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function (RBF) method. These methods are used to solve the Navier-Stokes equations
combined with the Cahn-Hilliard equations to track the interface between two fluids.
This work uses the fractional step method to calculate the pressure-velocity coupling
in the Navier-Stokes equations. The numerical results were compared with the
available data in the literature to validate the proposed method. Based on the
validation, the proposed method conforms well with the literature. To identify further
coalescence characteristics, the model considered different values in viscosity (2, 4,

Keywords: and 8 cP), collision velocity (1.5 m/s and 3 m/s), and surface tension (0.014, 0.028, and
Droplet Coalescence; Fractional Step; 0.056 N/m) parameters. The increasing viscosity was linearly proportional to the
Radial Basis Function; Cahn-Hilliard collision time, whereas increased surface tension and collision velocity shortened the
Equations collision time.

1. Introduction

Droplet coalescence plays an essential role in many engineering applications, such as spray
cooling [1], desalination [2], fuel combustion [3], petroleum transporting pipelines [4], and coating
[5]. Therefore, many researchers have studied those phenomena experimentally and numerically. In
the oil industry, the merging of dispersed water droplets in crude oil is described as water
coalescence [6]. In the formation of the raindrop, droplet collision takes place naturally [7].

Several numerical experiments were used to simulate two-phase flow problems. Gomes et al., [8]
applied FLUENT software, a CFD package based on the finite volume method, to calculate pressure
drop in the oscillating water column device. Their study defined the interface of two fluids using the
Volume of Fluid (VOF) method. Mason et al., [9] numerically studied the collisions of two droplets
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using a multi-scale simulation method. They proposed the Volume of Fluid (VOF) method to capture
the interface of two fluids, resulting in the droplet evolution matching the experimental result of
Pan et al., [10]. Mohammadi et al., [11] investigated the collision of water droplets in oil using the
finite volume method and the Volume of Fluid (VOF) method to track the interface of two fluids. The
effects of collision velocity, off-center collision parameter, viscosity, and surface tension were
considered. Mansouri et al., [12] proposed a numerical simulation of water droplet collisions in oil.
The collisional behavior of the droplet was investigated numerically using a commercial CFD code
Fluent 14, and the interface of two fluids was approached using the Volume of Fluid (VOF) method.

Fluid flow problems have usually been simulated using conventional numerical methods based
on finite difference [13], finite volume [14], and finite element [15] methods. The natural convection
of viscous incompressible fluid in a finite domain has been investigated using the control volume
method proposed by Perepechko et al., [16]. Their study has applied the technique to simulate heat-
mass transfer processes in incompressible media with variable viscosity and thermal conduction. The
difficulty in the mesh-based method was the high mesh quality requirement in the computational
domain and boundary. To handle the difficulty, various meshless methods such as meshless local
Petrov-Galerkin (MLPG) [17], meshless backward subtititution method, and radial basis function
(RBF) [18], have been developed in the last decade. Najafi et al., [19] applied meshless local Petrov-
Galerkin (MLPG) to handle the heat transfer problem of natural convection at high Rayleigh numbers.
Using their method, they could simulate the natural convection in a square cavity for Ra =108, in a
concentric square outer cylinder and circular inner cylinder annulus for Ra = 107, and in a two
concentric circular cylinder annulus for Ra = 10°. Their works used the fractional step method to
discretize the momentum equations to obtain the pressure and velocity terms. The RBF method
has been developed to solve the partial differential equations [20] and Navier-Stokes equations [21].
Ma et al., [22] introduced the meshless backward substitution method (BSM) to solve the time-
harmonic elastic wave problems. They concluded that the BSM can provide more precise solutions
for problems involving regular and irregular domains at various frequencies. Zang et al., [23] also
used the meshless backward substitution method (BSM) to simulate two-dimensional incompressible
flows. Their investigations show that this method has high computational efficiency and better
accuracy than other RBF-based methods. Zheng et al., [24] introduced the local radial basis function-
parameterized level set method (RBF-PLSM) to solve various partial differential equations. Their
numerical results show that the method is more efficient than the standard RBF method. Soleymani
et al., [25] used the radial basis function-generated finite difference (RBF-FD) scheme in the presence
of the generalized multiquadric function (GMQ) to solve the partial integro-differential equation
(PIDE) and partial differential equation (PDE) models. In 2023, Soleymani et al., [26] also used
meshless radial basis function-generated finite difference (RBF-FD) based on the inverse quadratic IQ
function to solve the partial differential equation (PDE) model. The numerical results show the
effectiveness and accuracy of the numerical scheme.

Table 1 provides information on the available literature on the numerical simulation of fluid flow
problems. In that table, the summary includes the simulation of single-phase and two-phase flow
problems, such as natural convection and droplet coalescence. There are also several numerical
studies on droplet coalescence using different numerical methods.

Combining the RBF with the DDM was a reasonable approach, particularly in narrowing the gap
in implementing and developing numerical method types, which leads to accommodating high-
precision outcomes. Darell et al.,'s [27] study proved the high precision of this meshless RBF by
comparing it to traditional mesh-based methods used in Comsol and Fluent. Past studies have
successfully conducted a coalescence droplet model using various numerical approaches. For
instance, Barosan et al.,'s [28] research successfully solves the droplet coalescence model using the
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diffuse interface spectral element method. That study's approach, which uses grid refinement and
has a complex domain structure, makes the model challenging to understand. Therefore, presenting
a radial basis function with the most straightforward uniformly structured grid and computational
efficiency proved challenging. In this study, the combination of meshless RBF and DDM is proposed to
solve droplet coalescence phenomena. The Navier-Stokes equation governs this related
phenomenon in terms of primitive variables and the Cahn-Hilliard equation. The Cahn-Hilliard
equation is considered to capture the evolution of the interface of the droplets. The factional step
numerical procedure solves pressure-velocity coupling in the Navier-Stokes equation. The main
contribution of the present numerical RBF-DDM method consists of three advantages. Firstly, the
implication of meshless RBF offers an advantage in accommodating the mesh generation difficulty.
Secondly, to solve the problem efficiently, the DDM divides the large-scale computational domain
into many small subdomains. Lastly, in the Cahn-Hilliard equations, the interface changes are defined
automatically, making it unnecessary to track the interface explicitly [29]. Bates et al., [30] and
Anderson et al., [31] proposed that the Cahn-Hilliard equations are thermodynamically consistent
and capture the interface between two fluids.

Table 1
Summary of investigation on the numerical solution of fluid flow problems
Ref. Method Remarks

(8]

FLUENT software, and
Volume of Fluid (VOF)
method

The software solves the pressure drop in an oscillating water column
device. The interface of two fluids was defined using the Volume of Fluid
(VOF) method.

[16] control volume method The natural convection of viscous compressible fluid in a finite domain
has been investigated using the control volume method.
[19] meshless local Petrov— The method was used to solve natural convection heat transfer at high
Galerkin method Rayleigh numbers in a square cavity and circular annulus. The fractional
step method was applied to discretize the momentum equations to obtain
the pressure and velocity variables.
[9] multi-scale simulation The evolution of the droplet interface in their work is in good accordance
method and volume of fluid  with the experimental results of Pan et al., [9].
(VOF
[11] finite volume method, and The study is based on the finite volume method and the Volume of Fluid
Volume of Fluid (VOF) (VOF) method to track the interface of two fluids. The effects of collision
method velocity, off-center collision parameter, viscosity, and surface tension were
considered
[12] Fluent 14, and Volume of The water droplet collisions in oil were investigated using commercial CFD

Fluid (VOF) method

code Fluent 14. The interface of two fluids was approached using the
Volume of Fluid (VOF) method.

2. Methodology
2.1 Governing Equations and Problem Definition

The governing equations for the coalescence of the droplets are determined by the Navier-Stokes
and Cahn—Hilliard equations, which are given as:

du
P (w.V)u = —

V.u=

1 n(c)
2@ P T Rep(©

V2u + SF(c) (1)

(2)
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Where x and y are spatial coordinates in horizontal and vertical directions, corresponding to
velocities u and v with pressure (P). This momentum equation incorporates the external surface force
(SF) acting on the droplet contact.

%+ uve = vy (3)
p=c®—c—Ch*V%c (4)
0= (£2) 22 (59 g
100 = () + 22(59 0

The Cahn-Hilliard equations Eq. (3) and Eq. (4) accommodate the droplet phases interact. Where
c is the concentration, p is the density, o, and w are the indices for oil and water, and 7 is the
kinematic viscosity. The above equations are obtained using the following dimensionless Eq. (7).
Which represents the dimensionless values. The variables t, Do, and V, are time, initial droplet size,
and initial droplet velocity, respectively.

X u tVo
x'=—= u =— t'=—, p'=£,
D, Vo Do Po
A % r_ — PU r— N2
p'=_—rm n=, SF () =,——Vc u ™ (7

The Reynolds number (Re), Weber number (We), Cahn number (Ch), and Peclet number (Pe) are
defined using the equation below. In this equation, ¢ represents the interface thickness, and o
represents the surface tension.

Re = poVoDo (8)
Mo
2
We = —”WVZ Do (9)
Ch== (10)
Do
pe = o020 (11)
Muo

The present study defines the initial concentration conditions by the hyperbolic tangent function
(Eg. (12)), with H and L representing the length and height domain.

2 2 2 2
o ) T
c = tanh 5~ T3ch + tanh 5~ ~73ch +1 (12)
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The computational domainis describedin Figure 1. The figure shows two
droplets that were utilized to model the numerical cases of the binary droplet coalescence. The
periodic boundary conditions are implemented on the left and right walls, and no-slip boundary
conditions are applied on the top and bottom walls.

A u=0vr=0—=20

Droplet 1 Droplet 2

H=5D, D,

periodic boundary condition
periodic boundary condition

d
L =5D, n=D,u=U.—p=D
dy

A
v

(a) (b)

Fig. 1. Schematic of the (a) computational domain and (b) boundary condition
2.2 Radial Basis Function (RBF) Method

This section focuses on solving the governing equations of droplet coalescence using the radial
basis functions (RBF) method. The advantage of the RBF method is that it does not need a mesh
connection. The RBF method is a function in which the value depends only on the distance from some
center point [32]. In the RBF method, a function fis approached as given below.

f =Ba (13)

Where B is the interpolation matrix and «a is the expansion coefficient, the interpolation matrix B is

the NxN matrix with entries. The employed method is the multiquadric radial basis function (MQ-
RBF), where the spatial derivatives' lengths between nodes are given in Eq. (14).

Pij = /Tf,- + g2 fori,j=12..N (14)

Tij = \/(xi - xj)z + (yi - yj)z fori,j=1.2,..N (15)

Where r is the distance matrix, ¢ is the shape parameter, and ¢ is the radial basis function. The first
and second derivatives are expressed bellow, with x and y are the spatial vectors.

("’_‘P)U — MiTX (16)
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de _ YitYj (17)
(ay)i,j rfj+£2

229 (yi-y;) +e?

e\ _Wimy)) v (18)
(6x2)i] (ri%j+gz)3/2

9% (xi—xj)2+sz

LA R G g M (19)
(63/2)1-’]- (T‘]-Z+€2)3/2
Considered with the Eq. (13), the expansion coefficient a is given as
a = B7f (20)
The RBF approximation of the first derivative Z—i is defined as
of _
Py H,a (21)

Where Hy is the NxN evaluation matrix with entries (Z—‘p)_ , substituting Eq. (20) into Eq. (21), the
ij

X
equation becomes Eq. (22). Therefore, the differentiation matrix (D, = H,B™!) governs the first
derivative.

af _
af _
o = Dxf (23)

o N L
The RBF approximation of the second derivative P expressed as

2%f
IxZ = Hytx (24)

. . . . . 9? . .
The Hxx defined the NxN evaluation matrix with entries (—(p) . The Eq. (20) substituted into Eq.
1)

ax2
(24) becomes Eq. (25), where D, = H, B! is the differentiation matrix of the second derivative.
The differentiations matrix (Dy and Dyy) are calculated similarly.

2%f _

Ix2 = H,xB 1f (25)
22f

axz = Daaf (26)

2.3 Radial Basis Function (RBF) Method

The domain decomposition method (DDM) is a numerical procedure that divides
the large computational domain (€2) into many small subdomains (i), whereasi = 1,2,...M. Mis a
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number of the subdomain. Accuracy and computational efficiency for the implemented DDM were
proven in the author's earlier developed model in 2023 [33]. The identical model is used to model
Rayleigh Bernard convection, and then the result is compared with the previous numerical model in
reference [34]. The RBF-DDM was an appropriate model with a lower node quantity than the
reference, but the result had identical outcomes as long as the proposed RBF-DDM was highly
efficient in solving the large dense matrix with a more efficient time in computation. Figure 2
describes the application of the domain decomposition method, in which the domainis
partitioned into three subdomains. The artificial boundary I'i is the boundary of Q; the interior of Q
and the exterior boundaries of 2 are denoted by 0Q\I'i. The overlapping boundaries on the
subdomains are described using the multiplicative Schwarz algorithm for the elliptic PDE problem
[35]. The commonly used Schwarz algorithm can be expressed as

LU =f(x) inQ, (27)
BU'=g(x) ondQ,/Ty (28)
Uf =U3 "y, onTy (29)
and

LU} =f(x) inQ, (30)
BUY =g(x) ondQ,/T, (31)
Uy =Uf'l, onl; (32)

where U/ is the solution of the subdomain Q..

a0, /1 0, /1 0Q3/I3
0Q, /I 0Q; /I
1/ ‘Q'l |l 9'2 nlln ﬂ3 3/13
a0, /I, 90, /T 905 /T

Fig. 2. The illustration of the domain decomposition method
2.4 Numerical Method

The fractional step scheme is applied in the present study to solve the Navier-Stokes equations.
The radial basis function method, which is reported in previous studies, is adopted to discretize the
spatial derivatives, and the time derivative is approached using the Euler implicit scheme [36]. The
application of the numerical method for the governing equation is comprehensively discussed in this
section. In the first step, the pressure term is removed from the momentum equations, and the
equation becomes:

o ou o 1 (62ﬁ 6217) -0

ot ax T Vay " Rep(o \oxZ T ay2 (33)
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- . - 25 25
kv v @_ n(c) (u 04D )_0 (34)

E+u£+vay Re.p(c) \ox% = 9y?
The Euler implicit and radial basis functions approximate the time and spatial derivatives.

Therefore, the discretization form of the momentum equations is provided below.

J2 UMD D) + 0Dy (@) — s (D (@) + Dy () = 52 (35)
% F UMD (D) + 1Dy (8) = 75 (D (P) + Dy (0)) = 5 (36)

The intermediate velocities (@i and ) do not satisfy the continuity equation, therefore the
velocities should be corrected by using the pressure term. The pressure term is calculated using
Poisson equations, which are given as follow

azpn+1 62pn+1 _ M @ 6_17

dx2 ayz At (ax ay) (37)
The Poisson equation is discretized with radial basis function as given below

n+1y _ [po) (90U | 0¥

[Dex + Dy 0 = {52 (55 + 55} (38)
The intermediate velocity defined from Eq. (36) and Eq. (37) are corrected as equations below

n+l _ n+1

TL+1 _ n+1

After finding the velocities (u, v) and pressure (p), the Cahn-Hilliard equations are solved to find
the concentration (c) and chemical potential (1), by using the semi-implicit scheme.

Cn+1_cn _ i(azﬂn-'—l azun+1) — g, 0" och UE (41)
At Pe \ 0x2 dy? 0x ay
“n+1 + Ch ( a_zc) — (Cn)3 (42)
dx2  9y?

The Picard linearization method solves the discretization in the Cahn-Hilliard equation. It's an
algorithm to solve the nonlinear into linear iteration solver, as also conducted in the previous
reference [28]. Therefore, both equations are solved in a coupled way.

L __|72 o+l 3
l o n+1] = Yoy (43)
CiV (C")3

The discretization forms for the Cahn-Hilliard equations are expressed as Eq. (44) where / is an
identity matrix.
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I DD c™

— —_ n+1 c _ an+1 n _ ,,n+l n
[ At be [Cn+1]= W Dt v Dye (44)
C:pp 1 [H (c™)3

Since the implicit approach is used in this study to solve the governing equations, the algorithm
is unconditionally stable. The stability is unrestricted by the time step (At).

3. Results
3.1 Result on Mesh Independency Test

The node independence test was conducted to ensure proper outcomes with independent value
and stability based on time evolution and to get the optimum node quantity in this proposed
numerical model. Independence test running under the At=0.0001, £€=0.1, 6=0.02 N/m, n1/n2= 0.5,
Poi1=875 kg/m3 and the p,4ter-=1000 kg/m3. Based on Figure 3, the numerical results remain constant
when the number of nodes is increased. The x-axis and y-axis presented the node configuration and
percent error of the collision times, respectively. The percent errors are obtained by comparing the
collision times with the correlation obtained in Eq. (43). Itis found that when using 151x151,
201x201, and 251x251 node configurations, the percent errors are almost the same. Accordingly, the
151x151 nodes are the optimum configuration used for the simulations. Furthermore, the shape
parameter must be considered because each value produces different errors. Figure 4 represents the
evaluation of various-shaped parameters to the produced error, in which the 0.1 in shape parameter
has the lowest error with 1.03%. This produced errors for each shape parameter running under the
optimum mesh configuration 151x151 that compares the gained collision time value with the earlier
study [11]. The graph in this research has the same trendline as the available data in reference [26].

25 T T T T T " T T T

20

=15 4

Error (%

10

* * *

T T T ” T v T T T
81x81 101x101 151x151 201x201 251x251

Nodes Configuration
Fig. 3. Node independency test: obtain using five node
configurations (81x81, 101x101, 151x151, 201x201, and
251x251)
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Fig. 4. The effect of shape parameter in resulting collision
time error validated with the reference [11]

3.2 Numerical Validation

In this study, the droplet coalescence was investigated numerically using the RBF method. The
problem is governed by the Navier-Stokes and the Cahn-Hilliard equations for capturing the interface
between two fluids. The pressure-velocity coupling in the momentum equations is solved using the
fractional step method.

In order to validate the present numerical method, five simulations were done using five different
surface tension (o) values of 0.01, 0.02, 0.03, 0.04, and 0.05 N/m. In this case, the droplet on the
right side is stagnant and the other droplet is moving toward with the velocity of 1 m/s. The other
numerical parameters were considered as provided in Table 2. The obtained collision times were
compared with the correlation proposed by Mohammadi et al., [11]. The correlation to calculate the
collision time is given as Eq. (45). where Re = p,VoDo/n,, We = p,,Vo?Do/a, Tt = tVo/Do, and
the constants are identified with C; = 7.935E +7, C, = —3.354, C3 = 1.697E + 3, and C, =
0.2052.

T =C Re® + C;Wes (45)
Table 2
Numerical simulation parameters
Parameter Value
Do (um) 200
Vo (m/s) 1.5
o (N/m) 0.028
pw (kg/m?3) 1000
po (kg/m?3) 875
Nw (cP) 1
No (cP) 2

10
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The comparisons of the collision time are shown in Figure 5. The maximum error is 3.59 % for a
surface tension of 0.05 N/m. Based on that image, it is possible to conclude that the proposed model
is well-suited to modelling droplet coalescence with reference data. Furthermore, the proposed
numerical model was also validated with the outcomes proposed model authored by Mansouri et
al., In their simulation, two droplets are moving towards each other with the velocity of Vo (Figure
1), and hence Vo = 2Vo. Figure 6 reveals the deformation of the two colliding droplets at the specified
time, and it is in good agreement with previous results in reference [12]. The simulation parameters
are presented in Table 2.

0.7 T T = T r
¢ present study
Correlation [9]
0.65[ & i
g o6
<}
£
b
@ 0.55F
<0}
=}
o
&£
8 os/-
&)
0.45} .
¢
0.4 r r - r r
0 0.01 0.02 0.03 0.04 0.05 0.06

Surface Tension (N/m)

Fig. 5. Comparison of the collision time obtained in the
present study and reference [11]

OO0 OO0 00 CO O
o0 00 00 00 O

Oms 0.1ms 0.2ms 0.3ms 0.4 ms
0.5ms 0.9 ms 1.4 ms 1.7 ms

Q = Present Study

. = Mansouri et al.

Fig. 6. Comparison of the collision sequence obtained in the present study and
reference [12]
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3.3 The Effects of Viscosity, Collision Velocity, and Surface Tension on the Coalescence Droplet

The viscosity effects of the continuous phase (no) were investigated in the simulation under
different values of 2, 4, and 8 cP. Figure 7 shows the deformation of the colliding droplet as the
viscosity effect at the different collision times. The figure illustrates that increasing the viscosity
delays the contact of two droplets and increases the collision time. There are merges after 4 ms for
the 2 and 4 cP viscosities; on the other hand, 8 CP remains at 5 ms. The increase in viscosity values
linearly increases the film thinning force which defines a resistant force against the approaching
droplet movements. Therefore, the large value in viscosity highly influenced the coalescence time.
Theoretically, the general high viscosity indicates the dense structure in the fluid molecular. When
two droplets collide with the same initiation speed and viscosity but instead have a high density, the
equilibrium mixing of molecules will take longer. This was noticeable at 8 cP when the fluid molecular
merging process proceeded slower than others, particularly in the t = 0.4-0.5 ms range, resulting in
a thicker fluid merging film.

00000 OO (U O
00000 O OO0 [ (e

OO0 000000 OO () (e

0ms 0.2 ms 0.3 ms 0.4 ms 0.5 ms 0.6 ms 0.7 ms 0.8 ms 1.0ms
Fig. 7. The effect of viscosity on the coalescence of two droplets

The effect of collision velocity on the droplet coalescenceis displayedin Figure 8. The
simulation was performed for the collision velocities of Vo = 1.5 m/s and Vo = 3 m/s. In the droplet
collision, kinetic energy is transformed into surface energy when two droplets merge and high
pressure exists in both gaps. The flattened morphological interface occurred due to this condition.
The two droplets contact each other at t = 0.177 ms for Vo = 3.0 m/s, and it takes place at t = 0.283
ms for Vo = 1.5 m/s. Based on the result, it was found that droplet collision time shorted when its
velocity increased. Theoretically, when the droplets move slower, the pressure region between them
is higher than when the droplets move faster. As a result, the coalescence process takes a longer
time.

12
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000000 O U U [ O
co@ O 0 [y[f -

0 ms 0.177 ms 0.283 ms 0.4 ms 0.5ms 06ms 07ms 08ms 1.0ms
Fig. 8. The effect of velocity on the coalescence of two droplets

Surface tension is an essential parameter that must be considered in the droplet coalescence
process. This parameter affects the equilibrium droplet shape and the interface molecular attraction
force. Figure 9 illustrates the effect of surface tension on the collision time using different surface
tension values of 0.014, 0.028, and 0.056 N/m. Based on the result, the fast collision time was linearly
proportional to the increase in surface tension. The volumetric surface energy of the coalescence is
established by the change in kinetic energy instantly before droplets merge. During the coalescence
process, the changing pressure in both droplet regions is directly influenced by surface tension.
Molecular attraction occurs when both droplets interface in a close position. As a result, the high
molecular attraction occurs at a high surface tension value so the coalescence process was faster
than the lower surface tension.

oo@g%@j@@%>@8~wn

D000 0O OO () e
MWMDoaUOOOWW

0 ms 0.2 ms 0.3 ms 0.4 ms 0.5ms 0.6 ms 0.7 ms 0.8 ms 1.0ms
Fig. 9. The effect of surface tension on the coalescence of two droplets

3.4 Convergence Analysis and Analytical Solution

The proposed radial basis function and combined domain decomposition method produce
acceptable numerical results. The validity of its justification was strengthened by the calculated
outcome of the root mean square of divergence. The equation for calculating the root mean square
of divergence is provided by Eq. (46). Based on Figure 10, the graph illustrates the logarithm (base
10) of the root-mean-square of the divergence (LOGRMSDIV) as a function of time. The current
numerical model has exceptional convergence, as indicated by the value of LOGRMSDIV being less
than -4. This convergence analysis considered the RMSDIV also proposed in the earlier study

13
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conducted by Rogers et al., related to the study of the numerical simulation Navier-Stokes in 3D

Curvilinear Coordinates [37].

_ 1 N 6ui 617,- 2
RMSDIV = \/ﬁzizl (5 + E)

(46)

0 T

LOG, RMSDIV
A

-8 1

0 0.1

0.2

|
0.3

TIME (ms)
Fig. 10. The convergence history the model

0.4

0.5

06

To measure the error in the RBF-DDM approach, a test example of incompressible Navier-Stokes
equations with a known analytical solution is examined. The governing equations of the test problem

given by
ou _ L1y _
at+u.Vu ReV ut+Vp=20

V.u=0

(47)

(48)

Where Re is the Reynolds number. The analytical solutions of the test problem are given by

u(x,y,t) = —(cosx siny)e™%t
v(x,y,t) = (sinx cosy)e %

p(x,y,t) = —%(cos 2x + cos2y)e 2t

(49)
(50)

(51)

The test problem uses the square computational domain of [0,7] X [0,7] and Re = 1. Table 3
shows the errors obtained at times t = 0.5 and t = 1 using a node distribution of 41x41. RBF-DDM
used the same quantity domain, but it was divided to become a 4x4 subdomain. To compare both
methods, Eq. (52) calculates the root-mean-square of velocity (RMSU) for both RBF and RBF-DDM.

14
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RMSU = /%(ui — ua;)? (52)

Where N, u, and ua are the number of nodes, approximate solution, and analytical solution,
respectively. In terms of RMSU in the test problem, the RBF-DDM and global RBF have almost the
same level of accuracy.

Table 3
The RMSU obtained using global RBF and RBF-DDM
t RMSU RMSU
(RBF-DDM) (RBF)
0.5 8.1e-5 7.03e-5
1 3.0e-5 2.59e-5

4. Conclusions

A numerical study on the basis of the radial basis function method has been conducted to
simulate the coalescence of water droplets in the oil. The Cahn-Hilliard equations were utilized to
capture the interface between two fluids. The proposed numerical model was validated with the data
available in the literature. The results obtained from the present study are in good agreement with
the data available in the literature.

In the study, the effects of the viscosity of the continuous phase, surface tension, and collision
velocity on the droplet coalescence were investigated numerically. The increase in viscosity increases
the collision time, therefore postponing the contact between two droplets. It is also shown that an
increase in surface tension and collision velocity produces shorter collision times. The present
numerical model demonstrates the capability of the RBF method to solve droplet coalescence, and it
can be extended to model coalescence processes in industrial contexts. In the next study, the present
numerical method can be developed to solve many problems related to multiphase flow, such as
rising bubbles, droplet evaporation, and liquid droplets impinging onto a hot surface. To ease the
understanding of the RBF-DDM implemented method, the pseudocode for implementing
the combination of RBF and domain decomposition method is available in our published article,
which is related to using both methods in solving the KHI wave growth in slug flow [38].
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