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A numerical investigation concerning the effect of arterial constriction on the flow 
behaviour of blood in a porous bifurcated artery under the influence of a transverse 
magnetic field has been carried out. The equations of motion governing the flow are 
derived in the Cartesian coordinate system by treating the fluid as an electrically 
conducting, Newtonian, incompressible and fully developed blood flow. The blood is 
considered to flow through a constricted bifurcated artery with overlapping stenosis 
located at the mother artery. This developed model is consistent with the principles of 
magnetohydrodynamics. A stabilized form of finite element method, known as the 
Galerkin least-squares method is employed in solving the governing equation with 
suitably prescribed boundary conditions. Then, the non-linear systems resulting from 
the developed model are linearized by an iterative technique called the Newton-
Raphson method. The effects of various parameters particularly the severity of 
stenosis, magnetohydrodynamics constant and permeability parameter on blood flow 
characteristics are analysed graphically for the velocity profile and streamline pattern. 
The findings obtained show that the presence of a magnetic field caused a significant 
alteration in the blood flow behaviour. Slight changes occurred in the flow pattern with 
the porous medium consideration. The application of a magnetic field could be utilized 
in controlling the hemodynamic flow of blood by decelerating the flow velocity and 
reducing the vortex sizes with rising in Hartmann number. While the pathological state 
of arterial disease as a porous structure reveals that a more porous fluid medium could 
have slightly promoted the growth in vortex size. 
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1. Introduction 
 

Haemodynamic modelling of blood circulation in human arteries has received much attention 
among researchers and become one of the popular areas in scientific research of feasible medical 
and engineering applications. This matter was encouraged by the growing numbers of mortality and 
morbidity that resulted from progressive vascular diseases, such as hypotension, hypertension, heart 
attack and stroke that have occurred in most developed countries [1]. A blockage that is developed 
at the arterial lumen due to the deposition of atherosclerotic plaque is made up of fatty substances, 
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calcium, fibrin, cellular waste and cholesterol [2,3]. The built-up of this deposition which is medically 
known as stenosis is also a leading cause to many cardiovascular diseases [1,3]. The presence of this 
constriction leads to a lack of blood supply to the other tissues and organs [4], where the blood has 
to pass through the narrowed artery at relatively high pressure [1]. As the plaque built up gets 
hardened and narrowed down the arterial lumen, blood supply to tissue and organ then may reduce 
or completely block, where these worse conditions may eventually contribute to necrosis as well as 
strokes [1,2]. This severe disability happens as a result of permanent damage that has occurred to 
cells in the organ due to an insufficient amount of blood received [4]. It has been reported in 
numerous studies that the development of stenotic artery certainly disturbs the nature of blood 
movement and contributes to serious detrimental effects on individual health. The pathological 
states of a diseased vessel as a porous structure should be taken seriously considering that stenosis 
is developed by the deposition of fatty substances and the proliferation of connective tissues on the 
endothelium [3-7]. Due to that, the geometry of stenosis has been modelled in previous works of 
literature by using various kinds of shapes to portray them close to its pathological condition. Stenosis 
can be categorized as single or multiple type stenosis. The cosine shaped [8], mild shaped [9], 
composite shaped [10] and bell shaped [11] can be classified as single stenosis. Whereas, overlapping 
shaped stenosis is categorized as multiple stenoses. Stenosis may develop anywhere in more than 
one place, however, arteries with curvatures, junctions and bifurcations are sites that are prone to 
atherosclerotic plaque development [6]. In medical, patients are usually diagnosed with multiple 
types of stenosis which favourably develop at the femoral and pulmonary arteries [12]. 

Blood is composed of 45% formed elements comprising the living cells of erythrocytes (red blood 
cells), leukocytes (white blood cells) and platelets which are suspended in the plasma [4]. Due to that, 
blood is also known as a fluid connective tissue. Since erythrocytes contain haemoglobin that is rich 
in iron protein and these cells are the major components of the haematocrit, hence, an application 
of a magnetic field may have altered the movements of blood [6]. Blood exhibits an electrical 
conductivity property that when subjected to an external magnetic field will produce a body force 
known as Lorentz force [4]. The interaction between the induced electric current on the erythrocytes 
and an externally applied magnetic field tends to orient the cells along its long axis in the direction 
of the magnetic field [5]. Exposure to an externally applied magnetic field caused an opposing motion 
to the blood flow due to the anisotropic orientation of erythrocytes which may also enhance the 
viscosity of blood [5]. This working principle is in line with the magnetohydrodynamics (MHD) 
principle and has been widely implemented in medical engineering. For instance, the principles are 
being utilized for the treatments of haemorrhages, gastric infections and hypertension, also to 
regulate bleeding during surgeries and provocation of occlusion of the feeding vessels for the cancer 
tumours [6]. The rheological behaviour of blood flowing through a large artery is valid to be treated 
as a Newtonian model [13]. However, the fact that the blood flow through a diseased vessel exhibits 
a low shear flow that shows a prominent characteristic of blood as a non-Newtonian fluid could not 
be ignored. Besides, the study on porosity effects on the blood flow should be taken seriously since 
most of the natural flows are related to the porous medium. 

The effects of an applied magnetic field and multiple stenoses on a non-Newtonian model of 
blood flow were investigated by Varshney et al. [12]. Jain et al. [3] examined analytically the 
influences of porosity constant and magnetic number on the Newtonian model of blood flow through 
an artery with a cosine shaped stenosis. Sinha et al. [7] analytically explored the effects of a 
transverse magnetic field and porous medium on the Newtonian model of blood flow in terms of 
stream function, flow velocity as well as wall shear stress. A mathematical model of the Newtonian 
model of blood flow through a porous vessel with a pair of stenosis subjected to the 
ferrohydrodynamics (FHD) and magnetohydrodynamics (MHD) principles was developed in [5]. 
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Misra et al.[5] solved the study analytically where they discovered the worsening effects of the 
magnetic field on the wall shear stress if an over-amplified intensity is applied externally, which can 
lead to the occurrence of plaque rupture. The effects of slip permeable wall and body acceleration 
through a constricted porous artery subjected to an externally applied magnetic field were examined 
by Nandal et al. [1]. They concluded with an appropriate strength of magnetic field exposure, the 
excessive amount of blood pressure on the heart could be overcome. Hence, this finding would be 
beneficial for the treatment of necrosis, joint pain, muscle pain, travel sickness and headaches [1]. In 
analytical work done by Srivastava [2], the role of porosity subjected to the MHD effects was studied 
by considering an inclined tapered artery with mild stenosis under the influence of an inclined 
magnetic field. The mathematical analysis carried out in their study discovered similar behaviours of 
blood when subjected to an external magnetic field with a porous medium effect as the one 
presented in the previous study highlighted in [1], [3], [5] and [7]. The axial velocity distributions were 
observed to have a respective enhancing and diminishing effect on the permeability of the porous 
vessel and magnetic field applied externally. While transferring blood to body tissues, molecules of 
various sizes can either penetrate or pass the lumen of the endothelial cells as they contain ultra-
macroscopic pores which indicates the permeability of the vessels [7]. Hence, the pathological 
conditions of the human vessel as a porous medium are one of the essential hydrodynamic properties 
that should be considered in understanding blood flow in the entire circulatory system. The 
aforementioned works were all considered arterial constriction on a straight vessel. There is very 
limited study considered a blockage in the bifurcated artery, despite its huge propensity of being site 
favourably predisposed to atherosclerotic plaque development. The physical features of branch 
arteries which contained curvatures, bifurcations and junctions make them more feasible to flow 
disturbances that usually developed here where plaques are frequently formed [13]. The study on 
the behaviour of blood flow in a diseased bifurcated artery has been investigated in [13], [14] and 
[15]. However, none of this study considered a porous medium and magnetic field effects. 

Keeping in view of the motivation as specified above, further investigation needs to be carried 
out to gain a better insight into the actual interactions between an external magnetic field application 
and the pathological condition of the blood vessel as a porous medium with the rheological 
behaviours of the streaming blood in a diseased vessel of a bifurcated artery. Findings from this study 
would be beneficial for the pathologists and medical scientists for them to analyse and understand 
the influence of magnetic fields on human blood circulation while receiving magnetic medical 
therapies. The effects of this localized plaque on the flow structure of blood in the mother and 
daughter artery will be examined in terms of the axial flow velocity and streamline pattern. The flow 
of blood through a stenosed bifurcated artery which possessed overlapping shaped stenosis in the 
mother artery is treated as a Newtonian fluid model by using a Cartesian coordinate system in two-
dimensional. The resulted governing equations with appropriate boundary conditions for the 
specified problem under consideration will be solved by using the stabilized form of the finite 
element method (FEM), namely the Galerkin least-squares (GLS) method. This method is developed 
to enhance the stability of the classical Galerkin method due to various numerical instabilities that 
have emerged to achieve a compatible combination for the velocity and pressure subspaces [16]. 
With this method, the Babuška-Brezzi stability condition can be neglected and equal order of 
interpolation functions for velocity and pressure components could be employed. The efficiency of 
this method in solving incompressible shear flows was discussed in [17-20]. To deal with the 
nonlinearity arising from the developed systems, the Newton-Raphson method is employed where 
the numerical integrals are evaluated by using the Gaussian quadrature technique. 
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2. Problem Formulation 
2.1 Governing Equations 

 
Let us consider a steady, laminar, incompressible, electrically conducting fluid and Newtonian in 

nature flow of blood through a porous medium in a stenosed bifurcated artery having single 
overlapping stenosis at the mother artery under the influence of an externally applied magnetic field 
in a transverse direction. The magnetic Reynolds number is assumed to be very small, hence, the 
induced magnetic field is negligibly small in comparison to the applied magnetic field. This indicates 
that the flow of blood has a very small value of electrical conductivity. The assumptions considered 
here are applicable for a situation when human body is subjected to an external magnetic field, for 
instance when patients undergo the electromagnetic therapy for the treatment of tumor or cancer 
[7], and while performing the magnetic resonance imaging (MRI) for medical examinations. Since 
stenosis might develop on the endothelium through the proliferation of connective tissues and by 
the deposition of fatty substances and cholesterol [7], hence such pathological states is described in 
this study by considering the flow of blood through a porous structure of a diseased vessel. 
Meanwhile, the arterial constriction is portrayed here as an overlapping shaped stenosis which can 
be classified as a multiple stenosis that is commonly found in most medical situations located at 
femoral and pulmonary arteries [12]. The assumption of wall rigidity considered here is reasonable 
for a diseased vessel considering that the artery is less compliant, thus reducing the wall motion [21]. 
This is resulted from the high level of cholesterol in blood that leads to the accumulation of fat on 
the inner wall of an artery, which later might stimulate the hardening of the artery [22]. This matter 
caused the malfunction of endothelial cells, thus reducing the lumen capability [23]. Under the 
specified assumptions of the physiological relevance, the equations of motions governing such fluid 
flows in vector form are the continuity and momentum as follows, 

 

          (1) 

 
where  is the velocity component,  is the density of blood,  is the viscosity function,  is the 
pressure or volumetric stress,  is the dimensional body force vector and  represents the 
dimensional form domain. Due to the unidirectional flow assumption of velocity which flows through 
in an axial direction, the body force vector  can be defined as the electromagnetic force specified 
as  for the MHD flow which appears in momentum equation. This term represents the 
Lorentz force per unit volume and arises due to the electrical conductivity of blood,  which is 
considered as 0.8Sm-1 by neglecting the dependence of electrical conductivity with the temperature 
[24]. The parameter  indicates the magnetic flux intensity which acts in a direction perpendicularly 

to the flow of blood. Meanwhile, the terms  and  acts as the body force vector  which 

appear respectively in  and momentum equations as the pathological state of blood as a porous 
medium. The viscosity function  in Eq. (1) is treated as a constant viscosity that describe the 
Newtonian fluid, which is indicated by the parameter . While,  is a constant that define the 
permeability of the porous medium. Given that, the corresponding Eq. (1) are written in a two-
dimensional Cartesian coordinate system as, 
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         (2) 

 
2.2 Boundary Conditions 
 

The system of equations specified in Eq. (2) is solved for the velocity and pressure components 
given the appropriate boundary conditions. The associated boundary conditions for the problem 
under consideration are, 
 

           (3) 

 
corresponding to the Dirichlet boundary condition being prescribed at the flow entrance where the 
characteristic length  refers to the length of the arterial inlet,  is the inlet boundary of the 
domain  and  represents the maximum inflow velocity. Meanwhile, along the wall boundary 

 of the rigid vessel, a non-slip condition is assumed to take place as follows, 
 

            (4) 
 
At the outlet boundary , a traction-free condition is being imposed. This Neumann boundary 
condition can be written mathematically as, 
 

            (5) 

 
where  is the unit outward normal vector,  is a vector of the prescribed boundary tractions,  is 
the unit tensor, and  is the strain rate tensor which may be defined as 
 

             (6) 

 
2.3 Computational Domain – Stenosed Bifurcated Artery 
 

The schematic diagram for the stenosed bifurcated artery considered in this study is illustrated in 
Figure 1. To ease the interpretation of the geometry, Figure 1 is portrayed in a non-dimensionalised 
form where the units for each parameter involved in constructing the geometry are being normalised 
by dividing them by the characteristic length,  value. The computational domain considered here 
is adopted from the study conducted by Chakravarty et al. [20] and Chakravarty et al. [25] for the 
respective construction of bifurcated channel and arterial constriction. Let  and  be the Cartesian 
coordinate system of a material point where the -axis is taken along the axis of the trunk, while the 
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-axis is taken along the radial direction. The geometry of the diseased blood vessel is developed 

mathematically from equations describing the radii of the outer and inner wall, respectively as  

and  as follows, 

 

        (7) 

 

         (8) 

 
where  and  represent the respective radii for the mother and daughter artery.  and  indicate 
the radii of curvature for the lateral junction and the flow divider, respectively. Whereas,  is the 
length of the stenosis at a distance  from the origin. Location of the onset and offset of the lateral 
junction are respectively denoted as  and . The apex of the vessel is characterized by .  
represents the maximum height of stenosis which occurred at two different locations of  
and . While,  acts as half of the bifurcation angle. Parameters involved in Eqs. (7) and (8) 
are defined as 
 

        (9) 

 
where  is a small number that lies in the range of  that is chosen according to 
the compatibility of the geometry. Besides that, the following assumptions are imposed on our 
model,  
 

i. The artery forming bifurcation is of finite length. 
ii. The parent aorta possesses a single overlapping shaped stenosis in its lumen and is 

symmetrical about the axis of the vessel. 
iii. Curvatures are introduced at the lateral junctions and the flow divider of the arterial 

bifurcation to ensure that one can rule out the presence of any discontinuity causing non-
existent separation zones. 

iv. The constricted artery is considered equivalent to fictitious porous medium. 
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Fig. 1. Schematic diagram for the geometry of stenosed porous 
bifurcated artery with magnetic flux intensity,  acts 
perpendicularly to the flow direction 

 
3. Solution Procedure 
3.1 Non-dimensionalisation of Equations 
 
To obtain the governing equations and boundary conditions in non-dimensional form, these 
following non-dimensional variables are introduced as 
 

                    (10) 

 
where, the characteristic length,  refer to the length of the channel’s inlet. While, the reference 
velocity,  represents the average mean inflow velocity. By the substitution of these non-
dimensional variables in Eq. (10) to system of governing equations described in Eq. (2), the simplified 
form of Eq. (2) is obtained as, 
 

                   (11) 

 
where  and  are the Reynolds number, Hartmann number, and porosity permeability 
parameter that appear, respectively as the bar is being dropped from the system and they can be 
defined as, 
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The boundary conditions specified in Eqs. (3)-(5) are also transformed to their respective 
dimensionless forms, 
 

                     (13) 

 
Besides, by using the transformation variables introduced in Eq. (10), the boundary configuration of 
the computational domain constructed from Eqs. (7) and (8) has been non-dimensionalised to a 
horizontal length of 4 with their vertical inlet equal to 1 as shown in Figure 1. 
 
To simplify the implementation of GLS method which will be discussed further in the next sub-
section, the non-dimensional form of governing equations in (11) with the employed boundary 
conditions in (13) are written in their vector forms as follow, 
 

                  (14) 

 
where  denotes part of the boundary  of the domain  where Dirichlet boundary conditions 
are being imposed. 
 
3.2 Galerkin Least-squares Algorithms 
 

The appropriate spaces for the approximations of the velocity  and pressure fields  are 
defined according to the usual finite element subspaces in fluid dynamics [18] and [19] given as 
 

                   (15) 

 
The parameters  and  in Eq. (15) represent the polynomial spaces of degrees  and , 

respectively defined over a finite element partition,  of the problem domain  consisting of a 

triangular element  parametrized by characteristic mesh size,  The number of space 

dimensions,  is equal to 2. Unlike in the standard Galerkin method, any combination of integers is 
allowed for  and  in the GLS method, hence, these two parameters are defined here as 2 
corresponding to the quadratic triangular element  used to discretise the computational 
domain. 
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Based on the approximation functions defined in Eq. (15), a Galerkin least-squares formulation 
considered in this study can be stated as to find  and  such that, 
 

                                (16) 
where, 
 

                 (17) 

 

 
The stabilization parameter  presents in Eq. (17) are designed by Franca et al. [26] for  
given as 
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are discretized in Eqs. (17) and (18) as follow, 
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the Newton-Raphson method is being implemented to linearize the non-linear systems of equations 
presented in Eq. (17). Hence, Eq. (17) need to be written in terms of its residual function,  as 
 

                      (20) 
 
where is defined as the vector for the degrees of freedom for variables   stands 

for the stiffness matrices and  denotes the force vector. The convergence analysis performed in 
this study is converged at 10-6 where the convergence criteria,  for the maximum residual norm,  
are calculated as 
 

                        (21) 

 
Hence, according to the Newton-Raphson method, the solutions for the degrees of freedom are 
found as 
 

                      (22) 
 
where  acts as the iteration and  indicates the Jacobian matrix. Meanwhile, The Jacobian 
matrix of six quadrature points is adopted in this study to approximate the integrals in Eq. (17). 
Based on the GLS formulations explained before, to sum up, the following steps summarised the 
algorithms applied in the developed source code by using the Matlab programming software: 
 

i. The geometry for the computational domain is constructed as in Figure 1 by using the 
equation stated in Eqs. (7) and (8) where the finite element meshes are generated from a 
“mesh2d” function developed by Darren Engwirda. 

ii. The nodes and their edges are generated. The numbering for the variables defined at each 
node of the element is performed for the global degree of freedoms  

iii. The boundary conditions, convergence tolerance  and all related parameters are 
prescribed. The Stokes solution for the Newtonian fluid flow is solved as the initial guess 
for . 

iv. The element matrix for each finite element is approximated. The integrals are computed 
by using a Gaussian quadrature rule with the stabilization GLS terms calculated according 
to Eq. (18). 

v. The element matrices are being assembled forming a global matrix and is solved subjected 
to the boundary conditions imposed as stated in Eq. (13). 

vi. The residual functional,  in Eq. (20) is computed. 
vii. The convergence tolerance,  that is defined in Eq. (21) is calculated for the convergence 

analysis of the solution. If the condition is fulfilled, the iteration will stop and the solutions 
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viii. If the previous condition is not obeyed, the Jacobian matrix  is evaluated. 
ix. The solutions are corrected as  where  
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As the solution for the degrees of freedom  is obtained in the last iteration when the limit 
stated in step (vii) has been fully satisfied, the iteration then will stop. 
 
3.3 Numerical Validation  
 

Numerical algorithms are developed using Matlab programming software to solve the variational 
form for the momentum and continuity equations stated in Eq. (17). The validation of the present 
numerical algorithms is employed with the existing study conducted by Xenos et al. [11] for the flow 
of blood in a straight channel with a bell shaped stenosis subjected to the MHD effects. The mesh 
dependency test is conducted to ensure that the results computed are independent of the total 
number of domain elements. The test is based on the axial velocity profile along the vertical 
centreline at  where a refined mesh is generated along the stenotic region. Five different domain 
elements have been employed in solving the Newtonian  MHD flow in a 

constricted channel without considering the porosity effect at  and  by using 
13 quadrature points. Based on the curves plotted in Figure 2, it is quite obvious that starting from 
Mesh 3 onwards the mesh size has achieved mesh independence since the curves for Mesh 3, Mesh 
4 and Mesh 5 overlapped with one another without any significant change being noticed.  

 

 
Fig. 2. Mesh independence test for -velocity profile at  of 
the channel for  and  

 
Table 1 
Comparison of results on the maximum -velocity and pressure drop, 

 at various magnetic field strength,  
 Results for: Present study Xenos et al. [11] 

 Maximum -velocity 1.5373 1.536 

 Pressure drop,  0.795042 0.8 
 Maximum -velocity 1.5108 1.5243 

 Pressure drop,  0.896134 0.9 

 
Hence, Mesh 3 which contained a total of 10276 domain elements is sufficient for the numerical 
computation of various flow parameters involved in this problem. By using the selected mesh, the 
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validation of the GLS algorithms is done by comparing the solutions on the maximum -velocity and 
pressure drop,  along the straight constricted channel under the influence of an externally applied 
magnetic field with the existing results [11]. The present results tabulated in Table 1 are computed 
by using 7 quadrature points since starting from these points the solutions obtained are independent 
of any change in quadrature points used. The data in Table 1 has proved the efficiency of the 
developed algorithms through a good agreement on the solutions obtained. In our recent work [28], 
a similar numerical algorithm on a linear triangular mesh has been verified with similar existing data 
from [11]. The enhancement of the order of the element to quadratic in this present work has 
definitely improved the convergence of the solution. Besides, the results on the velocity contour with 
streamlines pattern obtained from this developed algorithm at varying magnetic field intensity are 
found in similar form and comparable with [11] as shown in Figure 3. 

Overall, it has been confirmed in this section that the GLS algorithms developed here is works 
effectively and properly. In addition, the accuracy of the solution  computed by using the 
quadratic triangular element is also improved in comparison to my recent findings in [28] that used 
a linear triangular element as the interpolation function for the dependent variables . 
 

 
(a)  

 
(b)  

Fig. 3. Velocity contour and streamlines pattern for  obtained from 
the present method at various magnetic field strength applied: (a)  
(b)  

 
3. Result and Discussion 
 

A numerical investigation is carried out with an intention to analyse the effects of physical 
parameters defining the blood flow behaviour and flow geometry in terms of varying values of 
maximum height of stenosis, , Hartmann number,  and permeability constant, of the porous 
medium on the flow characteristics of blood in terms of the distribution of axial velocity and 
streamline pattern. All the graphical results are plotted by using the following set of parameters taken 
from [20], [25], [29] and [30]:      
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       and 
 The Reynolds number, is fixed at  throughout the numerical analysis, since 

varying the values of  and  are the main interests in this study. The values assigned for 
parameter  are dependent on the reference magnetic flux intensity,  which is applied 
perpendicularly to the direction of blood flow in Tesla (T) unit. The values assigned for  are 0,2 and 
4 corresponding to the respective values for  equivalent to 0T, 8.755950T and.17.511901T 
calculated from Eq. (12) by considering . The mesh independence test is 
performed to the computational domain involved in this present study prior to further investigation 
of the numerical simulations of blood flow characteristics. The test is evaluated at several locations 
along the bifurcated channel for five different domain elements. The -velocity profiles displayed in 
Figure 4 are computed at two different locations of  and  which are located at the 
first throat of an overlapping stenosis and the daughter branch, respectively. The results for the axial 
velocities plotted in this figure are generated by using 9556, 13124, 16138, 19736 and 33636 domain 
elements. From Figure 4 (a), it is clearly seen that no significant change is spotted between each curve 
generated from these five varying numbers of domain elements. However, in Figure 4 (b), the curve 
plotted for Mesh 1 was noticed to have deviated from the other curves (Mesh 2, Mesh 3, Mesh 4 and 
Mesh 5). The results on -velocity profiles for Mesh 2, Mesh 3, Mesh 4 and Mesh 5 look similar and 
overlapped with one another, hence showing that the mesh sizes have achieved the mesh 
independence starting from Mesh 2. 

 

 
(a)                                                                               (b)  

Fig. 4. Mesh independence test computed for -velocity profile of the stenosed bifurcated 
channel for and  at: (a)  (b)  

 
Due to that, the numerical computation involves in this study for  is computed by using 

Mesh 2 containing 13124 domain elements as shown in Figure 5 (c). Consequently, as visualized in 
Figure 5, a number of domain elements that are needed to obtain a satisfactory solution for  

 and  are 13614, 13545 and 12856, respectively. 
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(a)                                                              (b)  

 
(c)                                                                            (d)  

Fig. 5. The selected mesh for different height of stenosis, : (a)  (b)  (c)  (d) 
 

 
Figure 6 illustrates the influence of varying size of maximum height of stenosis,  on the 

dimensionless axial velocity profiles across the second throat of overlapping stenosis region located 
at  The curves are distributed in an almost similar pattern where the velocity is decreasing from 
its maximum value with an increase in the direction of magnitude  corresponding to a parabolic 
velocity profile imposed at the inlet and non-slip condition employed along the vessel wall. As the 
severity of stenosis gets enlarged, the axial velocity increases reaching a finite value of the maximum 
velocity at the axis of symmetry. A reverse trend is observed near the arterial wall for an increase in 
the maximum height of stenosis which is triggered by the formation of reverse flow in the 
downstream region of stenosis. 

The influence of various permeability constant,  on the axial velocity profiles are plotted along 
the apex of the bifurcated artery as shown in Figure 7. All of the curves plotted are distributed in an 
identical pattern where the curves are increasing up to a certain region in the middle axis of the 
daughter branch before they decrease to zero at the apex of the branch artery. The influence of the 
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permeability constant,  on axial velocity distributions of blood is not obviously seen in comparison 
to the previous figure. The velocity is slightly enhanced with an increase in permeability of the porous 
medium which is in similar agreement with findings from [5] and [7]. 
 

 
Fig. 6. Effect of stenosis height,  on axial velocity,  at  
(throat of stenosis) 

 

 
Fig. 7. Effect of permeability constant,  on axial velocity,  at 

 (apex) 
 

Figure 8 on the other hand reveals the behaviour of the streaming blood when subjected to the 
increasing strength of magnetic field intensity applied in terms of the curves plotted for velocity 
versus Hartmann number,  The results presented in this figure are plotted for the flow velocity 
across the upper daughter branch at the axial position of . The production of Lorentz force 
through an interaction between the magnetic flux intensity,  applied and an induced electric 
current has a tendency to oppose the fluid motion. Due to that, an increment in the magnetic flux 
strength,  applies indicated by the rise in Hartmann number,  caused the flow velocity of blood 
to reduce, as can be seen in Figure 12. The graph pattern for all sets of Hartmann numbers,  is 
skewed to the left side (inner wall) of the daughter branch resulting from the development of the 
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recirculation zone on the outer arterial wall indicated by a reverse trend of flow velocity near the 
outer arterial wall. The effects of these physical parameters  are then being 
investigated and discussed on the changing sizes of vortex that formed around the critical height of 
stenosis and downstream site of stenosis region which is usually happened in a vessel with 
overlapping shaped stenosis as portrayed in Figures 9-11 for . 

 

 
Fig. 8. Effect of Hartmann number,  on axial velocity,  at  
(upper branch) 

 
The growth in stenosis height,  has a considerable influence on the development of the 

recirculation area as obviously seen in Figure 9. As the stenosis height increases from  to 
 the length of the vortex that developed along the outer arterial wall also become 

lengthened. In addition, as the occlusion of the artery gets larger, a noticeable vortex is formed at 
the critical height of stenosis. Meanwhile, the permeability constant,  has the least effect on the 
streamlining pattern of the streaming blood as the length of the vortex formed with varying values 
of permeability constant,  is quite indistinguishable on either the vortex formed at the stenotic or 
downstream of the stenotic region as shown in Figure 10. 

 

 
(a)      (b)  

Fig. 9. Effect of stenosis height,  on streamline pattern for  and  
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(a)       (b)  

Fig. 10. Effect of permeability constant,  on streamline pattern for  and  
 

 

 
(a)       (b)  

Fig. 11. Effect of Hartmann number,  on streamline pattern for  and  
 

Based on the streamline pattern visualized in Figure 11, by increasing the strength of magnetic 
field intensity applied perpendicularly to the direction of the streaming blood, the length of the 
recirculation area developed downstream of the stenotic region has also reduced. 
 
4. Conclusions 
 

The hemodynamic of an incompressible Newtonian flow of blood through a porous stenosed 
bifurcated artery having overlapping shaped stenosis at the parent’s artery has been studied 
concerning the application of an externally applied magnetic field. In this study, observations have 
been made on the varying effects in stenosis height, , permeability parameter,  as well as the 
Hartmann number,  on the flow velocity and streamlining pattern of blood. Based on the validated 
results that have been presented in the preceding section, the GLS algorithms developed in this 
current study have been proven as works effectively in solving an incompressible flow of blood under 
the porosity and magnetic field effects.  
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1. The growth in stenosis height increases the size of vortex formation considerably and 
enhanced significantly the axial velocity near the axis of symmetry as it moves away from 
the arterial wall. This might be due to the sudden change of arterial radii that has 
accelerated the blood flow at the centre of the vessel. 

2. The opposite effect is discovered when the Hartmann number is included as the axial 
velocity and vortex sizes are decreased. The findings might be of significant interest to 
surgeons who want to keep patients’ blood flow rate at a certain level during the surgical 
procedure as well as to be used in magnetic therapy of hypertension treatment. 

3. A slight enhancement in the axial velocity profiles is observed as the porosity constant is 
being amplified. Hence for medical purposes, the permeability parameter could be adjusted 
to the desired level to regulate the higher amount of blood flow rates passing through the 
blood vessel. 
 

The estimated results presented here may be beneficial to haematologists, biomedical engineers, 
clinicians and surgeons for regulating the blood flow rate during the entire surgical procedure by 
applying an appropriate strength of the magnetic field. Despite that, further investigations on the 
implications of these parameters  to the other haemodynamic blood flow behaviours 
are another concern in our next study. 

For future study, a thorough investigation of various flow parameters including the wall shear 
stress, pressure drop and heat transfer parameters should be taken into consideration, so that the 
real physiological connection of the flow behaviours with biological facts during the therapeutic 
procedure of electromagnetic hyperthermia in cancer tumour treatment is understandable. Besides, 
blood rheology as a shear-dependent viscosity must be included for a realistic representation of red 
cell characteristics. 
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