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Control strategy on Rayleigh-Benard convection in rotating nanofluids saturated in 
anisotropic porous layer heated from below is studied in the presence of uniformly 
internal heat source for rigid-rigid, free-free, and lower-rigid and upper-free 
boundaries. Feedback control strategy with an array of sensors situated at the top 
plate and actuators located at the bottom plate of the nanofluids layer are considered 
in this study. Linear stability analysis based on normal mode technique has been 
performed, the eigenvalue problem is obtained numerically by implementing the 
Galerkin method and computed by using Maple software. Model employed for the 
nanofluids includes the mechanisms of Brownian motion and thermophoresis. The 
problem of the onset of convective rolls instabilities in a horizontal porous layer with 
isothermal boundaries at unequal temperatures known as Horton-Roger-Lapwood 
model based on the Darcy model for the fluids flow is used. The influences of internal 
heat source’s strength, modified diffusivity ratio, nanoparticles concentration Darcy-
Rayleigh number and nanofluids Lewis number are found to advance the onset of 
convection, meanwhile the mechanical anisotropy parameter, thermal anisotropy 
parameter, porosity, rotation, and controller effects are to slow down the process of 
convective instability. No visible observation on the modified particle density 
increment and rigid-rigid boundaries are the most stable system compared to free-free 
and rigid-free boundaries. 
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1. Introduction 
  

Nanofluids are colloidal suspensions of nanoparticles (1-100nm) in a base fluid and the term for 
nanofluids which define as fluids with nanosized particles (1-10nm) suspended stably in them was 
proposed by Choi [1]. The base fluids alone have rather low thermal conductivities and by suspending 
particles in a base liquid helps to improve the thermal conductivity. This is mainly thought to be due 
to Brownian motion preventing gravity settling and agglomeration of particles, resulting in a much 
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more stable, suspended fluid. These new-formation heat transfer fluids offered a new possibilities 
motivation to improve the performance of heat transfer compared to regular fluids. The 
enhancement depends on several aspects as reported by Menni et al., [2] such as shape and size of 
the particles, volume fraction of particles, and thermal properties of solid and liquid. The analysis of 
the literature dealing with recent developments in focusing on the convective heat transfer by using 
nanofluids can be extracted in the review articles [3-7]. Tzou [8, 9] studied buoyancy driven 
convection in a horizontal nanofluid layer heated from below on the basis of the transport equations 
promoted by Buongiorno [10], who pointed the absolute velocity of nanoparticles as the sum of the 
base fluid velocity and a relative velocity. Kim et al., [11] introduced a new factor which determines 
the effect of nanoparticles addition on a base fluid and analyzed the convective instability driven by 
thermal gradient as well as heat transfer characteristics of nanofluids.  Nield and Kuznetsov [12] 
studied the onset of convection in nanofluids layer of finite depth. Linear stability analysis of Rayleigh-
Benard convection in nanofluids layer for free-free boundaries was performed by Yadav et al., [13]. 
Hadad et al., [14] reported that thermophoresis and Brownian motion mechanisms are significant in 
thermal enhancement of the natural convection in nanofluids layer. A review on advances of 
nanofluids in heat exchangers, that is, heat pipe and plate-fin heat exchangers has been reviewed by 
Sharma et al., [15]. Modified model for Binary Nanofluid convection with initial constant nanoparticle 
volume fraction has been investigated by Menni et al., [16]. Gupta et al., [17] employed the Casson 
nanofluid convection in an internally heated layer. Recently, Gupta et al., [18] studied the double-
diffusive instability of Casson nanofluids with numerical investigations for blood-based fluid. 
Meanwhile, Aliouane et al., [19] investigated the flow and thermal fields in square enclosures: 
Rayleigh-Benard’s instabilities of nanofluids. The effect of turbulent flow and convective heat transfer 
of Al2O3-water nanofluids in a circular tube for numerical study has been examined by Mahammedi 
et al., [20]. For partially porous cavity in the presence of nanofluids laminar naturel convection has 
been studied by Douha et al., [21]. Numerical research on the magnetic Ni nanofluid flowing in a 
tube, developing turbulent flows under constant heat flux conditions has been reported by 
Abdelkader et al., [22].  

Thermal instability induced by a uniform internally heat source arising in horizontal layer of fluids 
has attracted investigators attention for many decades ago. Sparrow et al., [23] studied analytically 
the problem of thermal instability of an internally heated fluid as well as heated from below, and 
showed that the effect of internal heat source destabilized the system. Char and Chiang [24] proved 
that Benard-Marangoni convection critically induced with increasing internal heat source rate the 
system is prone to instability. Nield and Kuznetsov [25] investigated the thermal instability in a porous 
medium layer saturated by a nanofluids. Nanjundappa et al., [26] studied the effect of uniform 
internal heat source on Brinkman-Benard convection in a ferrofluid saturated porous layer. The effect 
of internal heat source on the onset of Darcy-Brinkman convection in a porous layer saturated by a 
nanofluid is investigated by Yadav et al., [27].  Shivakumara and Dhananjaya [28] investigated the 
penetrative Brinkman convection in an anisotropic porous layer saturated by a nanofluid layer. Chand 
et al., [29] studied the effects of variable gravity on thermal instability in a horizontal layer of a 
nanofluid saturating an anisotropic Darcy porous medium. These researchers [30-33] studied the 
anisotropic porous medium with various types of fluids such as binary fluid, fluid, ferrofluids and 
various effects of nonlinear temperature profile, magnetic field with rotation, internal heating and 
variable gravity.  

The use of feedback control in stabilizing the thermal convection was investigated by Wang et al., 
[34] and they managed to inhibit the chaotic behavior in the fluid layer by applying proportional 
control in a thermal convection loop. Tang and Bau [35] showed that, with the use of feedback 
controller, the critical Rayleigh number for the onset of convection can be significantly increased. The 
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similar control strategy can be used to modify the flow patterns of surface-tension driven flows as 
reported by Bau [36]. Hashim and Siri [37] have attempted to include the stabilizing effect of feedback 
control on steady and oscillatory convection due to surface-tension. The effects of feedback control 
on chaotic convection in fluid-saturated porous media has been investigated theoretically using 
dynamical systems approach by Roslan et al., [38]. They showed that the suppression of chaotic 
convection in possible via feedback control. The investigation on the effect of feedback control in 
small and moderate Vadasz number chaotic convection in porous media was extended by Mahmud 
and Hashim [39] in the presence of non-Boussinesq effect using Galerkin truncated approximation 
technique.  

Thermal convection in a rotating fluid saturated porous layer heated from below has been the 
subject of experimental and theoretical interest by many researchers. Vadasz [40] investigated the 
convective instability for the effect of rotating porous layer and found that it stabilized the system. 
The Coriolis force which is due to rotation in the system has an important effect of convective 
instability, where its effect helps to delay the onset of convection. Meanwhile, Govender [41] added 
the stabilizing effect of Coriolis force in anisotropic porous layer subjected to gravity. In 2020, Khalid 
et al., [42] investigated the stabilizing effect of control strategy on Rayleigh-Benard convection in 
Maxwell nanofluids layer saturated in a rotating porous medium with feedback control subjected to 
viscosity and thermal conductivity variations. Sharma and Gupta [43] studied the onset of double-
diffusive convection in a rotating binary nanofluid layer saturated by a porous medium using Darcy-
Brinkman model. Later, Sharma et al., [44] investigated the convection in a rotating binary nanofluid 
layer in porous medium using Darcy-Brinkman model. 

The motivation of the present paper is to study the effect of controller on the onset of convection 
in a horizontal layer of an anisotropic porous medium (the Horton-Rogers-Lapwood problem as 
discussed by Nield and Kuznetsov [25]) saturated by a nanofluid heated from below with internal 
heat source, since there is no research reported on this investigation from the previous researchers. 
The study finds relevance in many applications particularly in manufacturing processes in industry. It 
is imperative to note that the internal heat source changes the temperature distribution significantly 
in the nanofluids which eventually alters the particles deposition rate in nuclear reactors, electronic 
chips and semiconductor wafers as mentioned by Aliouane et al., [19]. The eigenvalue problem is 
extracted numerically using the Galerkin method for different types of velocity boundary conditions 
and solved by using Maple software. The study undertaken is more general in the sense that the 
results for the Darcy porous medium as well as for a fluid layer can be delineated as particular cases 
from the present study. 
 
2. Methodology  
 

Cartesian coordinates (x,y,z) are used, where the z-axis points vertically upward. Consider a 
horizontal layer of a rotating incompressible nanofluids saturated anisotropic porous layer (the 

Horton-Rogers-Lapwood problem) of thickness L confined between the planes  * 0,z L  and 

subjected to internal heat source *

0Q  and feedback control is heated from below as shown in Figure 1. 

The nanofluids layer rotates about the vertical axis at a constant angular velocity,  * 0,0,  . The 

nanoparticles are suspended in nanofluids using either surfactant or surface charge technology. This 
prevents particles from agglomeration and deposition on the porous matrix.  For simplicity, Darcy’s 
Law is assumed to hold and the Oberbeck-Boussinesq approximation is employed. Homogeneity and 
local thermal equilibrium in the porous medium are assumed. Following Nield and Kuznetsov [25] 
and Yadav et al., [27], the governing equations under the Oberbeck-Boussinesq approximation are 



CFD Letters 

Volume 13, Issue 11 (2021) 1-20 

4 
 

the conservation of mass, momentum, thermal energy and nanoparticles, and they are respectively 
given by 
 

 
Fig. 1. Physical configuration and coordinate system 

 
* * 0,D  u                                                                                                      (1) 
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where   * , ,D u v wu  is the Darcy velocity, 
f  is the density of the base fluid, 

p  is the nanoparticle 

mass density, *t is the time, *p is the pressure,  is the viscosity, K  is the permeability of the porous 

medium,   is the porosity of the porous medium, g  is the gravitational force, *  is the nanoparticle 

volume fraction, 
T  is the thermal volumetric coefficient, *T is the temperature,  

m
c is the 

effective heat capacity, c  is the specific heat, 
pc  is the specific heat of the nanoparticles, *

0Q  is the 

uniform internal heat source, 
m  is the effective thermal conductivity of the porous medium 

saturated by the nanofluid, 
BD  is the Brownian diffusion coefficient and 

TD  is the thermophoretic 

diffusion coefficient. The permeability and thermal conductivity tensors are defined as  
 

 
1 1 1 ˆˆˆ̂ ˆ̂ ,

H V

ii jj kk
K K K
                                                                                        (5) 

 

  ˆˆˆ̂ ˆ̂ ,m mH mVii jj kk                                                                                          (6) 
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where 
HK  is the permeability and 

mH  is the thermal conductivity in the horizontal î  and ĵ

directions, while 
VK  and 

mV  are the corresponding values in the vertical k̂  direction. It may be 

noted that horizontal mechanical and thermal isotropy has been assumed. 
It is assumed that the temperature and volumetric fraction of the nanoparticles are constant on 

the boundaries. Thus, the boundary conditions are 
 

* 2 *
* * * * *
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w w
w L T T

z z
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 
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where the parameters 

1  and 
2  each takes the value  for the case of free boundary and 0 for a 

rigid boundary. To nondimensionalize the governing Eqs. (1)-(4), the variables are scaled as follows 
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where 
 

m
v

f
c





  is the effective thermal diffusivity and 

 

 
m

f

c

c





 is the heat capacity ratio 

respectively. Substituting Eq. (9) into Eqs. (1)-(4), eliminating the pressure term from the momentum 
equation by operating curl twice and retaining the vertical component, we obtain 
 

0,D u                                                                                                                (10) 
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with boundary condition 
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where 
1 1

, ,a u v w
 

 
  
 

u  is the anisotropic modified velocity vector,  ˆ 0,0,1z e  is the unit vector in 

the z-direction, 
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Q
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
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 is the dimensionless heat source strength. 

In the quiescent basic state, the temperature and volumetric fraction of nanoparticles vary only 
in the vertical z-direction and satisfy the following equations [27], 

 

0,b
b d b

dp
Rm RdT Rn

dz
                                                                                       (16) 

 
2 2

2 2
0,b b b bB A B

d T dT d d TN N N
Q

dz Ln dz dz Ln dz

  
    

 
                                                                 (17) 

 
2 2

2 2
0.b b

A

d T d
N

dz dz


                                                                                                         (18) 

 
The above equations are solved subject to the boundary conditions 
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Integrating Eq. (18) with respect to z and using the boundary conditions (19) and (20), we get 
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Using Eq. (20) in Eq. (17), we obtain 
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On integrating (22) with respect to z twice and using the boundary conditions (19) and (20), we 
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For most of the nanofluids, NA1 to 10, Ln   102 to 103, NB 10-4 to 10-2, and consequently 
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the zeroth order terms are dominant in both  bT z  and  b z , hence approximately, we proceed 
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which demonstrate quadratic distributions in z [27]. 

Suppose that the basic state is disturbed by an infinitesimal thermal perturbation. We now 
superimpose perturbations on the basic solution. We write 
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We substitute Eq. (29) into Eqs. (10)-(13) and linearize them by neglecting the products of primed 
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Taking curl ˆz e  curl    of Eq. (31), and retaining the z-component, we obtain 
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
                                                                                                 (34) 

 

Now, taking the curl    twice on the resulting of Eq. (31) together with Eq. (30) by using the 

curl identity, retaining the vertical component and can be simplified with Eq. (34) as below 
 

2 2
2 2 2

2 2

1
0,H v H d HTa w Rd T Rn

z z
 



  
          

  
                                                         (35) 

 

where z   is simplified and vanished. 

The normal mode expansion of the dependent variables is assumed in the form 
 

       
 

, , , , ,
x yi a x a y st

w T W z z z e
  
                                                                          (36) 

 
then, substituting Eq. (36) into Eqs. (32)-(35) and neglecting the terms of the second and higher 
orders in the perturbations, we obtain 
 

2 2 2 2 21
0,v dD a Ta D W a Ra a Rn



 
      

 
                                                                (37) 

 

   

 

2 21 1
2 2 2 2 1

2 2

1
2 2 0,

2

A B B
A A

B

N N N
Q Qz W D a Q Qz D N Q N Qz D

Ln Ln

N
Q Qz D

Ln


  

              
  

    

         (38) 
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   2 2 2 21 1 1
1 0,

2

A
A A

N
N Q N Qz W D a D a

Ln Ln

 
         

 
                                                (39) 

 

where 2 2

x ya a a  is the wavenumber and .
d

D
dz

  For neutral stability the real part of s is zero. 

Hence, s i  where   is real and is a dimensionless frequency. 
Following the proportional feedback control as reported by Bau [36], the continuously distributed 

actuators and sensors are arranged in a way that for every sensor, there is an actuator positioned 

directly beneath it. The determination of a control,  q t  can be accomplished using the proportional-

integral-differential (PID) controller of the form 
 

         ˆ, ,q t r K e t e t m t m t                                                                               (40) 

 

where r is the calibration of the control,      ˆe t m t m t   is an error or deviation from the 

measurement,  m̂ t , from some desired reference value,  m̂ t , while K  is the scalar controller gain 

where 
0

t

P D L

d
K K K K dt

dt
    , and PK  is the proportional gain, DK  is the differential gain, and LK

is the integral gain. Based on Eq. (40), for one sensor plane and proportional feedback control, the 
actuator modifies the heated surface temperature using a proportional relation between the upper, 
z = 1 and the lower, z = 0, thermal boundaries for the perturbation field 
 

   , ,0, , ,1, ,T x y t KT x y t                                                                                     (41) 

 
where T denotes the deviation of the temperature of fluid from its conductive state. 

Eqs. (37)-(39) are solved subject to the appropriate boundary conditions. Considering the 
proportional controller, K positioned at the lower boundary of nanofluid layer, we will have 

 

   0 1 0W DW K D            at 0.z                                                          (42) 

 
The Galerkin-type weighted residuals method is applied to find the approximate solution to the 

system. The variables are written in a series of basis functions 
 

1 1 1

, , ,
n n n

i i i i i i

i i i

W AW B C
  

                                                                                         (43) 

 

where ,i iA B  and iC  are constants and the basis functions ,i iW   and i  where 1,2,3,...,i   will be 

chosen corresponding to the free-free, rigid-free and rigid-rigid lower-upper boundary conditions as 
discussed by Khalid et al., [42]. 
 

   

      

     

3 4

2

22

2 , 2 , 1 ,

1 3 2 , 2 , 1 ,

1 , 2 , 1 .

i i i

i i i

i i i

W z z z z z z z

W z z z z z z z

W z z z z z z

        

        

       

                                                                (44) 
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Substitute Eq. (44) into Eqs. (37)-(39) and make the expressions on the left-hand sides of those 
equations (the residuals) orthogonal to the trial functions, thereby obtaining a system of 3N linear 
algebraic equations in the 3N unknowns. The vanishing of the determinant of the coefficients 
produces the eigenvalue equation for the system. One can regard Rd as the eigenvalue and thus Rd 
is found in terms of the other parameters. 

Maple programming is used to approximate the solutions and the eigenvalue of thermal Darcy-
Rayleigh number, Rd for lower-upper rigid-rigid boundary conditions has to be extracted from the 
following determinant definition 

 
22 2

2

1 2

2 2

3 4 5

22

630 105 105 42 140

7 111 8
det

840 42 15 30 60

11 3

280 20 10

v d

A B B

A A

Ta a Rna a Rd

QN N QNQ a

Ln Ln

QN a N a

Ln Ln










 


    

  

                                        (45) 

 
here, we have 
 

 
1

2

3

4

2

5

2 2 4
,

2 2 3

2
,

6

2
,

140

2 2
,

3

2 1
.

3

A B A
B

B

A

a

A A A

Q N N QN
N K

Ln Ln

Q
N

Ln

QN

N a N N

Ln Ln

a

Ln Ln



 
    

 
 


 


  


  

                                                                        (46) 

 
3. Results and Discussion 
 

Control on the onset of Rayleigh-Benard convection is investigated in a rotating anisotropic 
porous medium (the Horton-Rogers-Lapwood problem) saturated by nanofluids with internal heat 
source heated from below. Three different types of velocity boundary conditions, namely both 
boundaries free (free-free), both boundaries rigid (rigid-rigid) and lower rigid-upper free (rigid-free) 
are considered. The resulting generalized eigenvalue problem is solved numerically using the Galerkin 
method. The parameters are fixed with K = 10, Tav = 500,   = 0.9, Q = 0.5,   = 0.8,   = 0.6, NA = 2, 

NB = 0.01, Ln = 100 and Rnd = 2 except the varying parameter. Figures 2-9 are the plotted for the 
configuration of Darcy-Rayleigh number Rd versus wavenumber a, and in these respective figures, 
the comparative analysis of the thermal instability for porosity   = 0.1 and 0.9 are done. Meanwhile, 
Figures 10-15 show the plots for critical Darcy-Rayleigh number, Rdc as a function of selected 
parameters. 

Test computations have been performed and the results are compared with Char and Chiang [24] 
and Yadav et al., [27] for the limiting case of nanofluids (regular fluids, Rac) K = 0, Tav = 0, Q = 0,   = 
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0,   = 0, NA = , NB = 0.01, Ln = 0, Rnd = 0 in the absence of porous media,   = 0. The comparison 

results of critical thermal Rayleigh number Rac for the rigid-rigid, rigid-free and free-free boundary 
conditions are presented in Tables 1-3. As can be seen in the tables, the results are in good agreement 
with those reported by Char and Chiang [24] and Yadav et al., [27], thus verify the accuracy of the 
analysis. 
 

Table 1 
Comparisons of Rac for different values of Q for regular fluid in rigid-rigid boundary 
conditions 

 
Q 
 

Char and Chiang [24] Yadav et al., [27] Present Study 

Rigid-rigid Rigid-rigid Rigid-rigid 
Rac Rac Rac 

0 1707.85 1707.76 1707.85 
1 1704.61 1704.52 1705.41 
2 1695.04 1694.95 1702.97 
10 1463.05 1462.86 1463.13 
20 1118.66 1118.45 1118.35 

 
Table 2 
Comparisons of Rac for different values of Q for regular fluid in rigid-free boundary 
conditions 

 
Q 
 

Char and Chiang [24] Yadav et al., [27] Present Study 

Rigid-free Rigid-free Rigid-free 
Rac Rac Rac 

0 1100.65 1100.64 1100.65 
1 1055.58 1055.57 1057.46 
2 1011.44 1011.43 1017.53 
10 725.60 725.60 725.59 
20 517.87 517.83 517.73 

 
Table 3 
Comparisons of Rac for different values of Q for regular fluid in 
free-free boundary conditions 

 
Q 
 

Yadav et al., [27] Present Study 

Free-free Free-free 
Rac Rac 

0 1707.76 1707.85 

1 1704.52 1705.41 

2 1694.95 1702.97 

10 1462.86 1463.13 
20 1118.45 1118.35 

 
In Figure 2 showed the variation of thermal Darcy-Rayleigh number, Rd with wavenumber, a for 

different values of the mechanical anisotropy parameter,   = 0.7 and 0.8. It is found from Figure 2 

that as   increases the value of thermal Darcy-Rayleigh number, Rd also increases showing a 

stabilizing effect on thermal instability. This is due to the permeability 
HK  in the x-direction increases 

or permeability in the z-direction 
VK  decreases. Therefore, in both situations it becomes more 

difficult for the fluid to flow in the z-direction and, hence, onset of convection takes place at a higher 
thermal Darcy-Rayleigh number, Rd. As for the Figure 3 indicates the effect of thermal anisotropy 
parameter,   = 0.6, 0.7 on the instability. The thermal Darcy-Rayleigh number, Rd increases on 
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increasing thermal anisotropy parameter,  showing that the effect of increasing the thermal 

anisotropy parameter,  is to stabilize the system. As for the effect of porosity, it is found to stabilize 

the system. From the respective figure, the increase in porosity can be defined as larger volume of 
the void spaces, hence the flows of nanofluids are slowed down causing the onset of instability to be 
delayed [27]. Therefore, it is observed that by increasing the porosity is to increase Darcy-Rayleigh 
number, Rd and to stabilize the system as reported by Yadav et al., [27]. 

The plot of thermal Darcy-Rayleigh number, Rd and the corresponding wavenumber, a for the 
selected values of feedback control, K = 15 and 20 is presented in Figure 4 for two values of porosity, 
 = 0.1 and 0.9 respectively. Physically, the sensors detect the departure of the fluid from its 
conductive state and then they direct the actuators to take action so as to suppress any disturbances 
[36]. In this figure, the results obtained for three different types of velocity boundary conditions, 
rigid-rigid, rigid-free, and free-free are compared. It is noted that, the rigid-rigid boundaries lead to 
a substantial stabilizing effect compared to rigid-free and free-free boundaries. 

Figure 5 shows the variation of Taylor-Vadasz number, Tav = 700 and 750 for two values of 
porosity,  = 0.1 and 0.9 in the plot of thermal Darcy-Rayleigh number, Rd versus wavenumber, a 
respectively. The thermal Darcy-Rayleigh number, Rd increases with the increased in Taylor-Vadasz 
number, Tav, indicating that the Coriolis force due to a rotation inhibits the onset of convection in 
nanofluids layer. The fluid moves to the horizontal plane with higher velocity because of the vorticity 
introduced by the rotation mechanism. Therefore, the velocity of the fluids in the vertical plane is 
reduced, thereby minimizing the amount of thermal convection [40]. 
 

 

 

 
Fig. 2. Plot of   on Rd against a  Fig. 3. Plot of  on Rd against a 
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Fig. 4. Plot of K on Rd against a  Fig. 5. Plot of Tav on Rd against a 

 
The presence of internal heat source, Q have a significant influence on the thermal instability of 

the system. To see the effect of internal heat source strength, Q on the criterion for the onset of 
thermal convection in nanofluids, Figure 6 shows the plot for different values of internal heat source, 
Q = 0.5, 1 when porosity,  = 0.1, 0.9 in three types of boundary conditions. This plot shows the 
behaviour of internal heat source, Q which the thermal Darcy-Rayleigh number, Rd value is 
decreasing as internal heat source strength, Q is increased. The increase in the internal heat source 
strength, Q amount is to increase in energy supply to the system. This gives large deviations in the 
distributions which in turn improve the disturbances in the layer and the system becomes more 
unstable [24, 27, 28]. 

Figure 7 shows the Darcy-Rayleigh number, Rd versus the wavenumber, a for various values of 
the nanoparticles concentration Darcy-Rayleigh number, Rnd = 1 and 2 when porosity   = 0.1 and 
0.9 in various boundary conditions. Theoretically, an increase of nanoparticles concentration Darcy-
Rayleigh number, Rnd increase the density of the nanoparticles, according to the definition 
nanoparticles concentration Darcy-Rayleigh number, Rnd and enhance the heat transfer diffusion 
within the nanofluid layer. In Figure 8, the chosen values for nanofluids Lewis number, Ln = 100 and 
150 are plotted for   = 0.1 and 0.9 respectively. The effect of increasing nanofluids Lewis number, 
Ln advances the onset of convective instability as thermal diffusion is dominated over Brownian 
diffusion according to the definition of nanofluids Lewis number, Ln. 

Thermal Darcy-Rayleigh number, Rd against wavenumber, a is plotted in Figure 9 for modified 
diffusivity ration, NA = 1 and 9 when  = 0.1 and 0.9 in three types of boundary conditions. It is found 
that, thermal Darcy-Rayleigh number, Rd decreases with an increase of modified diffusivity ratio, NA 
due to the directly proportional relationship between parameter NA to the thermophoretic diffusion 
coefficient DT. Although thermophoresis effect and Brownian motion are responsible for the motion 
of nanoparticles in the base fluids, it is observed that thermophoretic effect is more dominating in 
order to initiate the diffusion of nanoparticles. Therefore, the increase in the values of NA increase 
the temperature difference within the nanofluids layer thus hasten the onset of convection. It is 
interesting to note that the modified particle density, NB has no significant effect on the nanofluids 
system. An attempt has been made to scrutinize the effect of NB in this study but there is no apparent 
result. This finding agrees well with those reported by Yadav et al., [27] that the impact of NB is so 
small and can be omitted. 
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Fig. 6. Plot of Q on Rd against a  Fig. 7. Plot of Rnd on Rd against a 

 

 

 

 
Fig. 8. Plot of Ln on Rd against a  Fig. 9. Plot of NA on Rd against a 

 
The influences of the Taylor-Vadasz number, Tav to the nanoparticles concentration Darcy-

Rayleigh number, Rnd = 1, 9 are presented in Figure 10 respectively. Obviously, increasing the Coriolis 
force due to the rotation in nanofluids layer helps to reduce the rate of disturbance caused by 
nanoparticles concentration Darcy-Rayleigh number, Rnd thus promoting the stability within the 
nanofluids layer system. Scrutinizing the critical thermal Darcy-Rayleigh number, Rdc with different 
boundary conditions, the rigid-rigid boundaries maintain gaining the highest values of Rdc compared 
to the free-free and rigid-free boundaries. 

The graphs of critical thermal Darcy-Rayleigh number, Rdc against feedback control, K for selected 
values of internal heat source, Q = 0.5, 1.5 are depicted in Figure 11, respectively. As illustrated 
earlier, the impact of increasing internal heat source, Q advanced the process of thermal instability. 
However, elevating the values of feedback control, K helps to delay the onset of convection induced 
by the effect of internal heat source and stabilizes the system. Feedback control suppress the rate of 
thermal instability due to the destabilize effect of internal heat source within the system. 
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The variation of critical thermal Darcy-Rayleigh number, Rdc as a function of nanofluids Lewis 
number, Ln is presented in Figure 12 for the values of Taylor-Vadasz number, Tav = 1000, 2000 
respectively. In the figure, the results obtained for three different types of velocity boundary 
conditions, namely rigid-rigid, rigid-free and free-free are compared. It is found that, the stabilizing 
effect of Taylor-Vadasz number, Tav is significantly altered by the destabilizing effect of Ln. Increasing 
the values of Ln leads to the high diffusivity rate of heat transfer mechanism thus promoting a 
destabilization phenomenon within the system. 
 

 
Fig. 10. Plot of Rdc with Tav for selected values of Rnd 

 
Fig. 11. Plot of Rdc with K for selected values of Q 
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Fig. 12. Plot of Rdc with Ln for selected values of Tav 

 
The impact of anisotropic parameters on the onset of convection is depicted in Figure 13. The 

variation of critical thermal Darcy-Rayleigh number, Rdc against the thermal anisotropy parameter, 
  and mechanical anisotropy parameter,   is shown in Figure 13. The effect of increasing thermal 

anisotropy parameter,   and mechanical anisotropy parameter,   is to respectively slow down the 

onset of convection thus stabilized the system. It is found that the effect of the mechanical anisotropy 
parameter,   is more dominant than thermal anisotropy parameter,  . Therefore, the permeability 

in the z-direction 
VK  decreases, thus the fluid flow in the z-direction is reduced. 

Finally, from Figures 14 and 15, it is observed that the onset of convection is depends on the 
values of porosity subjected to the porous medium, where increasing the values of porosity,  delays 
the convection for the increasing values of feedback control, K = 10, 30 and internal heat source, Q = 
0.5, 1.5. The results show that, the porosity significantly stabilized the system in the presence of 
stabilizing effect of feedback control, K and destabilizing effect of internal heat source, Q. Increasing 
the values of porosity lead to the increase in the volume of void spaces, therefore, the flows of 
nanofluids are slowed down causing the onset of instability to be postponed [27] even in the 
existence of internal heat source. 
 

 

Fig. 13. Plot of Rdc with   for selected values of   
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Fig. 14. Plot of Rdc with   for selected values of K 

 
Fig. 15. Plot of Rdc with   for selected values of Q 

 
4. Conclusions 
 

Linear stability analysis of Rayleigh-Benard convective instability in nanofluids layer saturating a 
rotating anisotropic porous medium (the Horton-Rogers-Lapwood problem) heated from below with 
feedback control and internal heat source has been examined theoretically. The Darcy model 
includes the effective mechanism for convective enhancement in nanofluids layer system, namely 
the Brownian motion and thermophoresis. Free-free, rigid-rigid, and lower-rigid and upper-free 
boundary conditions are taken in consideration. The resulting eigenvalue problem is solved 
numerically using the Galerkin technique and computed by using Maple software. The effect of 
various parameters is considered and presented graphically. 

The initiation of Rayleigh-Benard convection sets in at higher values of Darcy-Rayleigh number Rd 
for the application effects of feedback control K, Taylor-Vadasz number Tav, and porosity  , together 
with the impact of anisotropic parameters; the mechanical anisotropy parameter  and thermal 

anisotropy parameter  within the nanofluids layer system successfully. The initiation of Rayleigh-

Benard convection sets earlier when the values of internal heat source Q, modified diffusivity ratio 
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NA, nanofluids Lewis number Ln and nanoparticles concentration Darcy-Rayleigh number Rnd are 
increased in the system, thus advancing the onset of Rayleigh-Benard convection.  

The modified particle density increment NB is found to have no visible observation on the onset 
of convective instability in a porous medium, therefore this effect can be omitted as reported by 
Yadav et al., [27]. The most stable system is when the both lower-upper boundary conditions are 
rigid and least stable is when both lower-upper boundary conditions are free: (Rd)free-free < (Rd)rigid-free 

< (Rd)rigid-rigid and (Rdc)free-free < (Rdc)rigid-free < (Rdc)rigid-rigid. 
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