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A solar still requires only two processes: evaporation and condensation. In a solar still, 
evaporation occurs because of the pressure difference caused by the difference in the 
temperature of the water and that of the glass cover, while condensation occurs when 
the water vapour comes into contact with a surface cooler than its dew point. 
Condensers have been proven to effectively increase the productivity of solar stills. 
This study aims to compare the efficiency of two developed solar stills with integrated 
conical condensers to that of a conventional solar still; it also measures the 
effectiveness of the condenser. Three types of solar stills were used in this study: a 
conventional solar still (CSS), developed solar still 1 (DSS-1) and developed solar still 2 
(DSS-2). All three stills were tested simultaneously. The three solar stills are all made 
of aluminium with a thickness of 3 mm. The software Ansys Fluent 18.2 was used to 
analyse the computational fluid dynamics in the stills. The results showed that the 
efficiency of the CSS, DSS-1 and DSS-2 were 23%, 36.5% and 46.4%, respectively. The 
freshwater yields of DSS-1 and DSS-2 were, respectively, 1.17 and 1.81 times greater 
than that of the CSS. These increases in the productivity of DSS-1 and DSS-2 are 
significantly influenced by the shape of the condenser integrated in these two solar 
stills; the effectiveness of this condenser was 85.57% and 91.25%, respectively, in DSS-
1 and DSS-2. In a simulation, the condenser’s effectiveness was 99.85%. 
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1. Introduction 
 

Water is essential to life. Humans, animals and plants cannot survive without water. As the global 
population increases, water consumption is growing as well. A population increase of 15% will lead 
to a 40% reduction in available fresh water [1], and, according to UNICEF, half of the world’s 
population could face water scarcity as early as 2025 [2]. In addition to the global threat, the water 
crisis has become an urgent issue in archipelagic countries such as Indonesia, where coastal villages 
experience severe water scarcity. There are 12,827 coastal villages throughout Indonesia, and only 
66.54% of them have access to clean water [3]. This means that many people must use murky, salty 
water for their daily needs. The need for clean fresh water is urgent, but fresh water is limited on 
earth, comprising only 2.8% of available water, while the rest is seawater [4]. Although it contains 
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large amounts of salt, seawater offers an important potential water source if it can be efficiently 
converted into fresh water. 

Seawater is converted into fresh water by removing the fluoride, CaCO3, chloride, sodium, 
sulphate and potassium permanganate (KmnO4) [5] through a desalination process, making it 
potable. Desalination is the process of physically removing salt from seawater. One of the most 
widely used desalination methods is thermal distillation. Distillation uses heat to convert the liquid 
into water vapour, which then condenses, returning to a liquid state. The water is evaporated slowly 
to ensure that contaminants in the water are left behind, and the condensed water is 
uncontaminated; a solar still distils water in this way.  

A solar still requires only two processes: evaporation and condensation. Evaporation occurs 
because of the pressure difference caused by the difference between the temperature of the water 
and the glass cover; this process is slow [6]. Condensation occurs when the water vapour contacts a 
surface that is cooler than the dew point; in a still, this occurs randomly on the condenser’s surface 
in a process called dropwise condensation [7]. Adding internal and/or external condensers increases 
the efficiency of solar stills [8–16], and previous research has explored the use of condensers in solar 
stills. Expanding the condensing surface increases a solar still’s efficiency [17]; for example, in one 
study, increasing the condensation area by 7.5× increased fresh water production by more than 50% 
[18]. Furthermore, when a condenser is added to a still, the water in the solar still evaporates in the 
evaporation chamber, and the water vapour flows towards the low-pressure condenser due to the 
pressure difference [19]. Continuous, unhindered flow of moisture can significantly increase 
productivity [20] because uncondensed moisture can decrease system performance and 
effectiveness [21]. Therefore, including a condenser shaped so that it does not impede the flow of 
water vapor will improve the solar still’s performance.  The condenser must have a large inlet so that 
water vapour can easily flow into it, and, since the condenser’s effectiveness is impacted by the 
amount of water vapour in contact with the condenser wall [22], the vapour must be forced to come 
into contact with the condenser wall.  

Based on these considerations, this study incorporates a conical condenser into a solar still. The 
opening of the condenser has the same cross section area as the evaporation, but the condenser 
then narrows so that the water vapour is forced to touch the walls of the condenser. Although the 
use of condensers in solar stills has been researched in depth, this condenser shape is uncommon 
and has not been used in a solar still before. To increase the condenser’s effectiveness and reduce 
heat loss, the feed water is also used as the coolant so that the heat released by the water vapour 
into the condenser is then used to heat the feed water. This study compares the efficiency of a solar 
still with a conical condenser to that of a conventional solar still (CSS) and measures the effectiveness 
of the conical condenser on the still’s productivity. This study also uses Computational Fluid Dynamics 
(CFD) simulations to measure the movement of water vapor and the heat transfer that occur in the 
solar still with an integrated conical condenser. 

 
2. Method  
2.1 Experimental Setup 

 
This study compares three types of solar still. Data were collected from all three stills 

simultaneously to ensure that the input and external conditions were consistent across all three 
apparatuses. The compared solar stills are a conventional solar still (CSS), a modified solar still with 
one intake (DSS-1) and a modified solar still with two intakes (DSS-2). DSS-1 and DSS-2 differ only in 
the number of intakes; their heat absorbers and condenser sizes are the same, as shown in Figure 1. 
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Fig. 1. Schematic of CSS, DSS-1 and DSS-2 testing sensors (Pic. A); experimental rig (Pic. B). 
Numbers 1 through 10 are temperature sensors; 1=Heat absorber plate, 2=Seawater, 
3=Evaporation chamber, 4=Inner side of glass cover, 5=Bottom plate sensor, 6=Upper plate 
sensor, 7= Cooling water inlet, 8=Cooling water outlet, 9=Condenser, 10=Environment; 
(A)=Circulation pump, (B)=Fresh water reservoir, (C)=Height control, (D)=Scale, (E)=Seawater 
reservoir. 

 
Figure 1 illustrates the solar stills used in this study. The CSS, which consists of only one chamber, 

includes a preheater, an evaporation chamber, and a condenser. While the DSS has a condenser 
integrated with a solar still. The preheater on DSS-1 is only one like single slope solar still and 
positioned facing east, while the preheaters on DSS-2, like double slope solar still, face east and west. 
The glass cover of the CSS faces east, while the pump installation regulating water flow is placed on 
the western side of all three solar stills. 

Water flow is generated by three pumps, one serving each solar still. In the CSS, water from the 
reservoir is pumped into the height control tank. When the water level decreases, the CSS is filled, 
while water that does not enter the solar tank flows back to the reservoir. The desalinated water 
flows to a collector placed above the scale. In DSS-1 and DSS-2, the water follows the same flow path. 
Water from the reservoir is pumped into the condenser, where it serves as a coolant. Afterwards, 
this water flows back into the reservoir, which drains into the solar still through the bottom of the 
preheater. Water that does not enter the solar still flows back to the reservoir. In DSS-1 and DSS-2, 
the desalinated water flows through the bottom of the condenser into the collector above the scales. 
For this study, all three solar stills were run simultaneously from October 8–10, 2019, from 08:00 to 
17:00 (WIB). 

In a solar still, evaporation occurs in the evaporation chamber; the bottom of this chamber is 
lined with iron sand as heat absorber [23, 24]. All three evaporation chambers are 400 mm long and 
300 mm wide, with a water height of 10 mm. Thus, the mass/surface area of water on evaporation 
is 10 kg/m2. The lower the water level, the greater the still’s productivity. The highest possible water 
level is 1 cm [25]; when the water is this high, the mass of the water is 2.025 kg. The tools used to 
retrieve data about the environmental conditions are shown in Table 1. 
 

Table 1 
Tools used in study 

No. Function Tool Data 

1 Temperature Thermometer 40–400 °C, 0.09% 
2 Solar radiance Solar meter 0–2000 W/m2 
3 Wind velocity Wind meter 0–30 m/s 
4 Relative humidity Hygrometer 10%–99% 
5 Weight Digital scale 0–20 kg ± 0.1 
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2.2 Condenser 
 

Deeper in the condenser, the cross-section becomes smaller and slopes downwards, forcing the 
water vapor to come into contact with the condenser wall, which has an area of 104,470.78 mm2, or 
0.104 m2. As shown in Figure 2 (a) and (b), the slope of the top and bottom of the condenser force 
the condensed water to flow into the collecting channel. The feed water passes through the space 
around the condenser, functioning as a coolant and absorbing the heat released by the water vapor 
during condensation; the average heat transferred from the hot fluid is equal to the average heat 
received by the cold fluid [7]. 
 
𝑞𝑐 = �̇�𝑐 ∙ 𝑐𝑝𝑎 ∙ (𝑇𝑖 − 𝑇𝑜)            (1) 

 
𝑞ℎ = �̇�𝑣 ∙ ℎ𝑓𝑔              (2) 

 
The effectiveness (∈) of the condenser is defined as [7]: 
 

∈=
𝑞𝑐

𝑞ℎ
               (3) 

 
where: 
𝑞𝑐  = Heat received by the coolant water in the condenser 
𝑞ℎ  = Heat released by the water vapor during condensation 
𝑐𝑝𝑎  = Water heat capacity  

�̇�𝑐 = Mass of coolant water  
�̇�𝑣 = Mass of water vapor 
𝑇𝑖 = Coolant water inlet temperature 
𝑇𝑜 = Coolant water outlet temperature 
 

 
(a) 

 
(b) 

Fig. 2. Condenser (a)=Dimensions of condenser, (b)=Conical condenser 

 
The actual heat transferred (qco) is the heat received by the coolant water in the condenser, while 

the maximum heat that can be transferred in the solar still condenser (qha) is the heat released by 
the water vapour during condensation. 
 
2.3 Uncertainty Analyses 
 

An uncertainty analysis aims to measure the variability in output that is caused by input variability 
[26]. Internal uncertainty (𝑢𝑖) can be estimated using the following equation [27]: 
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𝑢𝑖 = √𝜎1
2+𝜎2

2+⋯+𝜎𝑖
2

𝑁2
             (4) 

 
In this equation, 𝑢𝑖  is the internal uncertainty and 𝜎𝑖 is the standard deviation for each data point, 

while N is the number of data points. In this study, uncertainty was measured by calculating the 
standard deviation between the yield of water produced and solar energy received. 
 
2.4 CFD Simulation 
 

Many researchers have conducted simulations using CFD or have used CFD to analyse their 
findings [28–32]. The CFD simulation in this study was conducted using the software Ansys Fluent 
18.2. 

Solar radiation passes through the covering glass and is absorbed by the bottom of the basin, 
heating the water in the basin. Increasing the temperature of the water in the basin increases the 
pressure on the surface of the water; when the pressure on the surface of the water is higher than 
that in the evaporation chamber, evaporation occurs. 

Grid convergence is very important in multiphase simulations because it affects the accuracy of 
the simulation [33]; therefore, it is necessary to conduct an independent grid test. The independent 
grid has converged if the error is less than 1% [34, 35]. In this study, an error of less than 1% was 
obtained for a 4 mm mesh, as can be seen in Figure 3. 
 

Fig. 3. Mesh (a); Independent grid test (b). 
 
3. Results  
3.1 Uncertainty 
 

The uncertainty for the CSS is 7.8%; for DSS-1, it is 5.4%, and for DSS-2, it is 17.4%. Compared to 
similar previous studies, the uncertainty in this study is within an expected range, since the 
uncertainty in other studies ranges from 3.6% [36] to 19% [27]. The research uncertainty in heat 
transfer should not exceed 25% [7]. 
 
3.2 Experimental Data 
 

The three solar stills show different temperature trends. Figure 4 shows that, in the CSS, the 
temperature of the water and the inner glass cover appear to be strongly influenced by incoming 
solar radiation. The temperatures in DSS-1 and DSS-2 are lower than that in the CSS. However, the 
production of fresh water in the CSS is influenced by wind speed, which affects the temperature of 
the glass cover (Tgi) and, ultimately, the productivity of the still. If Tgi is lower than the dew point, 
condensation occurs, and the relative humidity in the solar still decreases [37]. 

 
(a) 

 
(b) 
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Fig. 4. Internal temperatures of the CSS, DSS-1 and DSS-2 on October 8–10, 2019 
 

The difference between the temperature of the water (Tw) and that of the inner glass cover (Tgi) 
is smaller in the CSS than the difference between Tw and condenser temperature (Tc) in DSS-1 and 
DSS-2. The pressure difference between the water surface and the condenser surface is the force 
that drives evaporation since this pressure difference is proportional to the temperature difference 
[38]. In addition, in DSS-1 and DSS-2, condensation is influenced by the cooling medium. As a result, 
DSS-1 and DSS-2 yielded more fresh water than the CSS, as shown in Figure 5. 
 

  

 
Fig. 5. Cumulative yields of the CSS, DSS-1 and DSS-2 for October 8–10, 2019 
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Figure 6 shows that DSS-1 and DSS-2 produced more fresh water than the CSS with various 
amounts of solar radiation. However, in DSS-1, water production peaks at 12:00 and then decreases 
as solar radiation is blocked by the integrated condenser, which prevents the water in the solar still 
from being heated. 

In a solar still, heat transfer occurs naturally. The heat transfer coefficient is calculated using the 
evaporation heat transfer coefficient, based on the mass of fresh water produced. The assumptions 
in this calculation are [39]: 

 
i) There is no water vapour leakage from the solar still. 
ii) The mass of water lost is negligible. 
iii) The water level in the basin is kept constant. 

 
The condensation areas in the CSS and the two DSSs differ; in the CSS, condensation takes place 

on the inside of the glass cover, while in DSS-1 and DSS-2, condensation takes place in the integrated 
condenser. Therefore, for the CSS, temperature is measured as Tgi (on the glass cover), while for DSS-
1 and DSS-2, it is measured as Tc (on the condenser). The Nusselt number (Nu) is obtained by first 
calculating the evaporation heat transfer coefficient (hew) and the convection heat transfer 
coefficient (hcw) based on the mass of the water produced [40].  

A power regression is used to determine the values of C and n [41]. For the CSS, the average C = 
0.92 and the average n = 0.05. For DSS-1, the average C = 0.92 and the average n = 0.09, and for DSS-
2, the average C = 0.91 and the average n = 0.15 

After C and n have been calculated, the Nusselt number can be obtained using the Nusselt–
Rayleigh equation, which is also used to obtain the convection heat transfer coefficient [42]: 

 

𝑁𝑢 =
ℎ𝑐∙𝑑𝑓

𝑘𝑓
= 𝐶 ∙ (𝐺𝑟 ∙ 𝑃𝑟)

𝑛            (5) 

 

Fig. 6. Cumulative yields of the CSS, DSS-1 and DSS-2, October 8–10, 2019 
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Using the results of these calculations, the yield of fresh water can be predicted. The coefficient 
determination (R2) of the experimental water mass with these calculations ranges from 0.9952 to 
0.9958 for the CSS. For DSS-1, R2 ranges from 0.9480 to 0.9973, and for DSS-2, R2 ranges from 0.993 
to 0.9975. This indicates a high correlation amongst the water masses for all three types of solar still 
[43]. These results can be used to predict the yields of the solar stills. Furthermore, the efficiency of 
each solar still can be calculated. 

The thermal efficiency of a solar still depends on the daily yield accumulation, the daily solar 
intensity, the latent heat of vaporisation and the surface area of the condensation area. 
Mathematically, it is expressed by the following equation [44]: 

 

𝜂 =
∑𝑚𝑤∙ℎ𝑓𝑔

∑𝐼∙𝐴∙3600
              (6) 

 
The solar stills with integrated condensers are more efficient than the CSS. The solar still with the 

integrated DSS-2 condenser reached the highest efficiency, 47.3%; this still’s average efficiency over 
three days was 46.5%. DSS-2 also has high efficiency compared to previously reported stills with 
integrated or separate condensers [12, 45–53]. This high efficiency cannot be separated from the 
shape of the condenser, which narrows towards the exit. This shape forces the water vapour to come 
into contact with the condenser wall, causing condensation to occur. A CFD simulation is used to 
explain the phenomena that occur in the solar still and condenser. The experimental data in this study 
differed from the CFD simulation by less than 6.63%. The simulations for temperature distribution 
and the velocity vector for DSS-2 are shown in Figure 7. 
 

 
(a) 

 
(b) 

Fig. 7. Temperature distribution (a) and velocity vector (b) for DSS-2 condenser. 
 

The simulated temperature distribution in the DSS-2 condenser, shown in Figure 7 (a), shows that 
the highest temperature in the solar still is located in the evaporation area above the seawater. These 
simulation results align with the experimental data in this study and also with the findings of previous 
similar studies [54–58]. Condensation begins above the surface of the water and extends to the inner 
glass cover. In DSS-2, the glass cover comprises two layers of glass separated by an air gap of 3 mm. 
The water vapour formed during evaporation accumulates in the evaporation area. Since water 
vapour can absorb heat, the incoming solar heat causes the pressure and temperature of water 
vapour in the evaporation area to rise. In a CSS, water usually condenses on the inside of the glass 
cover. However, this does not occur with the double glass cover because the heat inside still moves 
slowly outward, as the wind does not cool the inner glass. This maintains the temperature of the 
inner layer of glass above the condensation temperature, preventing condensation [53]. Since there 
is no condensation, the water vapour pressure in the evaporation area increases. Although water 
vapour tends to move upwards, the pressure difference between the evaporation area and the 
environment makes the water vapour move towards the condenser outlet, as shown in Figure 7 (b). 
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Figure 7 (b) shows the movement of the water vapour, which is caused by buoyancy and pressure 
differences. The vapor moves from the evaporation area to the condenser without any change in 
velocity. Thus, the vapor flows easily into the condenser, without any disturbance. The vapour 
changes velocity as the condenser narrows; the flow of water vapor then forms a rotating stream or 
vortex which moves towards the outlet. Meanwhile, the water vapour above the surface of the water 
moves directly towards the condenser because the pressure in that region is higher than the pressure 
in the condenser. This vapour accelerates as it approaches the condensate outlet. Since the vapour 
velocity increases inside the condenser as the condenser’s cross-sectional area decreases, more 
vapour comes into contact with the condenser wall and condenses. 

Condensation occurs at the condenser wall because the moving vapour comes into contact with 
the condenser wall. However, the simulation shows that not all water vapour contacts the condenser 
wall; some vapour exits directly through the condensate outlet. Therefore, the condenser’s 
effectiveness is calculated using the mass of water produced and the heat received by the cooling 
water in the condenser. The inlet and outlet temperature are shown in Table 2; effectiveness is 
calculated using Eq. (1) to Eq. (3). The results of these calculations are shown in Table 3.  
 

Table 2 
Inlet (Ti) and outlet (To) temperature of condenser in DSS-1 and DSS-2 

Jam 8 Oct 2019 9 Oct 2019 10 Oct 2019 
Tc DSS-1 Tc DSS-2 Tc DSS-1 Tc DSS-2 Tc DSS-1 Tc DSS-2 
In Out In Out In Out In Out In Out In Out 

8 30.4 30.4 30.2 30.3 30.2 30.4 30.2 30.3 30.2 30.6 30.3 30.8 
9 30.3 32.0 30.3 32.3 30.4 31.9 30.3 31.7 30.5 31.3 30.3 31.9 
10 30.4 32.4 30.4 32.5 30.5 32.2 30.4 32.3 30.5 31.8 30.6 32.8 
11 30.4 32.8 30.4 32.6 30.5 31.8 30.7 32.6 30.5 31.4 30.6 32.6 
12 30.5 32.7 30.4 32.5 30.4 31.5 30.8 33.3 30.5 31.5 30.6 32.3 
13 30.6 31.5 30.5 32.3 30.3 31.1 30.8 32.6 30.5 31.2 30.4 32.2 
14 30.5 30.8 30.5 31.8 30.5 30.9 30.9 32.6 30.3 31.3 30.4 32.1 
15 30.4 30.5 30.4 31.8 30.3 30.9 30.7 32.6 30.3 31.2 30.4 32.1 
16 30.3 30.3 30.4 31.0 30.2 30.5 30.6 31.9 30.3 30.3 30.2 30.3 
17 30.3 30.3 30.4 30.6 30.0 29.8 30.3 30.5 30.3 30.3 30.1 30.0 

 
Table 3 
Condenser effectiveness in the CSS, DSS-1 
and DSS-2 

  CSS DSS-1 DSS-2 

8 Oct 2019 10.77% 88.18% 91.09% 
9 Oct 2019 21.19% 84.24% 92.46% 
10 Oct 2019 27.76% 84.29% 90.20% 
average  19.91% 85.57% 91.25% 

 
Table 2 shows the effectiveness of the condensers. The effectiveness of the CSS condenser, which 

is also the glass cover of the solar still, is only around 20%. The calculation includes a temperature 
difference because even when the difference between the water temperature and the inside of the 
glass reaches 12.6 °C, the water vapour does not always condense on the top glass cover. 
Condensation on the glass cover is strongly influenced by wind speed, which is an external factor. 
The wind does not affect the DSS-1 and DSS-2 because these solar stills have double-layer glass 
covers. This ensures that the water vapour formed in the evaporation chamber does not condense 
and instead flows into the condenser. Moreover, a large amount of vapour generated from the 
evaporation process in the solar still contacts the condenser wall. The effectiveness of DSS-1 is 
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85.57%, and that of DSS-2 is 91.55%. The width of the condenser impacts its effectiveness [59]. In 
DSS-1 and DSS-2, the chute cross-section decreases towards the outlet, forcing more water vapour 
to touch the walls of the condenser. Experimental and model results show that the conical condenser 
used in DSS-1 and DSS-2 is effective. 
 
4. Conclusions 

 
This study has obtained fresh water by evaporating seawater and recondensing it using three 

types of solar still. The results show that DSS-1 and DSS-2 were 1.76 times and 2.24 times more 
productive than the CSS, respectively. DSS-2 is also more efficient than stills described in previous 
studies; its efficiency reached 47.3%, while the efficiency of the CSS and DSS-1 were 23% and 36.5%, 
respectively. The increased productivity of DSS-1 and DSS-2 is strongly influenced by the shape of the 
condenser integrated into these two solar stills. The increased productivity of DSS-1 and DSS-2 is also 
strongly influenced by the shape of the integrated condenser. The effectiveness of the integrated 
conical condenser reached 85.57% and 91.25% in DSS-1 and DSS-2, respectively; in the simulation, it 
reached 99.85%. Therefore, a conical condenser is more effective than a conventional condenser, 
and its use in solar stills should be developed further. 
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