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The analysis of unsteady axial symmetric flows of an incompressible 
and electrically conducting Casson fluid over a vertical cylinder with 
time-variable temperature, under influence of an external transversely 
magnetic field has been carried out. The mathematical model is build 
based on the time-fractional differential equation of Cattaneo’s law 
with Caputo derivative to describe thermal transport. Based on the 
model, we can obtain the effect of temperature gradient history on 
heat transport and fluid motion. Besides, the generalized 
mathematical model that we build can be used to achieve the Classical 
Cattaneo’s law. Comparison between the generalized Cattaneo and the 
classical Cattaneo was examined to optimize the heat transport model. 
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1. Introduction 
 

Non-Newtonian fluids are important in several fields of engineering applications especially in the 
extraction of crude oil from petroleum products such as polymer processing. Many researchers 
interested to study about the non-Newtonian fluids because non-Newtonian fluids has more 
appropriate behaviour than Newtonian [1]. Some examples of non-Newtonian fluids are butter, 
cheese and honey where the fluids viscosity is only dependent on temperature. Many researchers 
carried out their work in industrial environment on the flow of the Casson fluid with the effects on 
various parameter. The Casson fluid effects on magneto-hydrodynamics (MHD) unsteady heat and 
mass transfer free convective past an infinite vertical plate was studied by Abdullahi et al., [2]. 
Mondal et al., [3] was studied about the heat transfer behavior of viscous dissipative chemically 
reacted Casson fluid where the discussion was made with the impact of suction, thermal conductivity 
and variable viscosity in this paper. 
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An interesting study was made by Aghighi et al., [4] where they investigated numerically the 
Rayleigh-Benard Convection (RBC) in viscoplastic fluids and consider the Casson fluid in a 
bidimensional square cavity heated from below. Parandhama et al., [5] were studied the impact of 
induced magnetic field on Casson fluid flow past a vertical plate. They stated that the velocity falls 
down with an increase of Casson fluid parameter  . Recent advancements in the study of Casson 

fluid flow, Ramanuja and Nagaradhika [6] were studied MHD analysis of Casson fluid through a 
vertical porous surface with chemical reaction. Unsteady flows of a viscous, incompressible and 
electrically conducting Casson fluid past a moving vertical cylinder with time-variable temperature 
under the impact of mass diffusion, transversely uniform magnetic field, and chemical reaction have 
been studied by Kumar and Rizvi [7]. Using a numerical scheme based on the Crank-Nicolson implicit 
finite differences, the authors analyzed fluid motion and heat and mass transfer. Some of the 
interesting results on Casson fluid can be found in reports by Ali and Sandeep [8], Yusof et al., [9], 
Aman et al., [10], Omar et al., [11] and Daud et al., [12]. 

The classical mathematical models of heat transport are seeming irrelevant for the recent 
developments in technology of measurements in heat transfer.  Many researchers in the heat 
transfer have developed another mathematical model that are able to explain the complex 
phenomena of diffusion processes. Therefore, the advance mathematical models of heat transfer 
based on the constitutive equations with fractional derivatives in time or space have been studied 
and achieved. 

The science of fractional derivative is quite interesting and recently many researchers presented 
their useful contributions on this topic. Guo et al., [13] have performed the novel fractional order 
simulations in order to inspect the characteristics of mass and heat transfer over porous inclined 
surface subject to the magnetic impact. Ogunrinde et al., [14] have implemented the idea of 
fractional simulations for the solutions of COVID-19 disease. Zhang et al., [15] applied the fractional 
derivative scheme to present the simulations for a bio-convective problem with heat conduction 
model and able to predict thermal response between diffusion and wave behavior. Thakare and 
Warbhe [16] have discussed the time fractional thermoelastic state of a thermally sensitive 
functionally graded thick hollow cylinder subjected to internal heat source. Xu and Wang [17] 
successfully implemented analytical solution of time fractional Catteno heat equation for finite slab 
under pulse heat flux. Other researchers performed Cattaneo’s law effects can be seen on studies by 
Qi et al., [18], Han et al., [19] and Herma and Shivakumara [20]. 

In this paper, we have carried out the unsteady axial symmetric flows of incompressible and 
electrically conducting Casson fluids over a vertical cylinder with time-variable temperature, under 
influence of an external transversely magnetic field. The thermal transport is described by a 
generalized mathematical model based on the time-fractional differential equation of Cattaneo's law 
with Caputo derivative. Hence, the effect of the temperature gradient on heat transport and fluid 
motion are able to explained by our model. The generalized mathematical model of thermal 
transport can be particularized to obtain the classical Cattaneo's law. 

The effect of the of the temperature gradient on the thermal transport and the fluid movement 
has been accomplished by numerical simulations and graphic illustrations by considering the 
temperature of the cylindrical surface varying exponentially with time. A comparison of the two 
models, the generalized Cattaneo and the classic Cattaneo gives information on the optimal choice 
of the thermal transport model. 
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2. Statement of the Problem 
 

We consider the unsteady flow of an incompressible, electrically conducting Casson fluid over a 
semi-infinite vertical circular cylinder of radius 𝑅𝑜. The z -axis of a cylindrical coordinate system 

 , ,r z is carry along the axis of cylinder in the vertical upward direction. The gravitational 

acceleration, g  is in downward direction, 
z

g ge   as shown in Figure 1. Magnetic field 
0 r

B B e  and 

0
B const are applied to the fluid. 

 

 
Fig. 1. Flow geometry 

 
The rheological equation of state for Cauchy stress tensor of Casson fluid is given by 
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where  
ij

  , , 1, 2,3i j   is the shear stress tensor, ij ij
e e  , ij

e is the ( )
th

ij  component of the 

deformation rate tensor, c
  is a critical value of the product  , B

 is a plastic dynamic viscosity of 

the non-Newtonian fluid, 
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where 
y

P denotes the yield stress of the fluid. If a shear stress less than the yield stress applied to the 

fluid, it behaves like a solid whereas if a shear stress greater than yield stress is applied, the fluid 

starts to move. Therefore, the non-Newtonian Casson fluids flow if. 
c

   Denoting the dynamic 

viscosity, 
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we obtain the kinematic viscosity, 
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where   is the mass density and   is called the Casson parameter.  

Consider the velocity field of the form    , , , , zv r z t u r t e  . The fluid t emperature T  is 

considered as function of ( , )r t , therefore  ,T T r t  , and the heat flux vector is given by

( , ) rq q r t e . Taking into consideration the above assumption and the Boussinesq’s approximation, 

the flow heat transfer is governed by the linear momentum equation, energy equation and Cattaneo-
Vernotte’s constitutive equation [1,2]: 
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Where   is the thermal expansion coefficient,  is the electrical conductivity of the fluid, p
c  is the 

specific heat, q
  is the thermal relaxation time and k  is the thermal conductivity of the fluid. Under 

the velocity field assumption, we have 0, 0, ( , )
r z

u u u u r t


   , therefore the continuity Eq. (5) is 

identically satisfied. 

The divergence operator in cylindrical coordinate is 
1 1

( ) z

r

q q
divq rq

r r r z
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  
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r
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z
q  , we obtain 

 

  
1

, .divq rq r u
r r





            (8) 
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 
 ,

, .r

T r t
gradT r t e

r





            (9) 

 
Along with all of the equations above, we consider the initial-boundary conditions 
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In the above relations function
1
( )f t is a piecewise function of exponential order to infinity. Using 

the following dimensionless parameters and functions, 
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we obtain the non-dimensional equations: 
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The non-dimensional forms of Eq. (10) are 
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3. The Generalized Fractional Mathematical Model 
 

In this paper, we consider a generalized Cattaneo’s law given by the constitutive equation of the 
thermal flux, 
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where  ,
t

D q r t


 denotes Caputo time-fractional derivative operator defined as 
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Let  ,
C
h t  be the Caputo kernel given by 
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Using Eq. (18) and Eq. (19), the time-fractional Caputo derivative is written as a convolution, namely, 
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Applying Laplace transform on Eq. (18) to Eq. (20), we obtain 
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where       
0

ˆ , , ,
st

q r s L q r t q r t e dt
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
   denotes the Laplace transform of function  ,q r t . 

 
4. Solution of the Generalized Mathematical Model 
 

The solutions of the proposed problem are obtained by using Laplace transform and Bessel 
functions. 
 
4.1 Solution of the Generalized Thermal Process 
 

In this section, we find the solution of the Eq. (14) and Eq. (17) along with the initial and boundary 
conditions 
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Applying the Laplace transform to Eq. (14) and Eq. (17) and using Eq. (21) and Eq. (22), we obtain 
the transformed equations 
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The Laplace transform  ˆ ,T r s  has to satisfy the boundary conditions 
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Eliminating  ˆ ,q r s  between Eq. (24) and Eq. (25) we have that  ˆ ,T r s  satisfies the differential 

equation 
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Eq. (27) is written in the equivalent form 
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that is a modified Bessel equation with the general solution [18,19], 
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The inverse Laplace transform of function Eq. (31) cannot be obtained in a simple analytical form, 

hence, the numerical values of the temperature    1 ˆ, ( , )T r t L T r s


  are determined by using the 

Stehfest’s algorithm. According to Stehfest’s algorithm, the temperature is approximated by 
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In the above relations,  x denotes the integer part of x , and n  is an integer positive number. 

Let’s note that for  0,1   and 0   , the solutions Eq. (31) and Eq. (32) give the temperature 

field corresponding to the generalized fractional Cattaneo thermal process. When 1   and 0  , 
Eq. (32) give the temperature of the classical Cattaneo thermal process. 
 
5. Fluid Velocity 
 

The fluid velocity is given by the solution of differential Eq. (12) along with the initial and boundary 
conditions Eq. (15) and Eq. (16). 

Applying the Laplace transform to Eq. (12), using the initial condition (15), and the expression (31) 
of the temperature we obtain the following equation of the transformed velocity ˆ( , )u r s : 
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A particular solution of Eq. (34) in given by 
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The homogenous equation associated with Eq. (34) is the modified Bessel equation 
 

2
2 2

2

2

0

ˆ ˆ
ˆ 0.

u u s Ha
r r r u

r r 

  
  

 

 
  
 

                     (36) 

 
whose general solution is 
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where  
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To have the finite velocity for r  , we must take ( ) 0C s  . The general solution of Eq. (34) is 
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The transformed velocity field is given by 
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0 0

2
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ˆ
ˆ , .

K r s K r sGr f s
u r s
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 

   
 

 

 
 

      

                  (40) 

 
The numerical values of the velocity field in the real domain are obtained using the Stehfest’s 

algorithm, namely, 
 

 
2

1

ln 2 ln 2
ˆ, , ,

n

j

j

u r t D u x j
t t

 
 
 

                      (41) 

 

where j
D  is given by Eq. (33). 

 
6. Numerical Results and Discussions 
 

In this section, the obtained exact solutions are studied numerically in order to determine the 
effects of temperature and velocity. The generalized mathematical model of thermal transport can 
be particularized to obtain the classical Cattaneo' law, when the memory parameter is 1  . Figure 
2 shows the variation of the dimensionless temperature ( , )T r t , for small values of time and for 

different values of the fractional parameter  . The temperature profiles were drawn for two cases 
corresponding to the fractional mathematical model but also for the classic of thermal transport 
Cattaneo. As expected, the fractional Catteno heat transfer model generates higher temperature 
than the classic Cattaneo model. It is noted that the weight function that affects the temperature 

gradient in the case of the classic Cattaneo model is 
1
( ) exp( / )k t t   , while in the fractional 

Cattaneo model it is 
1

2 ,
( ) ( / )k t t E t

 

 



  , where ,

( )E
 

  is two-parameters Mittage-Leffler 
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function. Obviously 2 1
1

lim ( ) ( )k t k t


 where it is visible in Figure 2 because the temperature is close to 

that corresponding to 1   when 0.9  . The influence of the thermal relaxation time on the 
thermal field is shown in figure 3. It is shown that the temperature decreases with the increasing of 
relaxation time  . 

Figure 4 shows the influence of the Grashof number on the fluid motion. It is seen that the fluid 
velocity increases with the increasing of Grashof number. Noted that the increasing value of Grashof 
number leads to increase in buoyancy factor of the fluid. 

Fluid motion is numerically analysed by the graph shown in Figure 5 where the graphs show the 
velocity profile versus the radial variable r with different values of the fractional parameter  . It is 
observed that there is a perfect correlation between the evolution of fluid temperature and velocity 
concerning the   namely memory parameter, the velocity values decrease with the memory 
parameter  . This is due to the fact that the velocity has a maximum value near the cylindrical 
surface and tends to zero away from it. 
 

  
(a) (b) 

 
(c) 

Fig. 2. The profiles of the nondimensional temperature  for different values of fractional parameter 
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(a) 

 
(b) 

Fig. 3. The influence of the thermal relaxation time  on the temperature field 
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(c) 

Fig. 4. The influence of Grashof number  on the fluid velocity 

 
 

  
(a) (b) 

 
(c) 

Fig. 5. Velocity profiles  versus for the different values of the fractional parameter  

 
7. Conclusion 
 

In this paper, we have investigated the unsteady axial symmetric flows of incompressible and 
electrically conducting Casson fluids over a vertical cylinder with time-variable temperature, under 
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influence of an external transversely magnetic field. The thermal transport is described by a 
generalized mathematical model based on the time-fractional differential equation of Cattaneo's law 
with Caputo derivative. Based on the model, we can obtain the effect of temperature gradient history 
on heat transport and fluid motion. The main observations in summarized form are listed as: 

I. The fractional Cattaneo heat transfer model generates higher temperature than the classic 
Cattaneo model and for 0.9  the temperature profile is close to that corresponding to 1  . 

II. The decreasing change in temperature is noted for the increasing value of relaxation time  . 
III. The fluid velocity increases with the increasing of Grashof number. Noted that the increasing 

value of Grashof number leads to increase in buoyancy factor of the fluid.  
IV. There is a perfect correlation between the evolution of fluid temperature and velocity 

concerning the  namely memory parameter, the velocity values decrease with the memory 
parameter  due to the fact that the velocity has a maximum value near the cylindrical 
surface and tends to zero away from it.  
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