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The presence of stenosis at the wall of the artery lead to further cardiovascular 
diseases such as heart attack, stroke and many more. Treatment of a stenosed artery 
includes the insertion of a catheter through the artery which affects the blood flow and 
solute dispersion. This present study focuses on the effect of catheter radius and 
stenosis height on the blood flow and solute dispersion behavior. The problem is 
modelled using the Herschel-Bulkley fluid to represent the blood rheology, with 
catheter and stenosis as the boundary conditions. Analytical solutions in integral form 
are obtained by solving the momentum equation and Herschel-Bulkley constitutive 
equation. The integrals are numerically evaluated using the Simpson’s 3/8 rule and 
Regula-Falsi method to obtain the blood velocity. The obtained velocity is employed 
into the unsteady convective-diffusion equation and solved using the generalized 
dispersion model (GDM) to analyse the behaviour of solute diffusion. The influence of 
catheter radius and stenosis height on the diffusion coefficient and mean 
concentration of solute are observed. Results show that the diffusion coefficient 
decreases as the catheter radius and stenosis height increases. A decrease in diffusion 
coefficient simultaneously increases the solute mean concentration. 

 

Keywords: 
Steady blood flow; Unsteady solute 
dispersion; Herschel-Bulkley model; 
Generalized Dispersion Model; 
Catheterized stenosed artery. 

 
1. Introduction 
 

Atherosclerosis is a medical condition caused by the accumulation of fats, cholesterol and other 
materials at the lining of the arterial wall. This condition can lead to the thickening of the arterial 
wall, narrowing of the lumen and obstruction of blood flow [1]. One of the many treatments of a 
stenosed artery is through the catheterization of the stenosed artery to either deliver drug or open 
up the narrowed artery by placing a stent at the stenosed site. Introducing a catheter into an artery 
poses various risk of complications that includes cardiac perforation, heart arrhythmias, stroke, blood 
loss and several more [2]. Thus, extra measures should be considered by doctors before performing 
the treatment. Research on solute dispersion through a catheterized stenosed artery can contribute 
and improve the biomedical field related to catheterization of a stenosed artery. 

Study of solute dispersion is significant as the behaviour of drug solute within the artery could 
affect the effectiveness of the drug. Debnath et al., [3] analysed the unsteady dispersion using the 
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Casson fluid to model the blood flowing through an artery with the presence of catheter. They utilized 
the Aris-Barton method in solving for the dispersion coefficient and Hermite polynomial to solve for 
the axial mean concentration. In comparison with the GDM method, the GDM method is more 
practical. This is because the solution expressions provided by Gill and Sankarasubramanian [4] 
harbours the high order parameter of concentration rate. Thus, it can provide more details on the 
dispersion mechanism such as dispersion function, convection coefficient, diffusion coefficient and 
mean concentration. Sebastian and Nagarani [5] studied the unsteady dispersion of solute through 
an annulus with wall absorption present. They used the GDM method to obtain the expression of the 
convection and diffusion coefficients. Nagarani et al., [6] investigated the influence of boundary 
absorption on the dispersion of solute through a catheterized artery and utilizes the GDM to solve 
for the dispersion function solution. Nagarani and Sebastian [7] observed the dispersion behaviour 
affected by the flow unsteadiness through an annulus and adopted the GDM method to solve for the 
diffusion coefficient and mean concentration. Abidin et al., [1] conducted a research on the unsteady 
solute dispersion of Bingham flow through an artery with overlapping stenosis. They utilized the GDM 
method to solve for the steady and unsteady dispersion functions of solute. Based on the literatures, 
it is appropriate to say that the GDM method is a practical and pragmatic approach in solving the 
expression of solute dispersion such as dispersion function, diffusion coefficient and mean 
concentration. 

One of the fluid popular in studying the of solutes convection and diffusion is the nanofluid. In 
choosing the suitable fluid model to represent the blood rheology, no particular model is collectively 
acknowledged to reflect the blood viscosity exact nature [8]. Therefore, researchers have used 
Newtonian and various non-Newtonian models in representing the blood flow. The type of model 
chosen depends on the problems of the artery. For instance, this present study focuses on the blood 
flowing through a catheterized stenosed artery. Therefore, the model chosen should be able to 
explain the flow in a vastly narrow artery. The model suiQ for this present study is the Herschel-
Bulkley model because it is suitable to be utilized at low shear rate flow in very narrow arteries where 
the yield stress is high [9]. Furthermore, the yield stress and power-law index parameters are 
harboured by the Herschel-Bulkley model [10]. The Herschel-Bulkley model can also be modified into 
other models such as Newtonian, Power-Law and Bingham models which gives an additional 
advantage over other type of non-Newtonian models [11]. Sankar and Hemalatha [12] observed the 
blood flowing through an artery using the Herschel-Bulkley model with the presence of catheter. 
Sankar and Lee [13] studied the behaviour of blood flow in a two-fluid artery with the presence of 
catheter by utilizing the Herschel-Bulkley model to represent the blood. Neeraja et al., [14] used the 
Herschel-Bulkley model in their research on the blood flow through a stenosed blood vessel. Abbas 
et al., [15] analysed the blood flow by utilizing the Herschel-Bulkley model through an artery with 
multiple stenosis present at the arterial wall. Srivastava and Rastogi [16] observed blood flow through 
a catheterized artery using the Herschel-Bulkley model affected by the hematocrit and stenosis 
shape. Gudekote et al., [17] utilized the Herschel-Bulkley model in their study of peristaltic blood flow 
through an elastic tube with the presence of porous wall slip due to the model’s validity for lower 
shear rate values. Jaafar et al., [18] studied the unsteady solute dispersion with the presence of 
chemical reaction through a stenosed artery by using the Herschel-Bulkley model in representing the 
blood and adopting the GDM method in solving for the steady and unsteady dispersion functions. All 
the literature mentioned uses the Herschel-Bulkley model in depicting the blood flow. However, most 
of the studies that uses the Herschel-Bulkley model to portray the blood behaviour only focuses on 
the blood flow analysis and neglects the aspect of solute dispersion. Moreover, the research of solute 
dispersion in a blood flow using the Herschel-Bulkley model through a very narrow artery due to both 
catheter and stenosis simultaneously present has not yet been explored. Therefore, the objective of 
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the present research is to investigate the influence of catheter radius and stenosis height on the 
diffusion coefficient and mean concentration modelled by the Herschel-Bulkley model. The result of 
this present study could potentially advance the medical field such as refining the arterial 
catheterization procedure, making better medical device and refining drug prescribing related to 
stenosed artery. 
 
2. Methodology  
2.1 Problem Formulation 
 

The solute dispersion in terms of diffusion coefficient and mean concentration in a blood flowing 
through a catheterized artery with stenosis present at the arterial wall is considered. The blood flow 
is considered as a steady, fully-developed, laminar Herschel-Bulkley model through an artery with 

the presence of catheter of radius .R  Figure 1 depicts the problem configuration of the blood flowing 
through the catheterized artery where r  is the radius, z  is the axial direction of the flow, k  is the 

dimensionless catheter radius, 1λ  is the plane location of the lower part of plug flow region, 2λ  is the 

plane location of the upper part of plug flow region, δ  is the height of stenosis, l0  is the length of 

stenosis and  R z  is the stenosed artery flow region radius. There are outer flow and plug flow 

regions between the wall of the catheter and the artery. The outer flow region is further distinguished 
into bottom and top region because the fluid velocities in those two regions are different as shown 

in Figure 1. The radiuses of these three regions are k r  1λ  for the bottom outer flow region, 

r 1 2λ λ  for the plug flow region and r R 2λ  for the top outer flow region. Formulation and 

mathematical solving in this present study utilizes the cylindrical polar coordinates. 
 

 
 

Fig. 1. The configuration of blood flowing through a catheterized 
stenosed artery 

 
The continuity and momentum equation in the cylindrical coordinate given by Tey et al., [19] is 

adapted to the present study problem. This present study focuses on the solute dispersion through 
the axial flow of Herschel-Bulkley model in the z  direction. Thus, the azimuthal and radial direction 
velocities are neglected and assumed to be zero. The flow is uniform and the velocity is independent 
from the radial and azimuthal directions due to axial symmetry. The continuity, momentum and 
Herschel-Bulkley constitutive equations for the steady flow in the z  direction and cylindrical 
coordinate can be governed as given below: 
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𝜕𝑤̅

𝜕𝑧̅
= 0, 

(1) 

  
𝑑𝑝̅

𝑑𝑧̅
= −

1

𝑟̅

𝑑

𝑑𝑟̅
(𝑟̅𝜏̅), 𝑘𝑅̅ ≤ 𝑟̅ ≤ 𝑅̅ 

(2) 

 
and 
 

|𝜏̅| = 𝜇̅𝐻
1/𝑛

(−
𝜕𝑤̅

𝜕𝑟̅
)

1/𝑛

+ 𝜏𝑦̅   if   |𝜏̅| ≥ 𝜏𝑦̅,

𝜕𝑤̅

𝜕𝑟̅
= 0   if   |𝜏̅| < 𝜏𝑦̅,                                   

 (3) 

 

where w  is the velocity in the z  direction, p  is the pressure, τ  is the shear stress, 
Hμ  is the 

viscosity of Herschel-Bulkley fluid, n  is the power-law index and yτ  is the yield stress,. The pressure 

gradient dp dz  in the momentum equation is measured as a fixed value. The momentum equation 

boundary condition is given as 
 
𝜏̅ = −𝜏𝑦̅   at   𝑟̅ = 𝜆1,

𝜏̅ = 𝜏𝑦̅   at   𝑟̅ = 𝜆2.   
  (4) 

 
The Herschel-Bulkley constitutive equation in Eq. (3) can be written as 
 

𝜇̅𝐻 (
𝜕𝑤̅

𝜕𝑟̅
) = −(|𝜏̅| − 𝜏𝑦̅)

𝑛
   if   |𝜏̅| ≥ 𝜏𝑦̅, (5) 

 
with the boundary conditions of 
 
𝑤̅ = 0   at   𝑟̅ = 𝑘𝑅̅,      

𝑤̅ = 0   at   𝑟̅ = 𝑅̅(𝑧̅),   
  (6) 

 

where  R z  is defined as 

 

𝑅̅(𝑧̅) = {

𝑅̅                                                               otherwise,                        

𝑅̅ −
𝛿̅

2
[1 + cos (

2𝜋

𝑙0̅

(𝑧̅ − 𝑑̅ −
𝑙0̅

2
))]    when   𝑑̅ ≤ 𝑧̅ ≤ 𝑙0̅ + 𝑑̅,

 (7) 

 

where δ  is stenosis height, l0  is stenosis length and d  is stenosis location. The solute dispersion 

equation in a simplified form is given by the unsteady convective-diffusion equation as 
 
𝜕𝐶̅

𝜕𝑡̅
+ 𝑤̅

𝜕𝐶̅

𝜕𝑧̅
= 𝐷̅𝑚 (

1

𝑟̅

𝜕

𝜕𝑟̅
(𝑟̅

𝜕

𝜕𝑟̅
) +

𝜕2

𝜕𝑧̅2
) 𝐶̅, (8) 

 

where C  is the concentration of solute, t  is the time and mD  is the diffusivity of molecules. The 

unsteady convective-diffusion equation in Eq. (8) has the initial and boundary conditions of 
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𝐶̅(𝑟̅, 𝑧̅, 0) = 𝐶0̅   if   |𝑧̅| ≤ 𝑧𝑠̅/2,      

𝐶̅(𝑟̅, 𝑧̅, 0) = 0   if   |𝑧̅| > 𝑧𝑠̅/2,        
 (9) 

  

𝐶̅(𝑟̅, ∞, 𝑡̅) = 0     (10) 
 
and  
 
𝜕𝐶̅

𝜕𝑟̅
(𝑘, 𝑧̅, 𝑡̅) =

𝜕𝐶̅

𝜕𝑟̅
(𝑅̅(𝑧̅), 𝑧̅, 𝑡̅) = 0, (11) 

 

where C0  is the reference solute concentration and 
sz  is the length of solute. 

 
2.2 Solution for Flow Velocity 

 
In solving for the blood flow velocity, Eqs. (1), (2) and (5) are first non-dimensionalized by utilizing 

the following non-dimensional variables introduced as follows: 
 

𝑤 =
𝑤̅

𝑤̅0
, 𝑟 =

𝑟̅

𝑅̅
, 𝑧 =

𝑧̅

𝑅̅
, 𝜏 =

2𝜏̅

𝑝̅0𝑅̅
, 𝐶 =

𝐶̅

𝐶0̅

, 𝑡 =
𝐷̅𝑚𝑡̅

𝑅̅2
, 𝑅(𝑧) =

𝑅̅(𝑧̅)

𝑅̅
, 𝑑 =

𝑑̅

𝑅̅
, 𝑙0 =

𝑙0̅

𝑅̅
, 𝛿 =

𝛿̅

𝑅̅
 , (12) 

 

where  , , , , , , , ,w r z C t R z d l0        τ  and δ  are the non-dimensional variables of velocity, radius, axial 

coordinate, shear stress, concentration, time, stenosis size, stenosis location, stenosis length and 

stenosis height respectively and p0  is the absolute magnitude of typical pressure gradient. The 

pressure gradient can be written as sdp dz p p  0  where sp  is the static pressure gradient. The 

viscosity μ  is  
m

H p R



1

02μ μ  has the Newtonian fluid’s viscosity dimension. The dimensionless 

form of momentum and Herschel-Bulkley constitutive equations are obtained as  
 

2𝑝𝑠 =
1

𝑟

𝑑

𝑑𝑟
(𝑟𝜏),    𝑘 ≤ 𝑟 ≤ 1, (13) 

  

(
𝜕𝑤

𝜕𝑟
) = −(|𝜏| − 𝜏𝑦)

𝑛
. (14) 

 
Eq. (13) is solved for τ  through integration with respect to r  to obtain 
 

𝜏 =
𝑝𝑠

𝑟
(𝑟2 − 𝜆2), (15) 

 

where 2
1 2λ λ λ . The dimensionless τ  in Eq. (15) is then substituted into Eq. (14) and solved for w  

in the bottom outer flow region, plug flow region and top outer flow region expressed respectively 
as 
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𝑤𝑜
+ = −𝑝𝑠

𝑛 (∫ (
𝜆2 − 𝑟2

𝑟
)

𝑛

𝑑𝑟

𝑟

𝑘

− 𝑚𝜃 ∫ (
𝜆2 − 𝑟2

𝑟
)

𝑛−1

𝑑𝑟

𝑟

𝑘

) ,   for   𝑘 ≤ 𝑟 ≤ 𝜆1,              

𝑤𝑝 = constant   for   𝜆1 ≤ 𝑟 ≤ 𝜆2,                                                                                               

𝑤𝑜
++ = −𝑝𝑠

𝑛 ( ∫ (
𝑟2 − 𝜆2

𝑟
)

𝑛

𝑑𝑟

𝑅(𝑧)

𝑟

− 𝑚𝜃 ∫ (
𝑟2 − 𝜆2

𝑟
)

𝑛−1

𝑑𝑟

𝑅(𝑧)

𝑟

) ,   for   𝜆2 ≤ 𝑟 ≤ 𝑅(𝑧),

 (16) 

 

where .y spθ τ  The integral terms in Eq. (16) are numerically solved by utilizing the Simpson’s 3/8 

rule. Due to the velocity distribution throughout the blood flow region having a continuity condition, 

the equation of    o p ow r w w r    1 2λ λ  is obtained and used to find the value of 1λ  and 2λ  

using the Regula-Falsi method. 
 
2.3 Solution for Diffusion Coefficient 
 

The dimensionless variables in Eq. (12) are substituted into the unsteady convective-diffusion 
equation in Eq. (8) and the dimensionless unsteady convective-diffusion equation is written as 
 
𝜕𝐶

𝜕𝑡
+ 𝑤

𝜕𝐶

𝜕𝑧
= (

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) +

1

𝑃𝑒2

𝜕2

𝜕𝑧2
) 𝐶, (17) 

 

where .mPe Rw D 0  The dimensionless initial and boundary conditions of Eqs. (9), (10) and (11) are 

 

𝐶(𝑟, 𝑧, 0) = 1   if   |𝑧| ≤ 𝑧𝑠/2,      

𝐶(𝑟, 𝑧, 0) = 0   if   |𝑧| > 𝑧𝑠/2,      
 (18) 

𝐶(𝑟, ∞, 𝑡) = 0     (19) 
 
and 
 
𝜕𝐶

𝜕𝑟
(𝑘, 𝑧, 𝑡) =

𝜕𝐶

𝜕𝑟
(𝑅(𝑧), 𝑧, 𝑡) = 0 (20) 

  
respectively. The solute convection is assumed to be moving across the artery with the average fluid 

velocity mw  given by the expression of 

 

𝑤𝑚 =
2

𝑅(𝑧)2 − 𝑘2
∫ 𝑤𝑟 

𝑅(𝑧)

𝑘

𝑑𝑟. (21) 

 

A new coordinate system  , ,r z t1  is defined with a new axial coordinate z1  where mz z u t 1  

for solving the solute concentration. Following Gill and Sankarasubramanian [4], Eq. (17) is assumed 
to be in a series expansion solution of 
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𝐶(𝑟, 𝑧, 𝑡) = 𝐶𝑚(𝑧, 𝑡) + ∑ 𝑓𝑗

∞

𝑗=1

(𝑟, 𝑡)
𝜕𝑗𝐶𝑚(𝑧, 𝑡)

𝜕𝑧1
𝑗

, (22) 

 

where 
mC  is the cross-sectional mean solute concentration defined by 

 

𝐶𝑚(𝑧, 𝑡) =
2

𝑅(𝑧)2 − 𝑘2
∫ 𝐶(𝑟, 𝑧, 𝑡)𝑟 

𝑅(𝑧)

𝑘

𝑑𝑟 (23) 

 

and jf  is the dispersion function. The unsteady convective-diffusion equation is transformed into a 

coordinate system of  , ,r z t1  by substituting the definition of z1  into Eq. (17). Eq. (22) is then 

substituted into the transformed unsteady convective-diffusion equation to obtain 
 
𝜕𝐶𝑚

𝜕𝑡
+ (𝑤 − 𝑤𝑚)

𝜕𝐶𝑚

𝜕𝑧1
−

1

𝑃𝑒2

𝜕2𝐶𝑚

𝜕𝑧1
2  

+ ∑ [(
𝜕𝑓𝑗

𝜕𝑡
− 𝐿2𝑓𝑗)

𝜕𝑗𝐶𝑚

𝜕𝑧1
𝑗

+ (𝑤 − 𝑤𝑚)𝑓𝑗

𝜕𝑗+1𝐶𝑚

𝜕𝑧1
𝑗+1

−
1

𝑃𝑒2
𝑓𝑗

𝜕𝑗+2𝐶𝑚

𝜕𝑧1
𝑗+2

+ 𝑓𝑗

𝜕𝑗+1𝐶𝑚

𝜕𝑡𝜕𝑧1
𝑗

]

∞

𝑗=1

= 0. 

(24) 

 

The distribution of 
mC  is assumed to be diffusive in nature from the starting point. Thus, the GDM 

for 
mC  can be noted as 

 

𝜕𝐶𝑚

𝜕𝑡
= ∑ 𝐾𝑖(𝑡)

𝜕𝑖𝐶𝑚

𝜕𝑧1
𝑖

.

∞

𝑖=1

 (25) 

 
According to Gill and Sankarasubramanian [4], the second terms of Eq. (25) describe the diffusive 

coefficient K2  of the mean concentration 
mC  along the z1  axis respectively. Eq. (25) is then 

substituted into Eq. (24) and rearranged into the following expression 
 

∑ 𝐾𝑖(𝑡)
𝜕𝑖𝐶𝑚

𝜕𝑧1
𝑖

∞

𝑖=1

+ (𝑤 − 𝑤𝑚)
𝜕𝐶𝑚

𝜕𝑧1
−

1

𝑃𝑒2

𝜕2𝐶𝑚

𝜕𝑧1
2 + ∑ [(

𝜕𝑓𝑗

𝜕𝑡
− 𝐿2𝑓𝑗)

𝜕𝑗𝐶𝑚

𝜕𝑧1
𝑗

∞

𝑗=1

 

+(𝑤 − 𝑤𝑚)𝑓𝑗

𝜕𝑗+1𝐶𝑚

𝜕𝑧1
𝑗+1

−
1

𝑃𝑒2
𝑓𝑗

𝜕𝑗+2𝐶𝑚

𝜕𝑧1
𝑗+2

+ 𝑓𝑗 ∑ 𝐾𝑖(𝑡)
𝜕𝑖+𝑗𝐶𝑚

𝜕𝑧1
𝑖+𝑗

∞

𝑖=1

] = 0. 

(26) 

 

The diffusion coefficient is obtained by equating the coefficients for the term j j

mC z  1  for 

, , ,...,j 1 2 3  and a differential equation of K2  is obtained as 

 

𝐾2(𝑡) −
1

𝑃𝑒2
+ (𝑤 − 𝑤𝑚)𝑓1 + 𝑓1𝐾1(𝑡) + (

𝜕𝑓2

𝜕𝑡
− 𝐿2𝑓2) = 0. (27) 

 
From Eqs. (22) and (23), the following solvability condition is obtained  
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∫ 𝑓𝑗𝑟 

𝑅(𝑧)

𝑘

𝑑𝑟 = 0,   for   𝑗 = 1,2, …, (28) 

 

since 
mC  can satisfy the initial condition of .C K2  in Eq. (27) are then multiplied with r  and 

integrated from the limit k  to   .R z  Using the solvability condition in Eq. (28), the solution of K2  is 

simplified as 
 

𝐾2 =
1

𝑃𝑒2
−

2

𝑅(𝑧)2 − 𝑘2
∫ 𝑓1𝑤𝑟 

𝑅(𝑧)

𝑘

𝑑𝑟. (29) 

 
Using Eq. (27), the following set of equations are obtained: 
 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑓1𝑠

𝜕𝑟
) = (𝑤 − 𝑤𝑚), (30) 

𝜕𝑓1𝑡

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑓1𝑡

𝜕𝑟
) (31) 

 

to solve for the dispersion function f1  where      , ,s tf r t f r f r t 1 1 1  and 
sf1  is the steady state 

solution and 
tf1  is the time-dependent part of the solution. Eq. (30) are numerically solved by utilizing 

the Simpson’s 3/8 rule to integrate with respect to r  for obtaining the solution of the steady function 

sf1 . For the solution of 
tf1 , separation of variable method is used to solve for Eq. (31) to obtain 

 

𝑓1𝑡 = ∑ 𝐴𝑚𝐵0(𝛼𝑚𝑟)𝑒−𝛼𝑚
2 𝑡

∞

𝑚=1

, (32) 

 

where          m m m m mB r J k Y r Y k J r 0 1 0 1 0α α α α α  and 

 

𝐴𝑚 = −
∫ 𝑓1𝑠𝐵0𝑟 

𝑅(𝑧)

𝑘
𝑑𝑟

∫ 𝐵0
2𝑟 

𝑅(𝑧)

𝑘
𝑑𝑟

. (33) 

 

The factor mα  is the root to equation           ,m m m mY R z J k Y k J R z 1 1 1 1 0α α α α  where 

,J J0 1  and ,Y Y0 1  are the Bessel functions of first and second kind respectively, with zero and first 

order respectively. The obtained dispersion function is then substituted into Eq. (29) to solve for .K2  

 
2.4 Solution for Mean Concentration 
 

The higher order of  iK t  starting from  K t3  is neglected to obtain the generalized dispersion 

model from Eq. (22) in the form of 
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𝐶(𝑟, 𝑧1, 𝑡) = 𝐶𝑚(𝑧1, 𝑡) + 𝑓1(𝑟, 𝑡)
𝜕𝐶𝑚(𝑧1, 𝑡)

𝜕𝑧1
. (34) 

 
The mean concentration in Eq. (25) satisfying conditions in Eqs. (18) and (19) resulted in the 

solution of 
 

𝐶𝑚(𝑧1, 𝑡) = −
1

2
[𝑒𝑟𝑓 (

𝑧1 −
𝑧𝑠

2
2√𝜔

) − 𝑒𝑟𝑓 (
𝑧1 +

𝑧𝑠

2
2√𝜔

)], (35) 

 

where   .

t

K t dt 2

0

 =ω  

 
3. Results and Discussion  
 

The influence of catheter radius and stenosis height on the diffusion coefficient and mean 
concentration are discussed in this present research. Thus, those parameters are varied such as 

. , . , .k  0 1 0 2 0 3  and , . , . 0 0 1 0 2δ  to observe the graphical trend when the catheter radius and 

stenosis height increases in a steady manner. Other parameters are chosen to have a constant value 
appropriately. The power-law index value selected for this study is .n  0 95  due to the fact that the 
common blood flow power-law index values usually lies between . .0 9 1 1 and the typical value of 

.m0 95  is suitable for m1 [16]. According to Nagarani and Sebastian [7], the yield stress range of 

.0 0 1  and solute length values of 0.02 and 0.004 are within the typical ranges in the cardiovascular 

system. Thus, the constant for yield stress and solute length are chosen as . 0 1θ  and .sz  0 004  

respectively. The graphs plotted are analysed accordingly. 
 

3.1 Diffusion Coefficient 
 
The catheter radius influence on the diffusion coefficient is investigated in Figure 2. Figure 2 

shows a decrease in the diffusion coefficient as the catheter radius rises from 0.1 to 0.3. This is 
because the decrease in the artery flow region that reduces the effectiveness of the diffusion process. 
When the flow region is small, many blood cells and solutes clustered inside the artery due to the 
lack of space for diffusion to occur smoothly. Not to mention, for all the catheter radius, the diffusion 
coefficient increases as the time increases until it reaches a steady diffusion. Significantly, as the time 
increases, the graphical trend of the diffusion coefficient increment is more inclined when .k  0 1  
compared to .k  0 3 . This indicates a rapid diffusion at the beginning of the process when the 
catheter radius is smaller. Meanwhile, bigger catheter has slower increase in diffusion at the 
beginning. Another notable dispersion behaviour is the difference in diffusion coefficient values 
between .k  0 1  and .k  0 2  is significantly larger compared to the difference in diffusion coefficient 
values between .k  0 2  and .k  0 3 . Although the increment in catheter radius is in a fixed interval 
of 0.1, the decrease in diffusion coefficient as the catheter radius increases is substantially different 
between catheter radiuses.  
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Fig. 2. Diffusion coefficient for varied catheter radius of 

. , . , .k  0 1 0 2 0 3  with . , . , , .sn p   0 2  0 95  1  0 1δ θ  

 
The effect of stenosis height on the diffusion coefficient is observed in Figure 3. Similarly, the 

graph shows a decrease in the diffusion coefficient when the stenosis height grows from 0 to 0.2. 
This is also because of the decrease in the flow region which leads to the solute particles unable to 
diffuse smoothly. As the time increases, the diffusion coefficient increases until it reaches a constant 
diffusion. The diffusion at the beginning of the process is also faster when  0δ  in comparison to 

. 0 1δ  and . 0 2δ . It can be theoretically concluded that the behaviour of the solute dispersion in 
terms of the diffusion coefficient is identical when either catheter radius or stenosis height is 
increased; except that the numerical value of the plotted solution is different. Additionally, a 
distinguished difference in the numerical values can be observed between Figure 2 and Figure 3. As 
the stenosis height increases in an interval of 0.1 from  0δ  to . 0 1δ , the difference in diffusion 
coefficient is almost similar to when the stenosis height grows from . 0 1δ  to . 0 2δ . Meanwhile, 
for the catheter radius increment as in Figure 3, the difference in diffusion coefficient varies even 
though the difference in catheter radius is in a similar interval. 

 

 
Fig. 3. Diffusion coefficient for varied stenosis height of 

, . , . 0 0 1 0 2δ  with . , . , , .sk n p   0 1  0 95  1  0 1θ  
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3.2 Mean Concentration 
 

Figure 4 is analysed to describe the effect of catheter radius on the mean concentration of solute. 
Figure 4 shows an increase in the mean concentration as the catheter radius increases from 0.1 to 
0.3. The decrease in the flow region caused by the presence of catheter leads to the decrease in 
diffusion coefficient. As the diffusion process slows down, the solute becomes concentrated at the 
particular region. This explains the high mean concentration when bigger catheter radius is present 
within the artery. It can also be observed that the mean concentration increases and decreases 
between approximately t 13  and t 17  and peaked at the middle of the mentioned time range for 

.k  0 1 , where the peak indicates the highest therapeutic level and the effective time for drug 
dispersion process. However, as the catheter radius increases, the time range for which the mean 
concentration increases and decreases becomes smaller. Not to mention, as the catheter radius 
increases, the increase and decay of the mean concentration also becomes rapid as opposed to the 
slower increase and decreases of mean concentration at smaller catheter radius of .k  0 1 . Another 
thing to consider, at the time of the highest mean concentration for all catheter radius, the diffusion 
coefficient is already at a constant diffusion since the diffusion coefficient is already steady starting 
from .t 0 5  as shown in Figure 2. However, the mean concentration only occurs after approximately 

t 13 . 
 

 
Fig. 4. Mean concentration for varied catheter radius of  

. , . , .k  0 1 0 2 0 3  with . , . , , . , ,sn p z    0 2  0 95  1  0 1  1δ θ  

.sz  0 004  

 
Figure 5 illustrates the influence of stenosis height on the mean concentration of solute. Figure 5 

shows an increment in the mean concentration as the stenosis height grows from 0 to 0.2. The 
increasing stenosis also decreases the flow region and causes the diffusion process to weaken. The 
slow diffusion prompts an increase in solute concentration at the particular region. The behaviour of 
solute dispersion as the stenosis height increases displays a similar trend to when the catheter radius 
is increased as shown in Figure 4; such that the time range for which the mean concentration 
increases and decreases becomes smaller as the stenosis height increases. Additionally, the increase 
and decay of the mean concentration also becomes fast as the stenosis height increases. 
Nevertheless, a substantial difference of the mean concentration between  0δ  and . 0 1δ  and 
between . 0 1δ  and . 0 2δ  are highly pronounced. The mean concentration difference between 
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. 0 1δ  and . 0 2δ is larger in comparison to the difference between  0δ  and . 0 1δ . It can also 
be noted that the mean concentration peaked between the time range of approximately .t 12 5  
and t 18  for . 0 1δ . Increase in the stenosis height increases the mean concentration peak and 
reduces the time range in which the peak occurs.  

 

 
Fig. 5. Mean concentration for varied stenosis height of 

, . , . 0 0 1 0 2δ  with . , . , , . , ,sk n p z    0 1  0 95  1  0 1  1θ  

.sz  0 004  

 
Figures 6 (a) and (b) displays the variation of mean concentration against the axial distance under 

the influence of different catheter radius and stenosis height. Figure 6 (a) shows varying mean 
concentration when .k  0 1  and  0δ ; where the stenosis is absent at . , . , . , .t  0 2 0 5 1 0 1 5 . It is noted 

that the highest value of mean concentration for all time is the highest at .t 0 2  and lowest at 

. .t 1 5  Thus, it can be concluded that the peak mean concentration decreases as the time increases. 
This is because the solute particles becomes lesser due to the dispersion process that diffuses the 
solute particles to other region within the artery after some time. It is also noticable that the increase 
and decrease of the mean concentration is faster at .t 0 2  compared to .t 1 5 . In terms of the axial 
distance, the location of the mean concentration increases axially as the time increases. Figure 6 (b) 
illustrates the varying mean concentration when .k  0 1  and . 0 1δ ; where the stenosis is present 
at . , . , . , .t  0 2 0 5 1 0 1 5 . The presence of stenosis reduces the flow region within the artery; therefore 

decreasing the diffusion coefficient and increasing the mean concentration. This explains the higher 
numerical value of mean concentration when both catheter and stenosis are present for all time as 
shown in Figure 6 (b) compared to the mean concentration value when only the catheter is present 
as shown in Figure 6 (a). Nevertheless, the difference in axial distance between graphs in Figures (a) 
and (b) at similar time parameters are small. 
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(a) 

 

 
(b) 

Fig. 6. Mean concentration for varied time of . , . , . , .t  0 2 0 5 1 0 1 5  

with . , , . , .s sn p z   0 95  1  0 1  0 004θ  and varied catheter 

radius and stenosis height of (a) .k 0 1  and 0δ  (b) .k 0 1  
and . .0 1δ  

 
4. Conclusion 
 

The present research explores the unsteady solute dispersion in blood flow using the Herschel-
Bulkley model through a catheterized stenosed artery. The blood is depicted by the Herschel-Bulkley 
model. The catheter radius, stenosis height and time parameter effects on the diffusion coefficient 
and mean concentration are investigated. For the diffusion coefficient, the results show a decrease 
in the solute diffusion coefficient as either of the catheter radius or stenosis height increases 
respectively. Nevertheless, for all the catheter radius and stenosis height, the diffusion coefficient 
increases at the beginning of the process and reaches a constant state as the time parameter 
increases. However, the rate of diffusion coefficient increment at the beginning depends on either 
the catheter radius or stenosis height. The smaller the catheter radius or stenosis height, the faster 
the rate of diffusion coefficient increment. As the increment in catheter radius or stenosis height 
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leads to the reduction of diffusion coefficient, the mean concentration increases. The reduced 
diffusion makes the solute particles accumulate at the particular region. Thus, increasing the mean 
concentration. Nonetheless, the mean concentration decreases as the time increases due to the 
diffusion process occurring after some time even though in a slower pace. The mean concentration 
axial distance also increases as the time increases. 

From the results obtained, the theoretical aspect of the observations can be applied to the real-
life setting. For instance, patients with higher stenosis height in the artery is advised for a smaller 
catheter radius to ensure the drug solute diffuses efficiently within the flow region space. However, 
if the intention of the treatment is to accumulate the drug solute within a targeted region, bigger 
catheter radius should be used. This is because the smaller flow region due to the increased catheter 
radius will increase the mean concentration at the targeted region. Nevertheless, as the time 
increases, the diffusion coefficient reaches a constant rate. Therefore, doctors should carefully 
calculate the safe drug dosage for the time the diffusion is at a constant diffusion rate to optimize 
the effectiveness of the drug. The mean concentration also decreases and moves further axially 
within the artery as the time increases. Thus, if the drug solute is supposed to target a local region 
within the artery, doctors should expect the drug concentration to reduce and moves along the artery 
after a certain time when calculating the dosage. 

This present research opens many possibilities for future studies to be explored. The present 
research can be further extended to research the solute dispersion in a flow represented by other 
non-Newtonian models such as Jeffrey, Carreau–Yasuda and many more. One of the areas that can 
demonstrate the conventional drug delivery system in the biomedical engineering is the 
nanotechnology field [20]. Nanofluid has gain a reputation in the study of boundary layer flow of 
thermal convection and concentration diffusion through various setting such as channel flow, pipe 
flow, stretching sheet and many more. Several types of nanofluid that has been studied for the 
boundary layer flow is the SWCNT-MWCNT hybrid nanofluid [21], Jefferey nanofluid [22], 
Al2O3/Water nanofluid [23] and other more. This present research may be further studied by using 
the nanofluid in representing the blood rheology. Expectantly, this present research and the 
suggested research problems may motivate other researchers to conduct future studies that 
contribute to the understanding of the solute dispersion process in blood flow. 
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