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Surface-stabilized combustion burners or surface-radiant burners use perforated 
ceramic plates, ceramic foams, or metal fibers to stabilize a premixed flame. These 

burners are the most straightforward alternative to have both, the benefits of the 

reactant preheating technique and a great amount of heat transferred by radiation 
from the burner to the load. However, in its design, one of the greatest difficulties is 

to predict the flame stability limits; especially under operating conditions that lead to 

flashbacks and blowouts. This work presents a computational methodology based on 

the finite volume method with a two-dimensional domain to predict the flame 
curvature towards the unburned and burned gas that occurs before flashback and 

blowout, respectively. In the methodology, continuity, momentum, energy, and 

chemical species equations are solved to obtain the increase in the surface area of the 
flame. It was observed that this value can be used as a criterion to predict whether an 

operating condition is stable. When comparing the numerical results with 

experimental results reported in the literature, good predictions of the operating 

conditions that lead to flashbacks and blowouts are observed.  
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1. Introduction 
 

In recent years, the worldwide concern about high consumption of fossil fuels and large amount 
of polluting emissions [1] have stimulated scientific interests in new combustion technique s [2-5]. In 
the group of emerging technologies, surface-stabilized combustion burners are one of the most 

promising devices because, in addition to respond to the aforementioned needs, they exhibit 
excellent fuel-flexibility features [6-9]. 

Surface-stabilized combustion burners are burners that use perforated ceramic plates, ceramic 

foams, or metal fibers to stabilize a premixed flame; generally, a lean premixed flame. The operation 
principle is shown in Figure 1. If the unburned mixture velocity is kept in certain limits with respect 
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to the laminar burning velocity, a flat flame is obtained on the burner outlet plane. As a result, the 
burner surface heats up. Part of this energy is then transferred by radiation to the load and the other 

part preheat the unburned mixture [10,11]. 
 

 
Fig. 1. Operation principle of a surface-stabilized burner 

 

Although the operation principle is simple, one of the greatest difficulties in the design of these 
burners is to predict the unburned mixture velocities that lead to the operation mode described 

above. If the output velocity is too high, it is necessary to implement complicated aerodynamical 
strategies to stabilize the flame. When this is not possible, the flame just blows out. On the other 
hand, at low output velocities the flame reaches the burner. If the preheating temperature is too 

high, the mixture penetrates the burner leading to flashback.  
Until a few years ago, numerical simulations of surface-stabilized burners were carried out 

considering one-dimensional models [12,13]. They predict with great precision the position of the 
flame front for given values of porosity of porous media, gas flow and equivalence ratio, as can be 

observed in the work of Lammers et al., [14,15]; one of the most cited works in the literature. 
However, one-dimensional models do not reproduce very well some flame behaviours that may 
indicate that the system is about to reach unstable conditions. Recently,  Kishroe et al., [16,17]. 

performed a numerical study of porous media burners with a three-dimensional model. Like the 
results obtained with one-dimensional models, the three-dimensional model predicted with great 
precision the experiments carried out under the same operating conditions. Howev er, it was also 

reported that this model allows to predict flame behaviours that are important to identify flame 
stability range, such as cellular structures on the flame. The main drawback of three -dimensional 
models is the high computation cost. For example, Kishroe et al., reported computational domains 

that exceeds four million of control volumes.  
In this work, numerical simulations of methane-air premixed flames on a surface-stabilized 

combustion burner were carried out to identify the reliability of two-dimensional model for 

predicting operating conditions that may lead to flashback. Although two-dimensional models are 
not expected to be capable of reproducing some three-dimensional behaviours, they computational 
cost is not much greater than that of one-dimensional models [18-21]. Additionally, they offer 
important results for the design process of surface-stabilized combustion burners, which are 

discussed in this paper, such as the ability to identify whether certain unburned mixture velocity leads 
to a flat flame operation condition. The experimental data to validate the results were reported by 
the authors in a previous study [1]. The results indicate that the numerical approach implemented in 

this work allows to predict the flame stability in a surface-stabilized combustion burner. 
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2. Numerical Model 
 

Figure 2 shows the cross section of the burner surface or burner port. Gray rectangles represent 
the solid part of the burner port and the spaces between them represents the burner holes or pores. 
The flame has been represented in a wave form, since experimental tests have reported that the 

flame always tends to have this behaviour. That is why a minimum curvature value is defined. This 
allows to identify whether a flame can be considered as a “flat flame”. The definition of this curvature 
value will be shown later. 

 

 
Fig. 2. Computational domain 

 

In Figure 2, a rectangle has been drawn to represent the computational domain. The pores are 

considered as if they were slots and only half of one of them is studied taking advantage of the 
symmetry of the system. In previous study [2], the geometric properties of the burner are discussed. 
From this information is possible to obtain that diameter of the holes (d) is 1 mm and the distance 

between the holes (l) is 0.3 mm. Additionally, the thickness of the burner, h, is 25 mm.  
Boundary conditions were defined as I: velocity inlet, W: solid phase, S: sy mmetry, and O: 

pressure outlet. The total height of the calculation domain (L) is 30 mm, which is considered long 
enough since the reaction occurs very close to the burner.  

Before checking mesh independence, computational domain consisted of 334 control volumes, 
as shown in Figure 3(a). To improve readability, just a portion of the numerical domain is shown. 
Since the flame is expected to be very thin, it is necessary to refine the mesh especially in those areas 

where reactions occur. That is the reason why once the independence of the mesh has been 
achieved, the mesh is denser towards the burner surface and its size increases progressively as it 
moves away from the burner, as it is shown in Figure 3(b). It was observed that with a size of control 

volumes greater than 18000 the solution does not present significant changes.  
 

Burner

Flame

O

S S

W

I

h

L

d/2
l/2

Computational domain



CFD Letters 

Volume 15, Issue 4 (2023) 106-113 

109 
 

  

(a) (b) 
Fig. 3. Computational domain (a) Before mesh independence (b) After 
mesh independence 

 
ANSYS-Fluent was used to perform the numerical simulations. Steady state equations related to 

conservation of mass, momentum, energy, and species were solved simultaneously  [22]. Radiation 

at the burner surface was considered using a user defined function (UDF). Surrounding temperature 
was assumed to be 25 °C. A laminar, segregated, double precision solution model is used to solve the 
governing equations mentioned above. Density, Specific heat, thermal conductivity, and viscosity of 

the unburned mixture are calculated using the ideal gas mixture law. As described in Ref. [2], the 
material of the porous media consists of alumina (𝐴𝑙2𝑂3).  

To determine the source terms of species in the energy equation, the conservation of chemical 
species equation must be solved. Since the fuel used is methane, the Westbrook and Dryer two-step 

reaction mechanism was used in this work. In this case, reactions are too fast, which leads to 
inequalities in the time scales of the system and therefore the solution diverge. To solve this problem, 
the stiff chemistry solver method is used.  

Calculations were initialized with the velocity inlet conditions of the methane -air mixtures 
described in Ref. [2]. Figure 4 shows the velocity contours of one operating condition. Running pre -
mixed combustion simulations is often difficult. To get the reactions to start, it is necessary to 

perform simulations with the cold mixture until the momentum equation is solved and subsequently, 
a temperature of 2000 K is stablished in the control volumes downstream of the burner. As a 
convergence criterion, constant value of the residuals and temperature 1mm downstream of the 

burner outlet and a report of heat flux balances close to zero were considered.  
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Fig. 4. Velocity contours 

 

3. Results  
 
Some results of the calculations are shown in Figure 5. This figure shows the temperature 

distribution in the flame for a flat flame (stable) operation condition. Since the lines are curved, the 
flame is assumed to be curved. To define whether a flame is flat, the increase in the surface area is 
calculated. To accomplish this, the curved flame is assumed to be conical, while a perfectly flat flame 

is assumed to be a circular surface parallel to the burner surface [23]. Therefore, the increase in the 
surface area can be calculated as follows: 

 

𝑠𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
𝜋𝑙√𝑙2+𝛿2

𝜋𝑙2
             (1) 

 

 
 

(a) (b) 
Fig. 5. Temperature contours 

 
Where δ is the difference between the upper part of the flame and the lower part of the line at 

900 𝐾, as shown in Figure 6. Here, the flame is considered flat (stable) if the increase in surface area, 

𝑆𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡, is less than 1 for flames that exhibit a positive curvature and less than 1.5 for flames that 
exhibit a negative curvature. It was observed that, general ly, operating conditions that exceed a value 
of 1 towards the burned gases lead to blow out, as shown in Figure 5(a). On the other hand, it was 

0.05 mm
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observed that operating conditions that exceed a value of 1.5 towards the burned gases lead to blow 
out, as shown in Figure 5(a). 

 

 
Fig. 6. Schematic representation 
of flame curvature 

 
Figure 7 shows the mole fractions of the species in the preheating zone and in the reaction zone 

for the operating condition that leads to flashback discussed in Fig. 5(b). It is observed that oxygen 

and methane are consumed within the burner, indicating that the flame is about to penetrate de 
burner. 

  

 
Fig. 7. Species profile 

 
Finally, Figure 8 shows the stability diagram obtained numerically (num) and experimentally 

(exp). Again, experimental results are obtained from Ref. [2]. It is observed that following the 

criterion of 𝑆𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 > 1 and 𝑆𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 > 1.5 to predict blowout and flashback, respectively, 
reproduce very well the experimental results. 

 

 
Fig. 8. Stability diagram 
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4. Conclusions 
 

In this work, a computational methodology based on the finite volume method with a two -
dimensional domain is presented to predict the flame curvature towards the unburned gas that 
occurs before flashback and the flame curvature towards the burned gas that occurs before blowout 

in a surface-stabilized combustion burner. This allows to identify whether an operating condition can 
be considered stable, or, in other words, the flame is flat. From the results presented and their 
discussion, as well as from the background of the literature exposed through the article, it is possible 
to conclude that the use of a two-dimensional simulation model allowed obtaining profiles of 

temperatures and species in accordance with those expected based on the results reported in the 
literature. Additionally, it was observed that the flame curvature can be used as a criterion to predict 
whether an operating condition leads to flashback or blowout. 
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