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Two-phase flow is of great importance in various industrial processes. A characteristic 
feature of two-phase flow is that it can acquire various spatial distribution of phases to 
form different flow patterns/regimes. The knowledge of flow regime is very important 
for quantifying the pressure drop, the stability and safety of two-phase flow systems 
and it holds great significance in petrochemical and thermonuclear industries today. 
The objective of this study is to develop a methodology for identification of flow regime 
using dynamic pressure signals and deep learning techniques. Stratified, slug and 
annular flow regimes were simulated using a Level-Set (LS) method coupled with 
Volume of Fluid (VOF) method in a 6 m horizontal pipe with 0.050 m inner diameter. 
Dynamic pressure signals were collected at a strategic location. These signals were 
converted to scalograms and used as inputs in deep learning architectures like ResNet-
50 and ShuffleNet. Both architectures were effective in classifying different flow 
regime and recorded testing accuracies of 85.7% and 82.9% respectively. According to 
our knowledge no similar research has been reported in literature, where various 
Convolutional Neural Networks are used along with dynamic pressure signals to 
identify flow regime in horizontal pipe. This research provides a benchmark for future 
research to use dynamic pressure for identification of two-phase flow regimes. This 
research provides a benchmark for future research to use dynamic pressure for 
identification of two-phase flow regimes. This study can be extended by collecting data 
over broader range of flow parameters and different geometries. 
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1. Introduction 
 

Two-phase flow commonly occurs in oil and gas industries, nuclear power plants and heat 
exchangers. An important characteristic of two-phase flow is its ability to acquire different spatial 
arrangements of phases, thus creating different flow patterns. Each pattern has its own 
hydrodynamic behaviour which influence properties like pressure drop, void fraction, and heat 
transfer etc. It is very important to identify different flow patterns to avoid destructive phenomenon 
like flow-induced vibrations and severe slugging [1-3]. Thus, for the successful operation of any two-
phase flow system, it is crucial to identify flow pattern. Different flow regime identification methods 
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exist in literature [4-6]. Traditionally, Close Visual Inspection (CVI) was used to determine different 
flow regimes [7]. This method is highly subjective and only possible for easily accessible transparent 
pipes, which is not always the case in industries. 

Flow regime can also be identified using the fluctuations of natural flow parameters. This 
approach works on the principle that waveform of these fluctuations is closely related to different 
flow patterns. Example of such flow regime identification methods are void fraction measured by X-
rays, rotating electric field conductance gauge, electrical capacitance tomography, conductivity, and 
electrical impedance [8-12]. The intrusive nature of some of these methods could alter flow regime 
change due to sensors placement within the flow stream. Although excellent results can be obtained 
using radiation techniques, the use of radiation source could lead to health and safety related 
problems [13]. 

The use of pressure signals is considered a more practical approach because pressure data is 
readily available. That is why pressure fluctuations are widely used to identify flow regime [14-19]. 
Recently, Machine Learning (ML) techniques are used to process pressure and void fraction signals 
for flow regime identification [20-22]. Mi et al., [12] used void fraction signals to train a neural 
network and then used the trained network to identify different flow regimes. Wang and Zhang [10] 
used Support Vector Machine (SVM) to identify different flow patterns by using capacitance signals 
from Electrical Capacitance Tomography (ECT) system as inputs, Trafalis et al., [23] also used the 
same method but used superficial velocities and pipe diameter as inputs. Neural networks have also 
been used to process signals from conductivity probe and vortex flow meters for flow regime 
identification [11,24]. 

Most of the literature is based on using differential pressure along with neural networks to 
identify flow regimes. Differential pressure data needs two pressure readings to be determined at 
different locations and is a cumbersome process. The present method proposes using dynamic 
pressure readings which can be obtained at single location. This research also uses deep learning 
techniques instead of neural networks as classifiers. According to literature, dynamic pressure along 
with deep learning techniques have never been used before to identify different flow regime in 
water-air two phase system in horizontal pipe. The difference between traditional and deep learning 
methods is that the former needs hand crafted features extracted from the time and/or frequency 
domains to be fed into the ML algorithms, whereas, in deep learning, the Convolutional Neural 
Networks (CNNs) transform their representation in a more ambiguous manner. Deep learning model 
automatically learns the hidden patterns in the data. In this study, two different architectures namely 
ResNet50 and ShuffleNet and compared the performance in terms of classification accuracy. 
 
2. Methodology 
 

The methodology for identification of different flow regimes in two phase flow in a horizontal 
pipe is discussed in this section. This section will cover the simulation methodology used to collect 
dynamic pressure signals and neural networks used for classification. 
 
2.1 Geometry 
 

Geometry used in this research is a horizontal pipe with 6 m length and 0.050 m internal diameter. 
The inlet diameter is divided into air and water inlets as shown in Figure 1. Pressure signals were 
recorded for a total duration of 10 seconds at 80D from the inlet. From literature flow at this location 
is expected to be fully developed and thus considered appropriate for data collection [25]. 
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Fig. 1. Geometry of a horizontal pipe used in this study 

 
2.2 Meshing and Mesh Quality Analysis 
 

Hexahedral meshing technique is recommended in literature for two phase flow in pipe and was 
utilized for mesh generation in ICEM CFD tool [25]. Multizone method was selected to mesh the 
geometry, as shown in Figure 2. Five Inflation layers were used to capture flow behaviour near the 
boundary wall accurately, as shown in Figure 2(b). 
 

  
(a) (b) 

Fig. 2. Hexahedral mesh (a) horizontal view, and (b) side view showing inlet 

 
The quality of the mesh plays important role in stability and accuracy of numerical solution. The 

parameters used to check mesh quality are skewness, orthogonal quality, and aspect ratio. Skewness 
value of 0.12 was recorded in current study. In current study average orthogonal quality was 0.94. 
The minimum and maximum value of aspect ratio recorded was 1.1 and 8.2. These values are in very 
good zone for capturing two-phase flow [26]. 
 
2.3 Mesh Convergence Study 
 

The performance of numerical studies depends on the selection of proper mesh. The selection of 
coarse mesh can reduce the accuracy of results while on the other hand selecting very fine mesh can 
increase cost of simulation. That is why mesh independence study was performed to find the most 
appropriate mesh size. For this study three meshes were chosen namely coarse, medium, and fine 
having size of 0.008, 0.005 and 0.004 m respectively as shown in Table 1. During simulation, liquid 
and gas superficial velocities were kept at 2.0 m/s and 1.8 m/s. Average dynamic pressure at location 
80D downstream was calculated. 
 

Table 1 
Mesh convergence criteria 
Mesh  No. of Elements Size of Element (m) Avg. Dynamic Pressure (KPa) 

Coarse 175664 0.008 1278 
Intermediate 305254 0.005 1218 
Fine 458143 0.004 1216 
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Figure 3 shows the variation in average dynamic pressure for different meshes. When mesh is 
improved from coarse to medium, the difference between the readings is high which is why coarse 
mesh is not recommended. In case of changing medium mesh to fine mesh, the difference is 
negligible. Hence by using fine mesh, number of elements are increased which will increase 
simulation time and cost, while not improving the results significantly. Hence medium mesh is chosen 
with number of elements equal to 305254. 
 

 
Fig. 3. Mesh dependency study 

 
2.4 Boundary Conditions 
 

The inlet boundary condition was set to be velocity inlet type. Water and gas superficial velocities 
at inlet were chosen using Taitel and Dukler’s [7] flow regime map as shown in Figure 4(b). As shown 
in the Figure 4(a) both phases were injected separately into the pipe. Gas phase was introduced into 
the pipe at the centre region while liquid phase was injected peripherally. The boundary condition at 
outlet was set to outlet pressure which is the value of atmospheric pressure. No slip boundary 
conditions were set on boundary wall. The atmospheric pressure was used as a reference and 
isothermal condition was applied. The surface tension of water-air was offset to 0.072 N/m and 
density of air and water phase used was 998.2 kg/m3 and 1.225 kg/m3 respectively. 
 

 
Fig. 4. Boundary Conditions; (a) Air and Water inlet, (b) Water and gas superficial velocities 
used for simulation of different flow regimes, shown in Taitel and Dukler [7] flow regime map 
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2.5 Simulation Model  
 

To simulate air-water two phase flow, Level-Set (LS) method coupled with Volume of Fluid (VOF) 
method is used. Both methods when coupled together, the results are superior compared to 
standalone VOF or LS method [27]. The continuity and momentum conservation equations for both 
methods are given by Eq. (1) and Eq. (2), respectively. 
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Where ρ is fluid density, t is time, U is the fluid velocity vector, p is static pressure, μ is fluid viscosity, 
g is the gravitational acceleration and F represent external body forces. 

Realizable k-є model was used for mixture turbulence equations [26]. Governing equations for 
realizable turbulence model are shown in Eq. (3) and Eq. (4). 
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“Gb” and “Gk” is the turbulence kinetic energy generation due to the buoyancy and mean velocity 

gradients respectively, “YM” is the contribution of dilatation to the overall dissipation rate, “ 1C , 2C  , 

1C  , 3C  ” are constants, while k  and   are turbulent Prandtl numbers, Sk and S  are user defined 
source terms [26]. 

For convergence criteria of simulations, all residuals were set at a value of 10-5. Time step of 
0.001s and total physical time of 10s was used. This time step and total time was appropriate to 
capture nature of different two-phase flow regimes. 
 
2.6 Data Transformation 
 

Continuous Wavelet Transform (CWT) is a tool that captures the time-frequency features of non-
stationary signals like pressure signals [28]. The performance of CWT is excellent in the field of signal 
processing [29]. CWT convert pressure signals to scalogram images which are visual representation 
of continuous wavelet coefficients as shown in Figure 5. These two-dimensional scalogram images 
can be used as input for CNN models. A CWT with source wavelet morlet with parameter = 8, was 
applied to the dynamic pressure signals and scalogram images were obtained, which can be 
expressed mathematically by Eq. (5). Some examples of scalogram images for different flow regimes 
are shown in Figure 5. 
 

𝛹(𝜏) = 𝑒𝑖𝜔0𝜏𝑒
−𝜏2

(2𝜗2)             (5) 
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The dilated version of Morlet wavelet in frequency domain is given by Eq. (6). 
 

𝛹(Ꙍ) =  𝜗√2𝜋𝑒
−(𝔞Ꙍ−Ꙍ0)2𝜗2

2             (6) 
 
Where 𝜗 and Ꙍ are constants, the wavelet center frequency is denoted by Ꙍ0. 
 

 
Fig. 5. Scalograms of different flow regimes (a) Stratified flow, (b) Slug flow, (c) Annular 
flow 

 
2.7 Dataset Preparation 
 

To apply the deep-learning models, pressure scalograms dataset are used as input. The data set 
was randomly divided into 80/20 training-testing ratios. Twenty percent of the training data were set 
aside for the validation. There were two deep learning classification architectures used in the 
experiments, Resnet50 and ShuffleNet. On an Alienware laptop with the following configuration, 16 
GB of RAM and an Intel Core i7 2.80 GHz processor with NVIDIA GeForce GTX 1070 GPUs, all the 
models underwent testing and training. This training was conducted using MATLAB version R2020b. 
 
2.8 Network Architecture 
 

Transfer learning is a technique where a model applied to one machine learning task named A is 
adapted and used for task B. Transfer learning enhances the performance when modelling the target 
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task and addresses the issue of limited training data [30]. Pretrained models such as ResNet-50 and 
ShuffleNet are used to apply transfer learning in this study. 
 
2.8.1 ResNet-50 
 

One of the convolutional neural networks is ResNet-50 architecture which has 50 layers and is a 
variant of ResNet [31]. It has 48 Convolution layers, one MaxPool and one Average Pool layer. Even 
with exceedingly deep neural networks, the vanishing gradient problem is resolved. Even though it 
has 50 layers, Resnet-50 has around 23 million trainable parameters, which is substantially less than 
other architectures. The explanation for why it performs as it does is still up for debate but explaining 
residual blocks and how they function will make things clearer. Consider a neural network block 
where the aim is to learn the true distribution H(x). If its input is x, then the difference between this 
can be represented as [31]: 
 

   R x Output Input H x x               (7) 

 
Rearranging it we get, 
 

   H x R x x               (8) 

 
The remaining block is attempting to understand the real output, H(x). The layers are learning the 

residual, R(x), because an identity connection is coming from x. 
 
2.8.2 ShuffleNet 
 

In order to reduce the computation time and fulfil the increasing demand of utilizing effective 
deep neural networks while keeping accuracy intact, Zhang et al., [32] presented the ShuffleNet 
model. The model is typically represented by a pointwise group convolution and a channel shuffle 
operation, which allows more feature map channels to encode more information. Pointwise group 
convolution is intended to decrease expensive dense 11 convolutions. Since just a tiny portion of the 
input channel is used to generate the outputs from a given channel, group convolutions degrade 
representation and block information. Both the networks were trained using the Hyper-parameters 
given in Table 2. 
 

Table 2 
Hyper-parameters used in current study 
Hyper-parameter Value 

Optimizer sgdm 
Initial Learning Rate 0.01 
Validation Freq 50 
L2 Regularization 0.05 
MaxEpochs 30 
Mini Batch Size 8 
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3. Results 
 

Two different Convolutional Neural Networks were used to classify three different two-phase 
flow regimes based on their pressure properties. Figure 6 shows dynamic pressure signals for three 
different flow regimes. These signals were collected at location 80D from the inlet, for the duration 
of three seconds. From literature two phase flow is expected to be fully developed at this location 
[25]. 
 

 
Fig. 6. Dynamic pressure signals: (a) Stratified; (b) Slug; and (c) Annular flow 

 
These dynamic pressure signals are converted into scalograms using CWT, as shown in Figure 5. 

Scalogram are used for training and testing of Convolutional Neural Networks (CNN). For the 
classification of different flow regimes, Resnet50 and ShuffleNet architectures were used. The 
accuracy was chosen as evaluation criteria for both the models. The Resnet50 achieved higher testing 
accuracy which was 85.7%, while that of ShuffleNet was 82.9%. Both the training and validation losses 
were recorded. The training and validation loss for Resnet50 was 0.641 and 0.321 respectively, which 
was higher than ShuffleNet. 
 

Table 3 
Performance of ResNet-50 and ShuffleNet architectures 
Classifier Layers Training Loss Validation loss Validation Accuracy Testing Accuracy 

ResNet-50 177 0.641 0.321 94.44 85.7 
ShuffleNet 172 0.065 0.166 97.22 82.9 

 
In Figure 7(a), the prediction accuracy for stratified, slug and annular flow regimes are 90.9%, 

83.3% and 90.9% respectively. Out of 11 signals for annular flow, Resnet50 correctly identified 10 
signals. One of the slug signals was wrongly considered as annular signal. Total number of signals for 
slug flow were 12 and 10 signals were correctly classified while 1 stratified and 1 annular flow signal 
was wrongly predicted as slug. In case of stratified flow, 11 signals were used for testing and 10 of 
them were correctly identified while 1 slug signal was wrongly considered as stratified. In Figure 7(b), 
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stratified, slug and annular flow regimes were predicted with 83.3%, 83.3% and 81.8% accuracy, 
respectively. Out of 11 signals for annular flow, ShuffleNet correctly classified 9 signals and one of 
the slug flows and one stratified flow signal was considered wrongly as annular signal. Total number 
of signals for slug flow were 13 and 10 signals were correctly classified while 1 stratified and 2 annular 
flow signals were wrongly predicted as slug. In case of stratified flow, 11 signals were used for testing 
and 10 of them were correctly identified while 1 slug signals were wrongly considered as stratified. 
 

 
Fig. 7. Confusion matrix of ResNet-50 and ShuffleNet for flow regime classification 

 
4. Conclusions 
 

A method for the identification of gas-liquid two-phase flow regimes in horizontal pipe was 
developed in this work. This method is based on acquiring dynamic pressure signals and its 
subsequent scalograms, followed by their classification using Convolutional Neural Networks (CNNs). 
Tests were conducted to validate and weigh the effectiveness of the proposed identification method. 
The designed deep learning model has been evaluated against testing dataset. The results showed 
that the model used has high accuracy in two-phase flow pattern identification. The accuracies of 
predictions in stratified, slug and annular flows are all above 80%. The Resnet50 achieved higher 
overall testing accuracy which was 85.7%, while that of ShuffleNet was 82.9%. ResNet50, prediction 
accuracy for stratified, slug and annular flow regime was 90.9%, 83.3% and 90.9% respectively, while 
for ShuffleNet stratified, slug and annular flow regimes were predicted with 83.3%, 83.3% and 81.8% 
accuracy, respectively. Future work should include new experiments with different orientation of 
pipe, testing broader range of diameters and flow parameters. This work can be taken forward by 
testing more flow conditions near transition boundaries and defining transition boundaries on flow 
regime map. More deep learning architectures can be used to check their effect on accuracy. 
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