplitude at different stages of flow disturbances and modulation. Slow variations of 

time scale show that thermal modulation impact on transport phenomenon for the 

case of out-phase modulation (OPM) and (lower boundary modulation) LBM. Also, the 

effect of IPM (in-phase modulation) is observed low effect on Nu and 𝑁𝑢𝑐 which are 
similar to the un-modulation case. It is also justified that LBM results are similar to 

gravity modulation results. It is found that thermal modulation and concentration 

Rayleigh numbers either stabilize or destabilize the system. Further, the GL model 

shows better results in the regulation of the transport process . 
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1. Introduction 
 

Convection in nanofluids is very important to analyze the thermal properties of nanoliquids. 
Studies related to nanofluids received a lot of interest by many authors due to their variety behavior 
sudden enhancement in thermal conductivity. Un-expected abnormal behavior of nanofluids got 

attention to investigate linear and nonlinear flow models. Choi and Eastman [1] was the first person 
to study nanofluid, referring to fluids containing dimension of the order of tens or hundreds of 
nanometers. A comprehensive review of heat transport in nanofluids is due to Eastman et al., [2,3]. 
It is fact that there is no satisfactory reasons that could be found far an abnormal growth rate in the 

thermal conductivity and viscosity in the presence of nano-particles. The increment of effective 
thermal conductivity was confirmed by experiments conducted by many researchers, including 
Masuda et al., [4], although the level of enhancement is still a subject of a debate [5]. The unique 

properties of nanofluids suggest the possibility of using nanofluids in a variety of engineering 
systems, from advanced nuclear systems to drug delivery. Other relevant studies of nanofluids and 
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their convection instabilities are given by Buongiorno [6], Tzou [7], Nield and Kuznetsov [8], and 
Kuznetsov and Nield [9]. 

Natural convection in nanofluids have been investigated by many authors in recent past for 
different physical configurations [10,11]. It is a common finding of these studies that the presence of 
nano-particles in the base fluid can advance/delay the onset of convection, and thereby heat 

transport results, based on concentration gradient of the nano-particles. One interesting finding of 
these studies is that the instability is purely due to buoyancy force coupled with conservation of 
nano-particles and is independent of Brownian motion and thermophoresis effects. Thus, one needs 
to alternate gravity fields along with nanofluids to control instability in the media. In fact, Brownian 

motion produce their effect only in coupling the temperature and the particle concentration.  
No data reported that nanofluids studies for nonlinear modes of convection under modulation.  

It was Bhadauria and Kiran [12] who introduced modulation effects on nanofluid convection for 

nonlinear modes. The effect of gravity modulation on nanoconvection was given by Bhadauria and 
Kiran [12] and Bhadauria et al., [13]. It was found that modulation regulate transport phenomenon 
with finite amplitude. The study of nonlinear thermal instability in a viscoelastic nanofluid saturated 

porous medium under gravitational modulation was given by Kiran [14]. The same problem for 
internal heating was presented in Kiran et al., [15]. The effect of thermal modulation on nanofluid 
convection was introduced by Kiran and Narasimhulu [16,17]. Here they have found that modulation 

effect not only controls transport phenomenon but also on chaotic convection. The effect  on 
throughflow on nanofluid convection was given by Kiran et al., [18]. It was found that throughflow 
shows both in and out flows enhances or diminishes heat and mass transfer in the layer. In the 

literature till date no data reported Ginzburg Landau (GL)  model for nonlinear nanofluid convection 
under temperature modulation. The GL model is used to find finite amplitude of nonlinear thermal 
instability. The GL equation is having lot of potential applications in chemical and thermal engineering 
science. 

Regulation of convective flows by external constraints like temperature or gravity modulation has 
been of great interest due to its immense practical applications in various heat and mass transfer 
problems. Venezian [19] reported the effect of temperatures modulation which gives rise to an 

unsteady basic temperature gradient on the onset of Rayleigh-Bénard convection. The effect of 
gravity modulation, i.e. vertical vibrations, on Rayleigh-Bénard convection was first reported by 
Gresho and Sani [20]. Other related gravity modulation works recently presented in researches by 

Kiran [21-23], Kiran and Narasimhulu [24], and Gaikwad et al., [25]. They have discussed the effect of 
gravity modulation on thermal Rayleigh number and quantified heat and mass transfer in the system. 

Finite amplitude convection in nanofluids for nonlinear modes was given by Bhadauria and 

Agarwal [27], Agarwal et al., [28], and Agarwal [29]. Rotational effects are accounted on nanofluid 
saturated rotating porous convection. They have used truncated representation of fourier series to 
convert nonlinear PDE into set of simultaneous ODE’s. Their study reported that nanofluids are 
modeled to enhance thermal and concentration transport. Khalid et al., [30] discussed the control 

effect on Rayleigh-Benard convection in rotating nanofluids layer with double diffusive coefficients. 
They have determined the variables which are stabilize and destabilize the system for various 
boundary conditions. The characteristics of nanofluid in terms of heat and mass  transfer over a 

shrinking cylinder and channel reported by Najib and Bachok [31], Phu et al., [33], and Azman et al., 
[34]. The abnormal behaviour or nanofluids has been reported in their studies. The other studies 
which are similar to Umavathi [26], Bhadauria and Agarwal [27], Agarwal et al., [28], and Agarwal 

[29] are given by Agarwal and Bhadauria [35], Rana and Agarwal [36], and Agarwal and Rana [37] 
investigated binary nanoconvection. In all the studies most of the results reported their onset 
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convection and transport phenomenon without modulation and different thermal boundary 
conditions. 

Govindarajan et al., [47] investigated modulational instability in a asymmetric dual -core nonlinear 
directional couplers incorporating the effects of the differences in effective mode areas and group 
velocity dispersions. Djob et al., [48] applied a non-Lagrangian approach for coupled complex 

Ginzburg-Landau systems to investigate the chaotic patterns and bifurcation points on the minimum 
length of the fiber owing to the impact of third-order dispersion. Drissi et al., [49] developed an 
algorithm named Asymptotic Numerical Method (ANM) with the Spectral Method (SM) to find the 
resolution of the Ginzburg–Landau envelope equation. 

Some more work on thermal modulation in recent times includes; Bhadauria and Kiran [38], Kiran 
and Bhadauria [39], Kiran et al., [40,41] and Manjula and Kiran [42] are few [43]. These studies 
introduced external mechanisms to control the convective flow effectively. Following their work, 

many investigators studied the linear and nonlinear stability of Rayleigh-Bénard convection for 
different configurations and by using various methods. Umavathi [26] reported that, the effect of 
temperature modulation on nanofluid convection in porous medium by performing a linear stability 

analysis. It was reported that the temperature modulation can be used to advance or delay the onset 
of nanofluid convection. There is no study available which concern to the effect of thermal 
modulation on nanofluid convection with GL model. Thus, in this paper, the influence of thermal 

modulation on nanofluid convection has been studied by performing weak nonlinear stability 
analyses. Consequently, the thermal and concentration Nusselt number were calculated as a function 
of other physical parameters. 

Till today no work reported that discuss GL model on nano-convection with modulation. Thus the 
present paper is aimed to present the results of GL model on nanoconvection. Consequently, the 
objective of the current study is to examine the effect of thermal modulation of nanofluid convection 
under GL model. The solutions are obtained analytically and numerically based on the cartesian 

coordinate procedure. In this paper we consider the effect of modulation in three different profiles 
IPM, OPM and LBM. A comparison among three different modulation cases has been observed.  
 

2. Governing Equations 
 

Horizontal layer with nanofluid is confined between two boundaries at z=0 and z=d, heated from 

below and cooled from above is consider. The boundary layers are considered to be impermeable 
and perfectly thermally conducting. The nanofluid layer extended infinitely in x and y-directions, and 
z-axis is taken vertically upward with the origin at the lower boundary. 𝑇ℎ  and 𝑇𝑐 are the 

temperatures at the lower and upper walls respectively, the former being greater. A detailed 
derivation of the conservation equations has been dealt by Buongiorno [6], Tzou [7] and Kuznetsov 
and Nield [9]. 
 

∇ ⋅ 𝑞 = 0              (1) 
 

𝜌 (
𝜕�⃗⃗�

𝜕𝑡
+ 𝑞 ⋅ ∇𝑞) = −∇𝑝 + 𝜇∇2𝑞 + [𝜙𝜌𝑝 + (1 − 𝜙){𝜌𝑓(1 − 𝛽(𝑇 − 𝑇𝑐))}]𝑔     (2) 

 

(𝜌𝑐)𝑓 [
𝜕𝑇

𝜕𝑡
+ 𝑞 ⋅ ∇𝑇] = 𝑘𝑓∇2𝑇+ (𝜌𝑐)𝑝[𝐷𝐵∇𝜙 ⋅ ∇𝑇]         (3) 

 
𝜕𝜙

𝜕𝑡
+

1

𝜖
𝑞 ⋅ ∇𝜙 = 𝐷𝐵∇2𝜙,            (4) 
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Fig. 1. Physical configuration of gravity modulation 

 
where 𝑞 = (𝑢, 𝑣,𝑤) is the fluid velocity. In these equations, 𝜌 is the fluid density, (𝜌𝑐)𝑓 , (𝜌𝑐)𝑝, the 

effective heat capacities of the fluid and particle phases respectively, 𝑘𝑓 the effective thermal 

conductivity of fluid phase, 𝐷𝐵 denote the Brownian diffusion coefficient. We assume temperature 

and volumetric fraction (of nano-particles) to be constant at stress-free plates, we impose the initial 
condition on 𝑇 and 𝜙 as: 
 

𝑞 = 0,    𝑇 = 𝑇ℎ , 𝜙 = 𝜙0      a𝑡    𝑧 = 0,          (5) 
 
𝑞 = 0,    𝑇 = 𝑇𝑐 , 𝜙 = 𝜙1       a𝑡    𝑧 = 𝑑.          (6) 
 

The following externally applied boundary conditions are considered in this paper [19]: 
 

𝑇 =
1

2
[1 + 𝜖2𝛿cos(𝜔𝑡)]    1.1𝑖𝑛at  𝑧 = 0

=
1

2
[−1 + 𝜖2𝛿cos(𝜔𝑡 + 𝜃)]    1.0𝑖𝑛at  𝑧 = 𝑑

         (7) 

 

where 𝛿 and Ω are the amplitude frequency of modulation, 𝜃 is the phase difference. To non-
dimensionalize the physical variables we take following transformations: 
 

(𝑥∗, 𝑦∗ , 𝑧∗) =
(𝑥,𝑦,𝑧)

𝑑
, 𝑡∗ =

𝑡𝛼𝑓

𝑑2
, 𝑇∗ =

𝑇−𝑇𝑐

𝑇ℎ−𝑇𝑐
,  

 

(𝑢∗, 𝑣∗,𝑤∗) =
(𝑢,𝑣,𝑤)𝑑

𝛼𝑓
, 𝑝∗ =

𝑝𝑑2

𝜇𝛼𝑓
,𝜙∗ =

𝜙−𝜙0

𝜙1−𝜙0
,  

 

where 𝛼𝑓 =
𝑘𝑓

(𝜌𝑐)𝑓
. Using the above transformations into Eq. (1) to Eq. (6) we obtain the following 

dimensionless governing system(after dropping the asterisk): 

 
∇ ⋅ 𝑞 = 0,              (8) 
 
1

𝑃𝑟
(

𝜕�⃗⃗�

𝜕𝑡
+ 𝑞 ⋅ ∇𝑞) − ∇2𝑞 = −∇𝑝 + (𝑅𝑎𝑇𝑇 + 𝑅𝑛  𝜙 − 𝑅𝑚)�⃗⃗�,       (9) 

 
𝜕𝑇

𝜕𝑡
+ 𝑞 ⋅ ∇𝑇 = ∇2𝑇 +

𝑁𝐵

𝐿𝑒
∇𝜙 ⋅ ∇𝑇,                     (10) 

 
𝜕𝜙

𝜕𝑡
+ 𝑞 ⋅ ∇𝜙 =

1

𝐿𝑒
∇2𝜙,                      (11) 
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𝑞 = 0,    𝜙 = 0  𝑎𝑡  𝑧 = 0,                      (12) 
 

𝑞 = 0,    𝜙 = 1  𝑎𝑡  𝑧 = 1.                      (13) 
 

In the above system, the non-dimensional variables have their usual meanings (presented in 

nomenclature). 
In the state of motionless fluid the disturbances are at rest and the quantities vary in z -direction: 

 
𝑞 = 0, 𝑝 = 𝑝𝑏(𝑧, 𝑡)  𝑇 = 𝑇𝑏(𝑧)  𝜙 = 𝜙𝑏(𝑧).                    (14) 

 
Substituting Eq. (14) in Eq. (10) and Eq. (11), we get 
 
𝑑2𝑇𝑏

𝑑𝑧2
+

𝑁𝐵

𝐿𝑒

𝑑𝜙𝑏

𝑑𝑧

𝑑𝑇𝑏

𝑑𝑧
= 0,                      (15) 

 
Using an order of magnitude analysis, Kuznetsov and Nield [9] showed that the second and third 

terms in Eq. (15) are small and hence we have: 
 
𝑑2𝑇𝑏

𝑑𝑧2
= 0,    

𝑑2𝜙𝑏

𝑑𝑧2
= 0                       (16) 

 
The following boundary conditions are taken to solve the Eq.  (16) from the Eq. (12) and Eq. (13): 
 

𝑇𝑏 = 1, 𝜙𝑏 = 0  𝑎𝑡  𝑧 = 0,                      (17) 
 
𝑇𝑏 = 0, 𝜙𝑏 = 1  𝑎𝑡  𝑧 = 1.                      (18) 
 

The following is obtained while solving the Eq. (16), subject to the given condition Eq. (17) and 
Eq. (18): 
 

𝜙𝑏 = 𝑧                        (19) 
 
The basic state equations are superimposed by perturbations as given bellow: 

 
𝑞 = 𝑞 ′, 𝑝 = 𝑝𝑏 + 𝑝′, 𝑇 = 𝑇𝑏 + 𝑇′, 𝜙 = 𝜙𝑏 + 𝜙′.                   (20) 
 

The following is obtained while substituting the Eq. (20) in Eq. (8) to Eq. (11) and using the 
expressions Eq. (19): 
 

−∇4𝜓 +
1

𝑃𝑟

𝜕

𝜕𝑡
(∇2𝜓) =

𝜕(𝜓,∇2𝜓)

𝜕(𝑥,𝑧)
− (𝑅𝑎𝑇

𝜕𝑇

𝜕𝑥
− 𝑅𝑛

𝜕𝜙

𝜕𝑥
)                  (21) 

 
𝜕𝑇𝑏

𝜕𝑧

𝜕𝜓

𝜕𝑥
− ∇2𝑇 = −

𝜕𝑇

𝜕𝑡
+

𝜕(𝜓,𝑇)

𝜕(𝑥,𝑧)
                      (22) 

 

−
𝜕𝜓

𝜕𝑥
− 0 =

1

𝐿𝑒
∇2𝜙 −

𝜕𝜙

𝜕𝑡
+

𝜕(𝜓,𝜙)

𝜕(𝑥,𝑧)
                     (23) 
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The above system is solved using the thermal boundary conditions on the plates z=0 and z=d. 

From the Eq. (22) the term 
𝜕𝑇𝑏

𝜕𝑧
 influences the stability problem through subject to the Eq. (7): 

 
𝜕𝑇𝑏

𝜕𝑧
= −1 + 𝜖2𝛿[𝑓2(𝑧, 𝑡)],                      (24) 

 
where 

 

𝑓2 = Re[𝑓(𝑧)𝑒−𝑖𝜔𝑡],                       (25) 
 

𝑓(𝑧) = [𝐴(𝜆)𝑒𝜆𝑧 + 𝐴(−𝜆)𝑒−𝜆𝑧], 𝐴(𝜆) =
𝜆

2

(𝑒−𝑖𝜃−𝑒−𝜆)

(𝑒𝜆−𝑒−𝜆)
  and  𝜆 = (1 − 𝑖)√

𝜔

2
. 

 
A small variation of time is considered and it is re-scaled as 𝜏 = 𝜖2𝑡. With this assumption 

stationary convection of the system will be investigated. The non-linear system of equations Eq. (21) 
to Eq. (23) are expressed in the matrix form: 
 

[
 
 
 
 −∇4 𝑅𝑎𝑇

𝜕

𝜕𝑥
−𝑅𝑛

𝜕

𝜕𝑥

−
𝜕𝑇𝑏

𝜕𝑧

𝜕

𝜕𝑥
−∇2 0

−
𝜕

𝜕𝑥
0 −

1

𝐿𝑒
∇2

]
 
 
 
 

[
𝜓
𝑇
𝜙

] =

[
 
 
 
 −

1

𝑃𝑟

𝜕

𝜕𝜏
(∇2𝜓) +

𝜕(𝜓,∇2𝜓)

𝜕(𝑥,𝑧)

−
𝜕𝑇

𝜕𝜏
+

𝜕(𝜓,𝑇)

𝜕(𝑥,𝑧)

−
𝜕𝜙

𝜕𝜏
+

𝜕(𝜓,𝜙)

𝜕(𝑥,𝑧) ]
 
 
 
 

                 (26) 

 
The equations given in Eq. (26) are solved subject to stress-free, isothermal, iso-

nanoconcentration boundary conditions: 

 
𝜓  =   ∇2𝜓  =   𝑇  =   𝜙  =   0  at    𝑧 = 0,1                   (27) 

 
3. Heat Mass Transport 
 
The following system of asymptotic expansions substituted in Eq. (26): 

 
𝑅𝑎𝑇 = 𝑅0𝑐 + 𝜖2𝑅2 + 𝜖4𝑅4+. . . ,

𝜓 = 𝜖𝜓1 + 𝜖2𝜓2 + 𝜖3𝜓3+. . . ,

𝑇 = 𝜖𝑇1 + 𝜖2𝑇2 + 𝜖3𝑇3+. . . ,

𝜙 = 𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3+. . . ,

                     (28) 

 
where 𝑅0𝑐 is the critical value of the Rayleigh number at which the onset of convection takes place 

in the absence of temperature modulation. Now we solve the system for different orders of 𝜖. 
 
At the lowest order: The lowest order system is given by: 

 

[
 
 
 
 −∇4 𝑅0𝑐

𝜕

𝜕𝑥
−𝑅𝑛

𝜕

𝜕𝑥
𝜕

𝜕𝑥
−∇2 0

−
𝜕

𝜕𝑥
0 −

1

𝐿𝑒
∇2

]
 
 
 
 

[

𝜓1

𝑇1
𝜙1

] = [
0
0
0
]                     (29) 
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The solutions of the lowest order system subject to the boundary conditions Eq.  (27) is: 
 

𝜓1 = 𝔹(𝜏)sin(𝑘𝑐𝑥)sin(𝜋𝑧),                      (30) 
 

𝑇1 = −
𝑘𝑐

𝛿2
𝔹(𝜏)cos(𝑘𝑐𝑥)sin(𝜋𝑧),                     (31) 

 

𝜙1 =
𝑘𝑐

𝛿2
(𝐿𝑒)𝔹(𝜏)cos(𝑘𝑐𝑥)sin(𝜋𝑧),                     (32) 

 
where 𝛿2 = 𝑘𝑐

2 + 𝜋2. The critical value of the Rayleigh number and the corresponding wave number 

for the onset of stationary convection is calculated numerically and the expression are given by  
 

𝑅0𝑐 =
𝛿6

𝑘𝑐
2 − 𝑅𝑛(𝐿𝑒),  

 

𝑘𝑐 =
𝜋

√2
,  

 
which are the results given by Venezian [19] and Gresho and Sani [20] for normal fluids. 
 

At the second order: In this order the following system of equations is obtained: 
 

[
 
 
 
 −∇4 𝑅0𝑐

𝜕

𝜕𝑥
−𝑅𝑛

𝜕

𝜕𝑥

−
𝜕𝑇𝑏

𝜕𝑧

𝜕

𝜕𝑥
−∇2 0

−
𝜕

𝜕𝑥
−0 −

1

𝐿𝑒
∇2

]
 
 
 
 

[

𝜓2

𝑇2

𝜙2

] = [

𝑅21

𝑅22

𝑅23

]                    (33) 

 
𝑅21 = 0,                        (34) 

 

𝑅22 =
𝜕𝜓1

𝜕𝑥

𝜕𝑇1

𝜕𝑧
−

𝜕𝜓1

𝜕𝑧

𝜕𝑇1

𝜕𝑥
,                      (35) 

 

𝑅22 =
𝜕𝜓1

𝜕𝑥

𝜕𝜙1

𝜕𝑧
−

𝜕𝜓1

𝜕𝑧

𝜕𝜙1

𝜕𝑥
.                      (36) 

 
The second order solutions subjected to the boundary conditions Eq.  (27) is obtained as follows: 
 

𝜓2 = 0                        (37) 
 

𝑇2 = −
𝑘𝑐

2

8𝜋𝛿2
𝔹2(𝜏)sin(2𝜋𝑧),                      (38) 

 

𝜙2 =
𝑘𝑐

2

8𝜋𝛿2
(𝐿𝑒)𝔹2(𝜏)sin(2𝜋𝑧).                     (39) 

 
The horizontally averaged Nusselt number, 𝑁𝑢𝑓(𝜏), for the stationary mode of convection is 

given by: 
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𝑁𝑢(𝜏) = 1 +

[
𝑘𝑐
2𝜋

∫

2𝜋
𝑘𝑐
0

(
𝜕𝑇2
𝜕𝑧

) 𝑑𝑥]

𝑧=0

[
𝑘𝑐
2𝜋

∫

2𝜋
𝑘𝑐
0

(
𝜕𝑇𝑏
𝜕𝑧

) 𝑑𝑥]

𝑧=0

                     (40) 

 

𝑁𝑢(𝜏) = 1 +
𝑘𝑐

2

4𝛿2
𝔹2(𝜏).                      (41) 

 
The nanoparticle concentration Nusselt number, 𝑁𝑢𝑐(𝜏) is defined similar to the thermal Nusselt 

number. Following the procedure adopted for arriving at 𝑁𝑢, one can obtain the expression for 𝑁𝑢𝑐 

in the form: 
 

𝑁𝑢𝑐(𝜏) = 1 +
𝑘𝑐

2

4𝛿2
(𝐿𝑒))𝔹2(𝜏).                     (42) 

 
At the third order: In this order the following system is obtained: 

 

[
 
 
 
 −∇4 𝑅0𝑐

𝜕

𝜕𝑥
−𝑅𝑛

𝜕

𝜕𝑥

−
𝜕𝑇𝑏

𝜕𝑧

𝜕

𝜕𝑥
−∇2 0

−
𝜕

𝜕𝑥
0 −

1

𝐿𝑒
∇2

]
 
 
 
 

[

𝜓3

𝑇3

𝜙3

] = [

𝑅31

𝑅32

𝑅33

]                    (43) 

 
where 

 

𝑅31 = −
1

𝑃𝑟

𝜕

𝜕𝜏
(∇2𝜓1) − 𝑅2

𝜕𝑇1

𝜕𝑥
− 𝑅0𝑐

𝜕𝑇2

𝜕𝑥
+ 𝑅𝑛

𝜕𝜙2

𝜕𝑥
,                   (44) 

 

𝑅32 = −
𝜕𝑇1

𝜕𝜏
+

𝜕𝜓1

𝜕𝑥

𝜕𝑇2

𝜕𝑧
+ 𝛿1𝑓2

𝜕𝜓1

𝜕𝑥
,                     (45) 

 

𝑅33 = −
𝜕𝜙1

𝜕𝜏
+

𝜕𝜓1

𝜕𝑥

𝜕𝜙2

𝜕𝑧
                      (46) 

 
Substituting 𝜓1, 𝑇1  and 𝑇2 into Eq. (44) to Eq. (46), we can obtain expressions for 𝑅31, 𝑅32 and 

𝑅33 easily. Now by applying the solvability condition for the existence of third order solution, we get 
the Ginzburg-Landau equation for stationary convection with time-periodic coefficients in the form: 
 

𝐴1𝔹′(𝜏) = 𝐴2𝔹(𝜏) − 𝐴3𝔹(𝜏)3                     (47) 
 
where 

 

𝐴1 =
𝛿2

𝑃𝑟
+

𝑘𝑐
2

𝛿4
(𝑅0𝑐) +

𝑅𝑛𝑘𝑐
2𝐿𝑒2

𝛿4
, 𝐴2 = [

𝑅2𝑘𝑐
2

𝛿2
+ (𝑅0𝑐𝑘𝑐

2𝛿2 +
𝑅𝑛𝑘𝑐

2

𝛿2
𝐼1)] ,𝐴3 =

𝑘𝑐
4

8𝛿4
[𝑅0𝑐 − 𝑅𝑛𝐿𝑒3], 𝐼1 =

∫

2𝜋

𝑘𝑐
0

sin2(𝜋𝑧)𝑑𝑧. 

 
The non autonomous Ginzburg-Landau equation Eq. (47) is a Bernoulli equation with time variate 

coefficients and obtaining its analytical solution is difficult [49-52]. This equation is solved numerically 

with NDSolve of Mathematica, subjected to initial value 𝔸(0) = 𝑎0, where 𝑎0 for initial amplitude. 
Here we choose 𝑅2 = 𝑅0𝑐 , for weakly nonlinear convection. 
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4. Solutions without Modulation 
 

In the case of unmodulated system, the above Ginzburg−Landau equation can be written as 
 
𝐴1𝔹𝑢′(𝜏) − 𝐴2𝔹𝑢(𝜏) + 𝐴3𝔹𝑢(𝜏)3 = 0,                    (48) 

 
where 𝔹𝑢(𝜏) is an amplitude of convection for unmodulated case and 𝐴1, 𝐴3 have the same 

expression as given in the Eq. (47) and 𝐴2 =
𝑅0𝑐𝑘𝑐

2

𝛿2
. The solution of Eq. (48) is given by 

 

𝔹𝑢(𝜏) =
1

√(
𝐴3
2𝐴2

+𝐶1𝐸𝑥𝑝[
−2𝐴2
𝐴1

])
,                      (49) 

 
where 𝐶1 is a parameter, it can be calculated for given suitable initial condition. The thermal and 
nanoparticle concentration Nusselt number in this case is obtained from Eq.  (41) to Eq. (42) by using 

amplitude of convection as 𝔹𝑢(𝜏). 
 
5. Results and Discussion 

 
The effect of thermal modulation on the Rayleigh Benard nano-convection is discussed by 

performing a weakly nonlinear stability analyses. The modulation of Rayleigh−Bénard system has 
been assumed to be of order 𝑂(𝜖2), which shows that, we consider only small amplitude of thermal 

modulation. This assumption leads to obtain an amplitude equation in a simple manner, and much 
easier than the Lorenz model. It is well known that, making a nonlinear theory to analyze heat mass 

transport, which is not possible by linear theory. Moreover external regulations of convection is 
important in the study of thermal instability, therefore, in this paper we have considered thermal 
modulation for either enhancing or inhibiting convective heat mass transport as is  required by 
application. 

The effect of thermal modulation on heat mass transport has been depicted graphically in Figure 
2 to Figure 7. In this paper we consider three different types of modulations. We consider three 
different thermal boundary conditions to see temperature modulation effect on Nu and 𝑁𝑢𝑐 i.e., 

heat and concentration transport. 
 
The following boundary conditions are considered: 

(i) IPM -in phase modulation 𝜃 = −𝐼∞ 
(ii) OPM -out phase modulation 𝜃 = 𝜋 

(iii) LBM -lower boundary modulation 𝜃 = 0 

 
The following parameters 𝑃𝑟,𝑅𝑛,𝐿𝑒, 𝛿 and Ω are occurred in our study which influence the 

convective heat mass transport. The fluid layer is not considered to be highly viscous, therefore only 
moderate values of 𝑃𝑟 are taken for calculations. Because of small amplitude modulation, the values 

of 𝛿 are considered to be small. Further, thermal modulation has been assumed to be of low 
frequency, as at low range of frequencies, the effect of modulation frequency on onset of convection 
as well as on heat transport is maximum. A weak nonlinear stability analysis of nanofluids is 

performed based on Ginzburg-Landau model at third order. The coefficient of heat transports, i.e., 
thermal Nusselt numbers 𝑁𝑢, and the coefficient of nanoparticle concentration transport 𝑁𝑢𝑐, i.e., 
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concentration Nusselt number are calculated as functions of time and other system parameters. Our 
results are depicted in the Figure 2 to Figure 7 for 𝑁𝑢(𝜏), 𝑁𝑢𝑐(𝜏). 

Stability curves of nano-Rayleigh number are depicted in the Figure 2. The effect of Le and Rn has 
been identified on onset convection. For linear theory of onset convection it is found that effect of 
Le and Rn delays the onset convection. The reason for this is due to sudden raise in 𝑅0𝑐  there is a 

delay of onset linear convection. In general when both parameters varies 𝑅0𝑐  also varies and become 
very high which required more energy to move fluid fast. The effect of the diffusivity ratio Le and 
concentration Rayleigh number is to encourage onset in the system gi ven in Figure 2(a) and Figure 
2(b). The corresponding results may observe from the results of  Bhadauria and Kiran [44], and Kiran 

[45,50]. 
 

 
Fig. 2. Stability curves (𝑅0𝑐 versus 𝑘𝑐

2) 

 
The Prandtl number 𝑃𝑟 is to enhance heat and concentration transport for low values of time, 

and further increment in time similar effects can be seen given in Figure 3(a) and Figure 4(a). The 
influence of concentration Rayleigh number 𝑅𝑛 on both thermal and concentration Nusselt numbers 
is similar, which is to enhance the heat and concentration transport given in Figure 3(b) and Figure 

4(b). Thus 𝑅𝑛 has dual role on transport media, which can be used to regulate heat mass transfer. 
Most of the results related to 𝑅𝑛 is followed by Agarwal et al., [29-37]. The reader may note that 
negative values of 𝑅𝑛 influence revers nature of heat mass transport in the layer. 

To avoid repetition of the graph its graph excluded. Figure 3(c) shows that, an increment in 𝛿 is 
to enhance heat transport. Figure 3(d) reveals the effect of modulation frequency on the thermal 
Nusselt number 𝑁𝑢(𝜏). It can be found that increase in 𝜔 reduces the heat transport which is the 

result reported by Kiran and Narasimhulu [17], Umavathi [26], and Gresho and Sani [20]. The similar 
results obtained for concentration Rayleigh number so we have presented in Figure 4(c) and Figure 
4(d). Moreover, as reported earlier by Bhadauria and Agarwal [27] that 𝐿𝑒 do not have significant 
effect on the thermal Nusselt number. Thus we avoid graphical representation of the same. On the 

contrary in the case of concentration Nusselt number both 𝐿𝑒 have increasing effect on 𝑁𝑢𝑐(𝜏) as 
depicted in the Figure 5(a) and Figure 5(b). 

Eq. (50) gives an amplitude of convection analytically for unmodulated case, using this in Figure 

5(c) and Figure 5(d) we made comparison between modulated and un-modulated system, where 
unmodulated system shows that, there is an sudden increment in 𝑁𝑢(𝜏) and 𝑁𝑢𝑐(𝜏) for small values 
of time 𝜏 and becomes study for large values of time 𝜏. But, incase of modulated system it shows 

oscillatory behaviour for both 𝑁𝑢(𝜏) and 𝑁𝑢𝑐(𝜏). Here the reader may note that only results of 
𝑁𝑢𝑐(𝜏) have presented. 
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Fig. 3. Heat transfer results based on the effect of (a) 𝑃𝑟 (b) 𝑅𝑛 (c) 𝛿 (d) 𝜔 

 

 
Fig. 4. Nanofluid mass transfer results based on the effect of (a) 𝑃𝑟 (b) 𝑅𝑛 (c) 𝛿 (d) 𝜔 
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Fig. 5. Heat transfer results based on the effect of (a,b) 𝐿𝑒 and comparison of modulated 
and un-modulated case (c,d) 

 

In Figure 6(a) to Figure 6(c) and Figure 7(a) to Figure 7(c) we have presented results corresponding 
to IPM case. For in phase modulation case the results obtained here of similar nature of those wh o 
obtained earlier by Bhadauria and Kiran [38,52], Manjula and Kiran [42] and Kiran and Bhadauria [46], 
Kiran [50], and Kiran et al., [51]. The comparison of three types of modulation i.e IPM, OPM and LBM 

cases presented in Figure 6(d) and Figure 7(d). It is found that OPM case shows modulation effect 
than other two cases. Thus, OPM case is the one which enhances heat mass transfer more in the 
system. 

 

 
Fig. 6. In phase modulation, results on 𝑁𝑢 with respect to different parameters (a) 𝑃𝑟 
(b) 𝑅𝑛 (c) 𝐿𝑒 (d) IPM, OPM, LBMO 
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Fig. 7. In phase modulation, Results on 𝑁𝑢𝑐 with respect to different parameters (a) 𝑃𝑟 
(b) 𝑅𝑛 (c) 𝐿𝑒 (d) IPM, OPM, LBMO 

 

6. Conclusions 
 

The weakly nonlinear stability of a layer of nanofluid is investigated with thermal modulation. The 
layer is heated from below and cooled from above. We further incorporate the effect of Brownian 

motion along with the top-heavy suspension of nano particles. The results have been obtained in 
terms of the concentration and thermal Nusselt numbers with the help of the GL equation. Thus, the 
effect of various parameters has been obtained and depicted graphically. We have the following 

observations: 
Thermal modulation can be used to control or regulate heat mass transport effectively in the 

system. Our analysis says that positive values of nanoparticle concentration Rayleigh number 𝑅𝑛, 

Prandtl number Pr and Lewis number 𝐿𝑒 enhance the effect of modulation, whereas negative values 
of Rn show less effect of modulation. The effect of modulation in terms of 𝛿 and 𝜔 is clear and shows 
the impact on heat mass transfer. Different types of modulations OPM, LBM, and IPM are reported 

on heat mass transfer. It shows that OPM cases transfer better results than IPM and LBM cases. 
Among the three the least one is IPM, which acts like an un-modulated case. The corresponding 
results may summarise as [𝑁𝑢/𝑁𝑢𝑐]𝑂𝑃𝑀>[𝑁𝑢/𝑁𝑢𝑐]𝐿𝐵𝑀>[𝑁𝑢/𝑁𝑢𝑐]𝐼𝑃𝑀. Finally, it is concluded 
that by suitable adjustment of three parameter values 𝜃, 𝛿, and 𝜔 one may have control over heat 

mass transfer. 
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