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An anisotropic porous layer saturated with a viscoelastic double diffusive binary fluid 
is examined numerically for the onset of Darcy-Rayleigh convection. From below, the 
system is heated, while from above, it is cooled. The temperature-dependent viscosity 
was added to the double diffusive binary fluid, and the Galerkin expansion method was 
used to determine the critical Darcy-Rayleigh number. When their values are raised, 
the impacts of strain retardation, thermal anisotropy parameter and Dufour number 
slow the production of heat transfer and stabilise the system. When the values are 
increased, the stress relaxation, Darcy-Prandtl, mechanical anisotropy parameters, 
temperature dependent viscosity and Soret number accelerate the heat transfer 
process in convection, which destabilises the system. 

 

Keywords: 
Temperature dependent viscosity; 
viscoelastic fluid layer; anisotropic 
porous layer  

 
1. Introduction 

 
The viscoelastic property in a non-Newtonian fluid has given rise to interest in different fields 

such as science, engineering, and technology. This property exhibit both viscous and elastic 
characteristics when thermal motion occurs. The dissipation of the fluid characterizes the viscous 
nature and the energy characterized by the fluid’s elastic response [1]. Shear stress is not 
proportional to the rate of deformation in a non-Newtonian fluid and does not follow Newton’s 
viscosity law. It is interesting to study this kind of fluid as it can be applied in medicine where the 
blood modeling as a non-Newtonian fluid may help to understand the human body and improve 
health techniques, in the n food industry such as in the processing of ketchup and jam, extraction of 
rice bran protein or maybe in creating body vest for military use [2]. There are also unusual patterns 
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of instability in viscoelastic fluids that are not predicted or observed in Newtonian flow. Mahat et al., 
[3] studied the viscoelastic nanofluid in a linear circular cylinder. 

Double diffusive convection was studied in a porous medium due to its importance in geophysics 
where groundwater usually contains salts in solution and hence both thermal expansion and solute 
concentration variations can produce variations in density. This phenomenon was explored by 
Horton and Rogers [4], proved experimentally by Morrison et al., [5], and explained thoroughly by 
Parts [6]. Hirata et al., [7] also did an experimental study on the small scaler process occurring in the 
global climate system where a natural double diffusive was considered under-ice melt.  

Later, research was done in a more complex system where the system is saturated by an 
anisotropic fluid. Anisotropic is found in numerous systems in the industry and in nature. The 
properties of an isotropic material are uniform in all directions but in anisotropy, the properties of 
the material have dependent direction. Anisotropy can also be a characteristic of synthetic porous 
materials such as pellets used in chemical engineering as well as insulating fiber materials. Recent 
research into convective flow through anisotropic porous media has been documented by Filippi E 
and T [8], Swamy et al., [9] and Rees and Storesletten [10]. The current trends on understanding the 
anisotropic show the relevance of understanding the characteristics of this porous layer. Nield [11] 
studied on a constant viscosity in a two-component fluid saturating a porous medium taking only 
Darcy resistance into consideration while Patil and Rudraiah [12] use the Brinkman model. The Darcy 
Law’s were introduced by Darcy [13] and then the extension of the law is the Brinkman model 
introduced by Brinkman [14]. Later, Patil and Vaidyanathan [15] extended the study by to a two-
component fluid saturating a porous medium where the viscosity varies with temperature, using 
Darcy and Brinkman models. Both models were compared and they conclude that Darcy model is 
more stable than the Brinkman Model, since the effects of concentration and temperature 
dependent viscosity on the critical Rayleigh number is small. The Darcy’s Law replaced the nonlinear 
Navier-Stokes equations, which describe the velocities in the bulk fluid experiment with a linear set 
of velocity equations. The addition of a porous medium would eliminate a nonlinearity inherent in 
the binary fluid bulk system and thus provide a step forward to understand more complicated, 
previous binary fluid bulk results. 

The viscoelastic flows through porous media have been the subject of theoretical interest in the 
industry. Kim et al., [16] conduct a theoretical thermal instability analysis in a porous layer saturated 
with viscoelastic fluid. They found that overstability is a preferred mode for a certain range of 
parameters, and when the elastic parameters are used, a supercritical and stable bifurcation takes 
the form of the onset of convection. The initiation of thermal convection in a horizontal porous layer 
saturated with viscoelastic fluid using linear theory was studied by Yoon et al., [17]. To examine the 
effects of relaxation times, a simple constitutive model is used and it is shown that oscillatory 
instabilities can be set before stationary modes. Bertola and Cafaro [18] use a dynamic system 
approach to study the instability theory of the viscoelastic fluid saturating a horizontal porous layer. 
Equilibrium points and their stability are expressed as a function of the relaxation and retardation 
parameters. Laroze et al., [19] study the convection in a rotating binary viscoelastic which contributes 
to DNA withdrawal due to the problem’s complexity. Changes in parameter values can induce a large 
threshold and affect the frequency variations. Malashetty et al., [20] also study the binary fluid where 
the fluid is saturated by an isotropic porous layer. When analytically deriving the stationary and 
oscillatory convection, it is shown that competition between the processes of thermal, solute 
diffusion, and viscoelasticity exists in the oscillatory case rather than stationary. 

The physical configuration viscoelastic double diffusive binary fluid layer saturated in an 
anisotropic porous layer with temperature dependent viscosity is considered. Due to the viscoelastic 
flows, the stress relaxation, λ1 and the strain retardation, λ2 were introduced. When only the λ1 is 



CFD Letters 

Volume 15, Issue 6 (2023) 86-97 

88 
 

taken into account, the modal is known as the Maxwell model as done by Wang and Tan [1] where 
the Maxwell model is applied to double diffusive convection in an isotropic porous medium. 

Hilt et al., [21] include the temperature dependent effect in a binary fluid but they only study the 
physical part where they consider the separation ratio effect. They introduce a dimensionless 
quantity, Γ which is the viscosity difference between the upper and lower boundaries. Results show 
that when a positive separation ratio (positive Soret number) in a larger Γ increases, there will be a 
discontinuous shift in the critical Rayleigh number and when a negative separation ratio (negative 
Soret number) becomes higher and Γ is moderate, it also shows a discontinuous transition from an 
oscillatory to a stationary instability. However, when a larger Γ is used, the transition remains 
continuous. Khan et al., [22] also studied the effect in a nanoliquid and the impacts of heat transfer 
by forced convection were studied by Rebhi et al., [23]. In an experimental binary mixture (water and 
ionic fluid), Rodr´ıguez and Brennecke [24] analyzed the combined temperature and composition 
dependence of both density and viscosity and Khan et al., [25] studied the effects in a Williamson 
fluid flow. Lu and Chen [26] study on the onset of double-diffusive convection in a single direction 
binary solution and shows that a decrease in temperature will improve the stability of the convection. 
This particular study of temperature dependent viscosity in a binary fluid has been overlooked 
whereas this effect is important to understand the instability of convection in any system [27]. This 
builds our interest to explore and seeks the knowledge to understand more about the binary fluid 
system. 

 
2. Mathematical Formulation  

 
Viscoelastic and anisotropy parameters affect the onset criterion for oscillatory convection. The 

continuity equation from the mass conservation is  
 

𝛻 ⋅ 𝑢 = 0              (1) 
 
The momentum equation is using the amended Darcy law for the viscoelastic fluid of the Oldroyd 

type by Malashetty et al., [20] which is 
 

(1 + 𝜆1
𝜕

𝜕𝑡
) {

𝜌0

𝜀

𝜕𝑢

𝜕𝑡
+ 𝛻𝑝 − 𝛻 ⋅ [𝜇(𝛻𝑢 + 𝛻𝑢𝑇) − 𝜌𝑔]} =

𝜇

𝐾
(1 + 𝜆2

𝜕

𝜕𝑡
) ⋅ 𝑢      (2) 

 

where t is the dimensionless time,  is the density,  is the porosity, p is the pressure, µ is the dynamic 

viscosity,  g is the gravity, and K  is the permeability tensor. Meanwhile, 𝜆1 is the relaxation time 

depending on viscoelasticity and the 𝜆2 is the retardation time due to the action of the porous matrix. 

The relaxation parameter, 𝜆1 is a dimensionless number used in rheology to characterize the 

properties of fluid and material. A smaller value of 𝜆1 define the more fluidity of the material. A 
diluted polymeric solution is confined between the range of [0.1,2].  
The energy equation follows Nield and Kuznetsov [28]  

 

𝜌0𝑐 [
𝜕𝑇

𝜕𝑡
+ (𝑢 ⋅ 𝛻)𝑇] = 𝜅𝑡𝛻

2𝑇 + 𝜌𝑐𝐷𝑇𝑆𝛻
2𝑆          (3) 

 
and for solute concentration equation is in the form 

 
𝜕𝑆

𝜕𝑡
+ (𝑢 ⋅ 𝛻)𝑆 = 𝜅𝑠𝛻

2𝑆 + 𝐷𝑆𝑇𝛻
2𝑇           (4) 
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where c is the fluid specific heat (at constant pressure),𝜅𝑡is the thermal diffusivity, 𝜅𝑠 is the mass 
diffusivity, DTS is the Soret diffusivity, DST is the Dufour diffusivity, S is the solute concentration and 
T is the temperature. Soret effect (thermo-diffusion) is the mass diffusion induced by the 
temperature gradient and Dufour effect (diffusion-thermo) is the heat transfer induced by the 
concentration gradient. 
 
The basic state of the fluid is quiescent and is given by 

 
𝑢𝑏 = (𝑢, 𝑣, 𝑤) = (0,0,0), 𝑇 = 𝑇𝑏(𝑧), 𝜇𝑏 = 𝜇0𝑓(𝑧), 𝑝 = 𝑝𝑏(𝑧), 𝜌 = 𝜌𝑏(𝑧), 𝑆 = 𝑆𝑏(𝑧)    (5) 
 

where the subscript b denotes the basic state. Then, the system is perturbed with the following form 
 

(𝑢, 𝑝, 𝜌, 𝑇, 𝑆) = [𝑢𝑏(𝑧) + 𝑢′, 𝑝𝑏(𝑧) + 𝑝′, 𝜌𝑏(𝑧) + 𝜌′, 𝑇𝑏(𝑧) + 𝑇 ′, 𝑆𝑏(𝑧) + 𝑆 ′]     (6) 
 
where the primes quantities indicate the perturbed variables and are assumed to be small. 
Substituting Eq. (6) into Eq. (1)- Eq. (4) with the basic state solution, we obtained  
 

𝜌′ = 𝜌0[𝛼𝑡𝑇
′ − 𝛼𝑠𝑆

′]               (7) 

 
By operating the curl twice on Eq. (2) and eliminating p’, we obtained the nondimensional equation 

 

(1 + 𝜆1
𝜕

𝜕𝑡
) [

Da

𝜀Pr𝑑

𝜕

𝜕𝑡
+ 𝛻2𝑤-f(𝑧)𝛻4𝑤-2

𝜕𝑓(𝑧)

𝜕𝑧
𝛻2 (

𝜕𝑤

𝜕𝑧
) −

𝜕2𝑓(𝑧)

𝜕𝑧2
× (𝛻2𝑤 + 2𝛻ℎ

2𝑤) 

−(1 + 𝜆1
𝜕

𝜕𝑡
) 𝑅𝑎𝑑𝛻1

2𝑇 + 𝑅𝑠𝑑𝛻1
2𝑆] + (1 + 𝜆2

𝜕

𝜕𝑡
) (𝛻1

2 +
1

𝜀

𝜕2

𝜕𝑧2
)𝑤 = 0      (8) 

 

where  𝑃𝑟𝑑 =
𝜀 𝑃 𝑟

𝐷𝑎
 is the Darcy-Prandtl number,𝑅𝑎𝑑 =

𝑅𝑎𝐾𝑧

𝑑2
 is the Darcy-Rayleigh number, and 𝑅𝑠𝑑 =

𝑅𝑠𝐾𝑧

𝑑2
 is the solutal Darcy-Rayleigh number. 

 
Substitute the normal mode of Eq. (9) into Eq. (3), Eq. (4) and Eq. (8), 

 

(𝑤 ′, 𝑇 ′, 𝑆 ′) = [𝑊(𝑧), 𝛩(𝑧), 𝛷(𝑧)]𝑒𝑖(𝛼𝑥𝑥+𝛼𝑦𝑦)+𝑖𝜔𝑡         (9) 
 
we have 
 

(1 + 𝜆1𝜔) [
𝜔

Pr𝑑
(𝐷2 − 𝑎2)𝑊 − 𝑓(𝐷2 − 𝛼2)2𝑊−𝐷2𝑓(𝐷2 − 𝛼2)𝑊 − 2𝐷𝑓(𝐷2 − 𝛼2)𝐷𝑊 

−𝑅𝑎𝑑𝛼
2𝛩 + 𝑅𝑠𝑑𝛼

2𝛷] + (1 + 𝜆2𝜔) (
1

𝜉
𝐷2 − 𝛼2)𝑊 = 0                  (10) 

 
𝑊 + (𝐷2 − 𝜂𝛼2)𝛩 + 𝐷𝑓(𝐷2 − 𝛼2)𝛷 = 0                     (11) 
 
𝑊 + 𝑆𝑟(𝐷2 − 𝛼2)𝛩 + 𝐿𝑒(𝐷2 − 𝛼2)𝛷 = 0                     (12) 

 

where 𝜆1 =
𝐷𝑧

𝑑2
�̄�1 is the relaxation parameter, 𝜆2 =

𝐷𝑧

𝑑2
�̄�2 is the retardation parameter. Both 

boundaries were set to be isosolutal, isothermal and free-free representing the lower-upper 
boundaries.  
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𝑊 = 𝐷2𝑊 = 𝛩 = 𝛷 = 0                        (13) 
 
Then, by using the boundary conditions (13), we solved Eq. (10), Eq. (11) and Eq. (12) respectively. 

By adopting the Galerkin techniques to find an approximate eigenvalue solution, we extract the 
Darcy-Rayleigh number, Rad , from 

 

|

𝑎11𝑏11𝑐11
𝑑11𝑒11𝑓11
𝑔11ℎ11𝑖11

| = 0                         (14) 

 
Where 
 

𝑎11 = (1 + 𝜆1𝜔)
𝜔

𝑃 𝑟
⟨(𝐷𝑊)2⟩ − 𝛼2⟨𝑊2⟩ − ⟨(𝐷2𝑊)2⟩ − 2𝛼2⟨(𝐷𝑊)2⟩ + 𝛼4⟨𝑊2⟩

− 2𝐵⟨(𝐷2𝑊)𝐷𝑊⟩ − 𝛼2⟨𝐷𝑊2⟩ + 𝐵2⟨(𝐷𝑊)2⟩ + 𝛼2⟨𝑊2⟩ + (1 + 𝜆1𝜔)
1

𝜉
⟨(𝐷𝑊)2⟩

− 𝛼2⟨𝑊2⟩, 
𝑏11 = −𝛼2𝑅𝑎𝑑⟨𝑊𝛩⟩, 

𝑐11 = 𝛼2
𝑅𝑠

𝐿𝑒
⟨𝑊𝛷⟩, 

𝑑11 = ⟨𝑊𝛩2⟩, 
𝑒11 = −𝜔⟨𝛩2⟩ + ⟨(𝐷𝛩)2⟩ − 𝜂𝛼2⟨𝛩2⟩, 
𝑓11 = 𝐷𝑓(⟨𝐷𝛩⟩⟨𝐷𝛷⟩ − 𝛼2⟨𝛩𝛷⟩), 

𝑔11 = ⟨𝑊𝛷⟩, 
ℎ11 = 𝑆𝑟(⟨𝐷𝛩⟩⟨𝐷𝛷⟩ − 𝛼2⟨𝛩𝛷⟩), 

𝑖11 = −𝜔⟨�̶�2⟩ +
1

𝐿𝑒
[⟨(𝐷𝛷)2⟩ − 𝛼2⟨𝛷2⟩], 

 
and < …> represent the integration from z = 0 to z = 1.  

In the case when both boundaries are isosolutal, isothermal and the lower-upper boundaries are 
set to be free-free, the respective chosen trial functions to get the critical Darcy-Rayleigh number, 
Radc are 

 
𝑊 = 𝛩 = 𝛷 = 𝑠𝑖𝑛(𝑧𝜋)                       (15) 

 
Oscillatory stability mode is obtained by separating the eigenvalue equations into the real and 

imaginary parts. Therefore, we obtained the following expression for the thermal Darcy-Rayleigh 
number, Rad in the form 

 
𝑅𝑎𝑑 = 𝛥1 + 𝑖𝜔𝑖𝛥2                       (16) 

 
For oscillatory onset 𝛥2 = 0(𝜔𝑖 ≠ 0)and this gives a dispersion relation of the form (on dropping 

the subscript i) 
 

𝑏1(𝜔
2)2 + 𝑏2(𝜔

2)2 + 𝑏3 = 0.                      (17) 
 

Then,  
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𝑅𝑎𝑑
𝑜𝑠𝑐 = 𝛼0(𝛼1 + 𝜔2𝛼2).                       (18) 
 
To obtain the oscillatory onset neutral solutions, the steps are as follows: first, the number of 

positive equation solutions Eq. (17) should be calculated. If there is none, then there can be no 

oscillating instability. If there are two, then the minimum (over α2) of Eq. (18) with 2 given by Eq. 

(17) gives the oscillatory Darcy-Rayleigh number, 𝑅𝑎𝑑
𝑜𝑠𝑐. Since Eq. (17) is quadratic in 2, it can result 

in more than one positive value of 2 for fixed values of the parameters B, Sr, Df, Le, Rs, ξ ,η, λ1 and 

λ2. The numerical solution obtained in this study gives only one positive value of 2 which signify that 
only one positive oscillatory solution exists. To evaluate the influence of oscillatory convection on the 
onset of convection, various values of physical parameters is substitute for 𝜔2(> 0)from (18). 
 
3. Results and Discussion 

 
The onset of Darcy-Rayleigh convection in a viscoelastic double diffusive binary fluid layer 

saturated in an anisotropic porous with temperature-dependent viscosity is investigated. Only the 
oscillatory (over-stability) curves presented in this research. Hence, we used Rad  instead of Raosc to 
represent the Darcy-Rayleigh number obtained in this chapter. Figure 1 and Figure 2 shows the 
additional parameters involved in the case of viscoelastic fluid which are the stress relaxation, λ1 and 
the strain retardation, λ2 parameters. It is shown that as the stress relaxation, λ1 increased, the critical 
Darcy-Rayleigh number decreased. In this figure, other parameters were set to be Le = 2, Rs = 100,  
ξ = 0.5, η = 0.3, B = 0.3, Sr = Df = 0.005, λ2 = 0.1 and Prd = 10. As for the strain retardation, λ2, the 
onset of convection increased as the value increased. Figure 3 shows the effect of Darcy-Prandtl 
number, Prd  when the Prandtl number is increased. We use Prd = 10 as the fixed value in other 
figures as this is the typical value in a dilute DNA suspension as stated by Kolodner (1998). In these 
three figures, besides the anisotropic case, we also represent the isotropic case where η = ξ = 1. 

 

  
Fig. 1. Variation of Rad with α for different 
values of λ1 

Fig. 2. Variation of Rad with α for different 
values of λ2 
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Fig. 3. Variation of Rad with α for different 
values of Prd 

 
Figure 4 and Figure 5 show the effect of the anisotropic porous medium parameter where the 

characteristics of the convection is similar as shown in the stationary case. In other words, in the 
exchange of the equilibrium regime, the heat transfer characteristics are similar to those of the 
Newtonian case. As the mechanical anisotropy, ξ increased, the marginal stability curves shift 
downward and as the thermal anisotropy, η increased, the marginal stability curves shift upward. In 
Figure 4, η = 0.3 and in Figure 5, ξ = 0.5 while the other paramaters are Le = 2, Rs = 100, B = 0.3, Sr = 
Df = 0.005, λ1 = 0.8 and Prd = 10. Figure 6 shows the variarion of Rad with α for different values of B 
with Le = 2, Rs = 100, ξ = 0.5, η = 0.3, Sr = Df = 0.005, λ1 = 0.8, λ2 = 0.1 and Prd = 10. As B increases, 
the values of Radc decrease showing that B has the effect of destabilizing the system. 

 

  
Fig. 4. Variation of Rad with α for different 

values of  

Fig. 5. Variation of Rad with α for different 
values of η 
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Fig. 6. Variation of Radc with α for different 
values of B 

 
Figures 7 - 12 concerned on various parameters on the critical Darcy-Rayleigh number, Radc. 

Figure 7 reveals the effects of strain retardation, λ2 to the critical Rayleigh number, Rac with different 
values of stress relaxation, λ1. It shows that as λ2 increases, Rac will increases. We also note that as 
the he gradient is steeper when the value of λ1 is lower. This indicate that λ2 has more significant 
effect in a lower λ1 compare to a higher value of λ1. Figure 8 shows the variation of Radc. with λ2 for 
different values of Prandtl number, Prd. Radc.  will increase as λ2 increased and Radc.  decreases as Prd 
increased.  

 

 
Fig. 7. The effect of λ2 on the stability of the Radc for different values of λ1 
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Fig. 8. The effect of λ2 on the stability of the Radc for different values of Prd 

 
Figure 9 presents the variations of stress relaxation, λ1 versus the critical Darcy-Rayleigh number, 

Radc for different values of thermal anisotropy parameter, ξ. As ξ increased, Radc increased making 
the system becomes more destabilize and as λ1 increased, Radc decreased. When λ2 = 0, the system 
where viscoelastic fluid considered is reduced to a Maxwell fluid where only λ1 is considered. We 
note that viscoelastic have higher stability compared to the Maxwell fluid system. Figure 10 shows 
the variation of temperature dependent viscosity, B and η to the onset of convection where when 
both parameters increased, Radc will decrease. The figure also represents the isotropic case where ξ 
= η = 1. The last two figures, 11 and 12 shows the coupled effect of double diffusive where Soret 
parameter destabilize the system and the Dufour parameter stabilizes the system. 

 

 
Fig. 9. The effect of λ1 on the stability of the Radc for different values of ξ 
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Fig. 10. The effect of B on the stability of the Radc for different 
values of η 

 

 
Fig. 11. The effect of Sr on the stability of the Radc for different 

values of λ1 and λ2
 

 

 
Fig. 12. The effect of D f on the stability of the Radc for different 

values of λ1 and λ2 
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4. Conclusions 
 
The findings from the mathematical model indicate that when the strain retardation, thermal 

anisotropy, and the Dufour number are increased, the system becomes stabilizing and slowing down 
the formation of heat transfer. While the system becomes unstable and the heat transfer mechanism 
in convection accelerated quickly as the stress relaxation, Darcy-Prandtl, mechanical anisotropy, 
temperature dependent viscosity, and Soret parameter grow increased. 
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