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The present investigation of the dynamic two-binary droplet interactions has gained 
attention since its use to expand and improve several numerical methods. Generally, 
its interactions are classified into coalescence, bouncing, reflective, and stretching 
separation. This study simulated droplet coalescence using the meshless radial basis 
function (RBF) method. These methods are used to solve the Navier-Stokes equations 
combined with the Cahn-Hilliard equations to track the interface between two fluids. 
This work uses the fractional step method to calculate the pressure-velocity coupling 
in the Navier-Stokes equations. The numerical results were compared with the 
available data in the literature to validate the proposed method. Based on the 
validation, the proposed method conforms well with the literature. To identify further 
coalescence characteristics, the model considered different values in viscosity (2, 4, 
and 8 cP), collision velocity (1.5 m/s and 3 m/s), and surface tension (0.014, 0.028, and 
0.056 N/m) parameters. The increasing viscosity was linearly proportional to the 
collision time, whereas increased surface tension and collision velocity shortened the 
collision time.  
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1. Introduction 
 

Droplet coalescence plays an essential role in many engineering applications, such as spray 
cooling [1], desalination [2], fuel combustion [3], petroleum transporting pipelines [4], and coating 
[5]. Therefore, many researchers have studied those phenomena experimentally and numerically. In 
the oil industry, the merging of dispersed water droplets in crude oil is described as water 
coalescence [6]. In the formation of the raindrop, droplet collision takes place naturally [7]. 

Several numerical experiments were used to simulate two-phase flow problems. Gomes et al., [8] 
applied FLUENT software, a CFD package based on the finite volume method, to calculate pressure 
drop in the oscillating water column device.  Their study defined the interface of two fluids using the 
Volume of Fluid (VOF) method. Mason et al., [9] numerically studied the collisions of two droplets 
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using a multi-scale simulation method. They proposed the Volume of Fluid (VOF) method to capture 
the interface of two fluids, resulting in the droplet evolution matching the experimental result of 
Pan et al., [10]. Mohammadi et al., [11] investigated the collision of water droplets in oil using the 
finite volume method and the Volume of Fluid (VOF) method to track the interface of two fluids. The 
effects of collision velocity, off-center collision parameter, viscosity, and surface tension were 
considered. Mansouri et al., [12] proposed a numerical simulation of water droplet collisions in oil. 
The collisional behavior of the droplet was investigated numerically using a commercial CFD code 
Fluent 14, and the interface of two fluids was approached using the Volume of Fluid (VOF) method. 

Fluid flow problems have usually been simulated using conventional numerical methods based 
on finite difference [13], finite volume [14], and finite element [15] methods. The natural convection 
of viscous incompressible fluid in a finite domain has been investigated using the control volume 
method proposed by Perepechko et al., [16]. Their study has applied the technique to simulate heat-
mass transfer processes in incompressible media with variable viscosity and thermal conduction. The 
difficulty in the mesh-based method was the high mesh quality requirement in the computational 
domain and boundary. To handle the difficulty, various meshless methods such as meshless local 
Petrov-Galerkin (MLPG) [17], meshless backward subtititution method, and radial basis function 
(RBF) [18], have been developed in the last decade. Najafi et al., [19] applied meshless local Petrov-
Galerkin (MLPG) to handle the heat transfer problem of natural convection at high Rayleigh numbers. 
Using their method, they could simulate the natural convection in a square cavity for Ra =108, in a 
concentric square outer cylinder and circular inner cylinder annulus for Ra = 107, and in a two 
concentric circular cylinder annulus for Ra = 105. Their works used the fractional step method to 
discretize the momentum equations to obtain the pressure and velocity terms. The RBF method 
has been developed to solve the partial differential equations [20] and Navier-Stokes equations [21]. 
Ma et al., [22] introduced the meshless backward substitution method (BSM) to solve the time-
harmonic elastic wave problems. They concluded that the BSM can provide more precise solutions 
for problems involving regular and irregular domains at various frequencies. Zang et al., [23] also 
used the meshless backward substitution method (BSM) to simulate two-dimensional incompressible 
flows. Their investigations show that this method has high computational efficiency and better 
accuracy than other RBF-based methods. Zheng et al., [24] introduced the local radial basis function-
parameterized level set method (RBF-PLSM) to solve various partial differential equations. Their 
numerical results show that the method is more efficient than the standard RBF method. Soleymani 
et al., [25] used the radial basis function-generated finite difference (RBF-FD) scheme in the presence 
of the generalized multiquadric function (GMQ) to solve the partial integro-differential equation 
(PIDE) and partial differential equation (PDE) models. In 2023, Soleymani et al., [26] also used 
meshless radial basis function-generated finite difference (RBF-FD) based on the inverse quadratic IQ 
function to solve the partial differential equation (PDE) model. The numerical results show the 
effectiveness and accuracy of the numerical scheme. 

 Table 1 provides information on the available literature on the numerical simulation of fluid flow 
problems. In that table, the summary includes the simulation of single-phase and two-phase flow 
problems, such as natural convection and droplet coalescence. There are also several numerical 
studies on droplet coalescence using different numerical methods. 

Combining the RBF with the DDM was a reasonable approach, particularly in narrowing the gap 
in implementing and developing numerical method types, which leads to accommodating high-
precision outcomes. Darell et al.,'s [27] study proved the high precision of this meshless RBF by 
comparing it to traditional mesh-based methods used in Comsol and Fluent. Past studies have 
successfully conducted a coalescence droplet model using various numerical approaches. For 
instance, Barosan et al.,'s [28] research successfully solves the droplet coalescence model using the 
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diffuse interface spectral element method. That study's approach, which uses grid refinement and 
has a complex domain structure, makes the model challenging to understand. Therefore, presenting 
a radial basis function with the most straightforward uniformly structured grid and computational 
efficiency proved challenging. In this study, the combination of meshless RBF and DDM is proposed to 
solve droplet coalescence phenomena. The Navier-Stokes equation governs this related 
phenomenon in terms of primitive variables and the Cahn-Hilliard equation. The Cahn-Hilliard 
equation is considered to capture the evolution of the interface of the droplets. The factional step 
numerical procedure solves pressure-velocity coupling in the Navier-Stokes equation. The main 
contribution of the present numerical RBF-DDM method consists of three advantages. Firstly, the 
implication of meshless RBF offers an advantage in accommodating the mesh generation difficulty. 
Secondly, to solve the problem efficiently, the DDM divides the large-scale computational domain 
into many small subdomains. Lastly, in the Cahn-Hilliard equations, the interface changes are defined 
automatically, making it unnecessary to track the interface explicitly [29]. Bates et al., [30] and 
Anderson et al., [31] proposed that the Cahn-Hilliard equations are thermodynamically consistent 
and capture the interface between two fluids. 

 
Table 1 
Summary of investigation on the numerical solution of fluid flow problems 
Ref. Method Remarks 

[8] FLUENT software, and 
Volume of Fluid (VOF) 
method 

The software solves the pressure drop in an oscillating water column 
device.  The interface of two fluids was defined using the Volume of Fluid 
(VOF) method. 

[16] control volume method The natural convection of viscous compressible fluid in a finite domain 
has been investigated using the control volume method.  

[19] meshless local Petrov–
Galerkin method 

The method was used to solve natural convection heat transfer at high 
Rayleigh numbers in a square cavity and circular annulus. The fractional 
step method was applied to discretize the momentum equations to obtain 
the pressure and velocity variables. 

[9] multi-scale simulation 
method and volume of fluid 
(VOF 

The evolution of the droplet interface in their work is in good accordance 
with the experimental results of Pan et al., [9]. 

[11] finite volume method, and 
Volume of Fluid (VOF) 
method 

The study is based on the finite volume method and the Volume of Fluid 
(VOF) method to track the interface of two fluids. The effects of collision 
velocity, off-center collision parameter, viscosity, and surface tension were 
considered 

[12] Fluent 14, and Volume of 
Fluid (VOF) method 

The water droplet collisions in oil were investigated using commercial CFD 
code Fluent 14. The interface of two fluids was approached using the 
Volume of Fluid (VOF) method.  

 
2. Methodology  
2.1 Governing Equations and Problem Definition 
 

The governing equations for the coalescence of the droplets are determined by the Navier-Stokes 
and Cahn–Hilliard equations, which are given as: 

 
𝜕𝐮

𝜕𝑡
+ (𝐮. ∇)𝐮 = −

1

𝜌(𝑐)
∇𝑝 +

𝜂(𝑐)

𝑅𝑒.𝜌(𝑐)
∇2𝑢 + 𝑆𝐹(𝑐)   (1) 

 
∇. u = 0  (2) 
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Where x and y are spatial coordinates in horizontal and vertical directions, corresponding to 
velocities u and v with pressure (P). This momentum equation incorporates the external surface force 
(SF) acting on the droplet contact. 
 
𝜕𝑐

𝜕𝑡
+ 𝐮∇𝑐 =

1

𝑃𝑒
∇2𝜇  (3) 

 
𝜇 = 𝑐3 − 𝑐 − 𝐶ℎ2∇2𝑐  (4) 
 

𝜌(𝑐) = (
𝑐+1

2
) +

𝜌𝑜

𝜌𝑤
(
1−𝑐

2
)  (5) 

 

𝜂(𝑐) = (
𝑐+1

2
) +

𝜂𝑜

𝜂𝑤
(
1−𝑐

2
)  (6) 

 
The Cahn-Hilliard equations Eq. (3) and Eq. (4) accommodate the droplet phases interact. Where 

c is the concentration, 𝜌 is the density, o, and w are the indices for oil and water, and 𝜂 is the 
kinematic viscosity. The above equations are obtained using the following dimensionless Eq. (7). 
Which represents the dimensionless values. The variables t, Do, and Vo are time, initial droplet size, 
and initial droplet velocity, respectively.  

 

𝑥′ =
𝑥

𝐷𝑜
  𝑢′ =

𝑢

𝑉𝑜
       𝑡′ =

𝑡𝑉𝑜

𝐷𝑜
,                𝜌′ =

𝜌

𝜌𝑜
,        

𝑝′ =
𝑝

𝜌𝑜𝑉𝑜2
     𝜂′ =

𝜂

𝜂𝑜
        𝑆𝐹(𝑐) =

𝜌𝜇

𝑊𝑒𝐶ℎ
𝛻𝑐     𝜇′ =

𝜇

𝜇𝑜
 (7) 

 
The Reynolds number (Re), Weber number (We), Cahn number (Ch), and Peclet number (Pe) are 

defined using the equation below. In this equation, 𝜉 represents the interface thickness, and σ 
represents the surface tension.  

 

𝑅𝑒 =
𝜌𝑜𝑉𝑜𝐷𝑜

𝜂𝑜
  (8) 

 

𝑊𝑒 =
𝜌𝑤𝑉𝑜

2𝐷𝑜

𝜎
  (9) 

 

𝐶ℎ =
𝜉

𝐷𝑜
  (10) 

 

𝑃𝑒 =
𝑉𝑜𝐷𝑜

𝑀𝜇𝑜
  (11) 

 
The present study defines the initial concentration conditions by the hyperbolic tangent function 

(Eq. (12)), with H and L representing the length and height domain. 
 

𝑐 = 𝑡𝑎𝑛ℎ

(

 
 𝐷𝑜
2
−

√(𝑥−(
𝐿

2
−𝐷𝑜))

2

+(𝑦−
𝐻

2
)
2

2√2𝐶ℎ

)

 
 
+ 𝑡𝑎𝑛ℎ

(

 
 𝐷𝑜
2
−

√(𝑥+(
𝐿

2
−𝐷𝑜))

2

+(𝑦−
𝐻

2
)
2

2√2𝐶ℎ

)

 
 
+ 1  (12) 
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The computational domain is described in Figure 1. The figure shows two 
droplets that were utilized to model the numerical cases of the binary droplet coalescence. The 
periodic boundary conditions are implemented on the left and right walls, and no-slip boundary 
conditions are applied on the top and bottom walls. 

 

 
(a) 

 
(b) 

Fig. 1. Schematic of the (a) computational domain and (b) boundary condition  

 
2.2 Radial Basis Function (RBF) Method 
 

This section focuses on solving the governing equations of droplet coalescence using the radial 
basis functions (RBF) method. The advantage of the RBF method is that it does not need a mesh 
connection. The RBF method is a function in which the value depends only on the distance from some 
center point [32]. In the RBF method, a function f is approached as given below.  
𝑓 = 𝐵𝛼  (13) 
 
Where B is the interpolation matrix and α is the expansion coefficient, the interpolation matrix B is 
the N×N matrix with entries. The employed method is the multiquadric radial basis function (MQ-
RBF), where the spatial derivatives' lengths between nodes are given in Eq. (14).  
 

𝜑𝑖,𝑗 = √𝑟𝑖,𝑗
2 + 𝜀2            𝑓𝑜𝑟 𝑖, 𝑗 = 1,2, …𝑁  (14) 

 

𝑟𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2
        𝑓𝑜𝑟 𝑖, 𝑗 = 1,2, …𝑁  (15) 

 
Where r is the distance matrix, 𝜀 is the shape parameter, and 𝜑 is the radial basis function. The first 
and second derivatives are expressed bellow, with x and y are the spatial vectors.    
 

(
𝜕𝜑

𝜕𝑥
)
𝑖,𝑗
=

𝑥𝑖−𝑥𝑗

√𝑟𝑖,𝑗
2 +𝜀2

  (16) 
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(
𝜕𝜑

𝜕𝑦
)
𝑖,𝑗
=

𝑦𝑖−𝑦𝑗

√𝑟𝑖,𝑗
2 +𝜀2

  (17) 

 

(
𝜕2𝜑

𝜕𝑥2
)
𝑖,𝑗
=
(𝑦𝑖−𝑦𝑗)

2
+𝜀2

(𝑟𝑖,𝑗
2 +𝜀2)

3/2   (18) 

 

(
𝜕2𝜑

𝜕𝑦2
)
𝑖,𝑗
=
(𝑥𝑖−𝑥𝑗)

2
+𝜀2

(𝑟𝑗
2+𝜀2)

3/2   (19) 

 
Considered with the Eq. (13), the expansion coefficient 𝛼 is given as  
 
𝛼 = 𝐵−1𝑓  (20) 
 

The RBF approximation of the first derivative 
𝜕𝑓

𝜕𝑥
 is defined as  

 
𝜕𝑓

𝜕𝑥
= 𝐻𝑥𝛼  (21) 

 

Where Hx is the N×N evaluation matrix with entries (
∂φ

∂x
)
i,j

, substituting Eq. (20) into Eq. (21), the 

equation becomes Eq. (22). Therefore, the differentiation matrix (Dx = HxB
−1) governs the first 

derivative. 
 
𝜕𝑓

𝜕𝑥
= 𝐻𝑥𝐵

−1𝑓  (22) 

 
𝜕𝑓

𝜕𝑥
= 𝐷𝑥𝑓  (23) 

 

The RBF approximation of the second derivative 
∂2f

∂x2
 is expressed as 

 
𝜕2𝑓

𝜕𝑥2
= 𝐻𝑥𝑥𝛼  (24) 

 

The Hxx defined the N×N evaluation matrix with entries ( 
∂2φ

∂x2
)
i,j

. The Eq. (20) substituted into Eq. 

(24) becomes Eq. (25), where Dxx = HxxB
−1 is the differentiation matrix of the second derivative. 

The differentiations matrix (Dy and Dyy) are calculated similarly. 
 

𝜕2𝑓

𝜕𝑥2
= 𝐻𝑥𝑥𝐵

−1𝑓  (25) 

 
𝜕2𝑓

𝜕𝑥2
= 𝐷𝑥𝑥𝑓  (26) 

 
2.3 Radial Basis Function (RBF) Method 

 
The domain decomposition method (DDM) is a numerical procedure that divides 

the large computational domain () into many small subdomains (i), whereas 𝑖 = 1,2, …𝑀. M is a 
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number of the subdomain. Accuracy and computational efficiency for the implemented DDM were 
proven in the author's earlier developed model in 2023 [33]. The identical model is used to model 
Rayleigh Bernard convection, and then the result is compared with the previous numerical model in 
reference [34]. The RBF-DDM was an appropriate model with a lower node quantity than the 
reference, but the result had identical outcomes as long as the proposed RBF-DDM was highly 
efficient in solving the large dense matrix with a more efficient time in computation. Figure 2 
describes the application of the domain decomposition method, in which the domain is 

partitioned into three subdomains. The artificial boundary i is the boundary of i the interior of   

and the exterior boundaries of   are denoted by i\i. The overlapping boundaries on the 
subdomains are described using the multiplicative Schwarz algorithm for the elliptic PDE problem 
[35]. The commonly used Schwarz algorithm can be expressed as 

 
ℒ𝑈1

𝑛 = 𝑓(𝑥)       𝑖𝑛 Ω1  (27) 
 
ℬ𝑈1

𝑛 = 𝑔(𝑥)      𝑜𝑛 𝜕Ω1/Γ1  (28) 
 
𝑈1
𝑛 = 𝑈2

𝑛−1|𝛤𝑖     𝑜𝑛 Γ1  (29) 

and 
ℒ𝑈2

𝑛 = 𝑓(𝑥)       𝑖𝑛 Ω2  (30) 
 
ℬ𝑈2

𝑛 = 𝑔(𝑥)      𝑜𝑛 𝜕Ω2/Γ2  (31) 
 
𝑈2
𝑛 = 𝑈1

𝑛|𝛤2         𝑜𝑛 Γ2  (32) 

 

where 𝑈𝑖
𝑛 is the solution of the subdomain i. 

 

 
Fig. 2. The illustration of the domain decomposition method 

 
2.4 Numerical Method 

 
The fractional step scheme is applied in the present study to solve the Navier-Stokes equations. 

The radial basis function method, which is reported in previous studies, is adopted to discretize the 
spatial derivatives, and the time derivative is approached using the Euler implicit scheme [36]. The 
application of the numerical method for the governing equation is comprehensively discussed in this 
section. In the first step, the pressure term is removed from the momentum equations, and the 
equation becomes:  

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
−

1

𝑅𝑒.𝜌(𝑐)
(
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
) = 0  (33) 
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𝜕�̃�

𝜕𝑡
+ 𝑢

𝜕�̃�

𝜕𝑥
+ 𝑣

𝜕�̃�

𝜕𝑦
−

𝜂(𝑐)

𝑅𝑒.𝜌(𝑐)
(
𝜕2�̃�

𝜕𝑥2
+
𝜕2�̃�

𝜕𝑦2
) = 0  (34) 

 
The Euler implicit and radial basis functions approximate the time and spatial derivatives. 

Therefore, the discretization form of the momentum equations is provided below. 
 

𝑢

𝛥𝑡
+ 𝑢𝑛𝐷𝑥(�̃�) + 𝑣

𝑛𝐷𝑦(�̃�) −
1

𝑅𝑒.𝜌(𝑐)
(𝐷𝑥𝑥(�̃�) + 𝐷𝑦𝑦(�̃�)) =

𝑢𝑛

𝛥𝑡
  (35) 

 
�̃�

𝛥𝑡
+ 𝑢𝑛𝐷𝑥(�̃�) + 𝑣

𝑛𝐷𝑦(�̃�) −
1

𝑅𝑒.𝜌(𝑐)
(𝐷𝑥𝑥(�̃�) + 𝐷𝑦𝑦(�̃�)) =

𝑣𝑛

𝛥𝑡
  (36) 

 
The intermediate velocities (�̃� 𝑎𝑛𝑑 �̃�) do not satisfy the continuity equation, therefore the 

velocities should be corrected by using the pressure term. The pressure term is calculated using 
Poisson equations, which are given as follow 

 
𝜕2𝑝𝑛+1

𝜕𝑥2
+
𝜕2𝑝𝑛+1

𝜕𝑦2
=
𝜌(𝑐)

∆𝑡
(
𝜕𝑢

𝜕𝑥
+
𝜕�̃�

𝜕𝑦
)  (37) 

 
The Poisson equation is discretized with radial basis function as given below 
 

[𝐷𝑥𝑥 + 𝐷𝑦𝑦]{𝑝
𝑛+1} = {

𝜌(𝑐)

∆𝑡
(
𝜕𝑢

𝜕𝑥
+
𝜕�̃�

𝜕𝑦
)}  (38) 

 
The intermediate velocity defined from Eq. (36) and Eq. (37) are corrected as equations below 
 

𝑢𝑖
𝑛+1 = �̃� −

∆𝑡

𝜌(𝑐)
𝐷𝑥(𝑝

𝑛+1)  (39) 

 

𝑣𝑖
𝑛+1 = �̃� −

∆𝑡

𝜌(𝑐)
𝐷𝑦(𝑝

𝑛+1)  (40) 

 
After finding the velocities (u, v) and pressure (p), the Cahn-Hilliard equations are solved to find 

the concentration (c) and chemical potential (𝜇), by using the semi-implicit scheme. 
 

𝑐𝑛+1−𝑐𝑛

𝛥𝑡
−

1

𝑃𝑒
(
𝜕2𝜇𝑛+1

𝜕𝑥2
+
𝜕2𝜇𝑛+1

𝜕𝑦2
) = −𝑢

𝜕𝑐𝑛

𝜕𝑥
− 𝑣

𝜕𝑐𝑛

𝜕𝑦
  (41) 

 

𝜇𝑛+1 + 𝐶ℎ
2 (

𝜕2𝑐

𝜕𝑥2
+
𝜕2𝑐

𝜕𝑦2
) = (𝑐𝑛)3  (42) 

 
The Picard linearization method solves the discretization in the Cahn-Hilliard equation. It's an 

algorithm to solve the nonlinear into linear iteration solver, as also conducted in the previous 
reference [28]. Therefore, both equations are solved in a coupled way.  

 

[

𝐼

∆𝑡
−

1

𝑃𝑒
𝛻2

𝐶ℎ
2𝛻2 𝐼

] [
𝑐𝑛+1

𝜇𝑛+1
] = [

𝑐𝑛

∆𝑡
− 𝑢

𝜕𝑐𝑛

𝜕𝑥
− 𝑣

𝜕𝑐𝑛

𝜕𝑦

(𝑐𝑛)3
]  (43) 

 
The discretization forms for the Cahn-Hilliard equations are expressed as Eq. (44) where I is an 

identity matrix. 
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[

𝐼

∆𝑡
−
𝐷𝐷

𝑃𝑒

𝐶ℎ
2𝐷𝐷 𝐼

] [
𝑐𝑛+1

𝜇𝑛+1
] = [

𝑐𝑛

∆𝑡
− 𝑢𝑛+1𝐷𝑥𝑐

𝑛 − 𝑣𝑛+1𝐷𝑦𝑐
𝑛

(𝑐𝑛)3
]  (44) 

 
Since the implicit approach is used in this study to solve the governing equations, the algorithm 

is unconditionally stable. The stability is unrestricted by the time step (t). 
 
3. Results  
3.1 Result on Mesh Independency Test 
 

The node independence test was conducted to ensure proper outcomes with independent value 
and stability based on time evolution and to get the optimum node quantity in this proposed 

numerical model. Independence test running under the t=0.0001, ε=0.1, =0.02 N/m, 1/2= 0.5, 
𝜌𝑜𝑖𝑙=875 kg/m3 and the 𝜌𝑤𝑎𝑡𝑒𝑟=1000 kg/m3. Based on Figure 3, the numerical results remain constant 
when the number of nodes is increased. The x-axis and y-axis presented the node configuration and 
percent error of the collision times, respectively. The percent errors are obtained by comparing the 
collision times with the correlation obtained in Eq. (43). It is found that when using 151×151, 
201×201, and 251×251 node configurations, the percent errors are almost the same. Accordingly, the 
151×151 nodes are the optimum configuration used for the simulations. Furthermore, the shape 
parameter must be considered because each value produces different errors. Figure 4 represents the 
evaluation of various-shaped parameters to the produced error, in which the 0.1 in shape parameter 
has the lowest error with 1.03%. This produced errors for each shape parameter running under the 
optimum mesh configuration 151×151 that compares the gained collision time value with the earlier 
study [11]. The graph in this research has the same trendline as the available data in reference [26]. 

  

 
Fig. 3. Node independency test: obtain using five node 
configurations (81×81, 101×101, 151×151, 201×201, and 
251×251) 
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Fig. 4. The effect of shape parameter in resulting collision 
time error validated with the reference [11]  

 
3.2 Numerical Validation 
 

In this study, the droplet coalescence was investigated numerically using the RBF method. The 
problem is governed by the Navier-Stokes and the Cahn-Hilliard equations for capturing the interface 
between two fluids. The pressure-velocity coupling in the momentum equations is solved using the 
fractional step method.    

In order to validate the present numerical method, five simulations were done using five different 
surface tension (𝜎) values of 0.01, 0.02, 0.03, 0.04, and 0.05 N/m. In this case, the droplet on the 
right side is stagnant and the other droplet is moving toward with the velocity of 1 m/s. The other 
numerical parameters were considered as provided in Table 2. The obtained collision times were 
compared with the correlation proposed by Mohammadi et al., [11]. The correlation to calculate the 
collision time is given as Eq. (45). where 𝑅𝑒 = 𝜌𝑜𝑉𝑜𝐷𝑜/𝜂𝑜,  𝑊𝑒 = 𝜌𝑤𝑉𝑜

2𝐷𝑜/𝜎, 𝜏 = 𝑡𝑉𝑜/𝐷𝑜, and 
the constants are identified with  𝐶1 = 7.935𝐸 + 7, 𝐶2 = −3.354, 𝐶3 = 1.697𝐸 + 3, and 𝐶4 =
0.2052.  

 
𝜏 = 𝐶1𝑅𝑒

𝐶2 + 𝐶3𝑊𝑒
𝐶4   (45) 

 
Table 2 
Numerical simulation parameters 
Parameter Value 

Do (µm) 200 

Vo  (m/s) 1.5 

σ (N/m) 0.028 

ρw (kg/m3) 1000 

ρo (kg/m3) 875 

ηw (cP) 1 

ηo (cP) 2 
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The comparisons of the collision time are shown in Figure 5. The maximum error is 3.59 % for a 
surface tension of 0.05 N/m. Based on that image, it is possible to conclude that the proposed model 
is well-suited to modelling droplet coalescence with reference data. Furthermore, the proposed 
numerical model was also validated with the outcomes proposed model authored by Mansouri et 
al.,  In their simulation, two droplets are moving towards each other with the velocity of Vo (Figure 
1), and hence Vo = 2Vo. Figure 6 reveals the deformation of the two colliding droplets at the specified 
time, and it is in good agreement with previous results in reference [12]. The simulation parameters 
are presented in Table 2. 

 

 
Fig. 5. Comparison of the collision time obtained in the 
present study and reference [11] 

 
 

` 
Fig. 6. Comparison of the collision sequence obtained in the present study and 
reference [12] 
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3.3 The Effects of Viscosity, Collision Velocity, and Surface Tension on the Coalescence Droplet 
 

The viscosity effects of the continuous phase (o) were investigated in the simulation under 
different values of 2, 4, and 8 cP. Figure 7 shows the deformation of the colliding droplet as the 
viscosity effect at the different collision times. The figure illustrates that increasing the viscosity 
delays the contact of two droplets and increases the collision time. There are merges after 4 ms for 
the 2 and 4 cP viscosities; on the other hand, 8 CP remains at 5 ms. The increase in viscosity values 
linearly increases the film thinning force which defines a resistant force against the approaching 
droplet movements. Therefore, the large value in viscosity highly influenced the coalescence time. 
Theoretically, the general high viscosity indicates the dense structure in the fluid molecular. When 
two droplets collide with the same initiation speed and viscosity but instead have a high density, the 
equilibrium mixing of molecules will take longer. This was noticeable at 8 cP when the fluid molecular 
merging process proceeded slower than others, particularly in the t = 0.4–0.5 ms range, resulting in 
a thicker fluid merging film.  

 

 
Fig. 7. The effect of viscosity on the coalescence of two droplets 

 
The effect of collision velocity on the droplet coalescence is displayed in Figure 8. The 

simulation was performed for the collision velocities of Vo = 1.5 m/s and Vo = 3 m/s. In the droplet 
collision, kinetic energy is transformed into surface energy when two droplets merge and high 
pressure exists in both gaps. The flattened morphological interface occurred due to this condition. 
The two droplets contact each other at t = 0.177 ms for Vo = 3.0 m/s, and it takes place at t = 0.283 
ms for Vo = 1.5 m/s. Based on the result, it was found that droplet collision time shorted when its 
velocity increased. Theoretically, when the droplets move slower, the pressure region between them 
is higher than when the droplets move faster. As a result, the coalescence process takes a longer 
time.   
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Fig. 8. The effect of velocity on the coalescence of two droplets 

 
Surface tension is an essential parameter that must be considered in the droplet coalescence 

process. This parameter affects the equilibrium droplet shape and the interface molecular attraction 
force. Figure 9 illustrates the effect of surface tension on the collision time using different surface 
tension values of 0.014, 0.028, and 0.056 N/m. Based on the result, the fast collision time was linearly 
proportional to the increase in surface tension. The volumetric surface energy of the coalescence is 
established by the change in kinetic energy instantly before droplets merge. During the coalescence 
process, the changing pressure in both droplet regions is directly influenced by surface tension. 
Molecular attraction occurs when both droplets interface in a close position. As a result, the high 
molecular attraction occurs at a high surface tension value so the coalescence process was faster 
than the lower surface tension. 

 

 
Fig. 9. The effect of surface tension on the coalescence of two droplets 

 
3.4 Convergence Analysis and Analytical Solution 

 
The proposed radial basis function and combined domain decomposition method produce 

acceptable numerical results. The validity of its justification was strengthened by the calculated 
outcome of the root mean square of divergence. The equation for calculating the root mean square 
of divergence is provided by Eq. (46). Based on Figure 10, the graph illustrates the logarithm (base 
10) of the root-mean-square of the divergence (LOGRMSDIV) as a function of time. The current 
numerical model has exceptional convergence, as indicated by the value of LOGRMSDIV being less 
than -4. This convergence analysis considered the RMSDIV also proposed in the earlier study 
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conducted by Rogers et al., related to the study of the numerical simulation Navier-Stokes in 3D 
Curvilinear Coordinates [37]. 

 

𝑅𝑀𝑆𝐷𝐼𝑉 =  √
1

𝑁
∑ (

𝜕𝑢𝑖

𝜕𝑥
+
𝜕𝑣𝑖

𝜕𝑦
)
2

𝑁
𝑖=1   (46) 

 

 
Fig. 10. The convergence history the model 

 
To measure the error in the RBF-DDM approach, a test example of incompressible Navier-Stokes 

equations with a known analytical solution is examined. The governing equations of the test problem 
given by 

 
𝜕𝐮

𝜕𝑡
+ 𝐮. ∇𝐮 −

1

𝑅𝑒
∇2𝐮+ ∇𝑝 = 𝟎   (47) 

 

∇. 𝐮 = 0  (48) 
 
Where Re is the Reynolds number. The analytical solutions of the test problem are given by 
 
𝑢(𝑥, 𝑦, 𝑡) = −(cos 𝑥 sin 𝑦)𝑒−2𝑡  (49) 
 
𝑣(𝑥, 𝑦, 𝑡) = (sin 𝑥 cos 𝑦)𝑒−2𝑡  (50) 
 

𝑝(𝑥, 𝑦, 𝑡) = −
𝑅𝑒

4
(cos 2𝑥 +  cos 2𝑦)𝑒−2𝑡  (51) 

 
The test problem uses the square computational domain of  [0, 𝜋] × [0, 𝜋] and Re = 1. Table 3 

shows the errors obtained at times t = 0.5 and t = 1 using a node distribution of 41×41. RBF-DDM 
used the same quantity domain, but it was divided to become a 4×4 subdomain. To compare both 
methods, Eq. (52) calculates the root-mean-square of velocity (RMSU) for both RBF and RBF-DDM.   
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𝑅𝑀𝑆𝑈 = √
1

𝑁
(𝑢𝑖 − 𝑢𝑎𝑖)

2  (52) 

 
Where N, u, and ua are the number of nodes, approximate solution, and analytical solution, 
respectively. In terms of RMSU in the test problem, the RBF-DDM and global RBF have almost the 
same level of accuracy. 

 
Table 3 
The RMSU obtained using global RBF and RBF-DDM 
t RMSU 

(RBF-DDM) 
RMSU 
(RBF) 

0.5 8.1e-5 7.03e-5 

1 3.0e-5 2.59e-5 

 

4. Conclusions 
 

A numerical study on the basis of the radial basis function method has been conducted to 
simulate the coalescence of water droplets in the oil. The Cahn-Hilliard equations were utilized to 
capture the interface between two fluids. The proposed numerical model was validated with the data 
available in the literature. The results obtained from the present study are in good agreement with 
the data available in the literature.  

In the study, the effects of the viscosity of the continuous phase, surface tension, and collision 
velocity on the droplet coalescence were investigated numerically. The increase in viscosity increases 
the collision time, therefore postponing the contact between two droplets. It is also shown that an 
increase in surface tension and collision velocity produces shorter collision times. The present 
numerical model demonstrates the capability of the RBF method to solve droplet coalescence, and it 
can be extended to model coalescence processes in industrial contexts. In the next study, the present 
numerical method can be developed to solve many problems related to multiphase flow, such as 
rising bubbles, droplet evaporation, and liquid droplets impinging onto a hot surface. To ease the 
understanding of the RBF-DDM implemented method, the pseudocode for implementing 
the combination of RBF and domain decomposition method is available in our published article, 
which is related to using both methods in solving the KHI wave growth in slug flow [38].  
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