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The impact of the Caputo fractional derivative on the unsteady mixed convention 
boundary layer flow of Casson fluid is investigated. It is evaluated the flow via two 
different geometries which are plate and microchannel with oscillating motion. The 
problems are modelled using a set of partial differential equations with appropriate initial 
and boundary conditions. The dimensional equations are turned into dimensionless 
governing equations by using relevant dimensionless variables. The obtained solutions are 
transformed into fractional form using Caputo fractional derivative. The exact solutions 
are obtained using the Laplace transform approach. Inverse Laplace transform is applied 
to the oscillating plate problem while Zakian’s explicit formula approach is used to obtain 
the results of temperature and velocity profiles. Both profiles are graphed and studied its 
behaviour in both geometries. The temperature profile is shown to have an opposite 
pattern of graph for both geometries. While when compared between both geometries 
on its velocity profile, oscillating plate has a higher velocity compared to oscillating plate. 
For both profiles, increasing the fractional parameter resulted in a greater pattern. This 
study aids in the comprehension of Casson fluid flows in fractional systems.  
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1. Introduction 
 

Fractional calculus is used in a wide range of domains, including biology, engineering and 
economics field. As agreed by other researchers Jan et al., [1] and Qureshi [2] as compared to classical 
order models, fractional order derivatives are more practical. Since most of real-world problems are 
subjected to three major mathematical laws. According to Saqib et al., [3] and Abro [4], the laws 
include the power function, generalized Mittag-Leffler function and exponential decay law. Aside 
from that, fractional modelling is the sole way to express some of the most important rheological 
properties of industrialized fluids. Fractional partial differential equations have a variety of distinctive 
characteristics that make them as a useful mathematical tool for simulating the intricate behaviors 
of boundary layer flow. The most popular and commonly used fractional derivative operators are 
Riemann-Liouville and Caputo fractional derivative. However, since Riemann-Liouville fractional 
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derivative has some limitations, the Caputo fractional derivative has been made to fill in the gap. The 
Caputo fractional derivative has received a lot of attention in the past [5-8]. 

Nowadays, it is critical to do research on the flow behavior of non-Newtonian fluids due to its 
extensive use in industrial and engineering area. Additionally, according to Abidin et al., [9] 
viscoelastic fluids exhibit peculiar patterns of instability that are neither predicted nor seen in 
Newtonian fluid. This fluid cannot be represented using Navier-Stokes equations. They behave as a 
fluid which its shear rate is unproportionally to the shear stress. One of the most important types of 
non-Newtonian fluid is Casson fluid. Casson first debuted this model in 1959 [10]. Yield stress is 
present in Casson fluid. Casson fluid is a shear thinning liquid with an infinite viscosity at zero shear 
rate while a zero viscosity at an infinite shear rate. In agreement with Pramanik [11] it behaves like a 
solid whenever the applied shear stress is less than the yield stress. Whereas when the situation is 
vice versa, it begun to move. Recent Casson fluid research includes the following in Reyaz et al., 
Sheikh et al., Naqvi et al., Halsted and Brown and Gudekote et al., [12-16]. 

Many researchers are actively interested in researching the flow of fluid over a variety of 
geometries such as a plate and microchannel, along with its applicability in nowadays concerns. An 
example usage of plates is in automotive industry while microfluidic can be seen in Micro 
Electromechanical Systems (MEMS) technology with microchannel as its geometry. The plate’s and 
microchannel’s motion may varies depending on its needed situation, such as static, oscillating, and 
others. Hamrelaine et al., [17] studied on a flow of Jeffrey fluid between two static plates with the 
presence of injection and suction. 

As a result of the preceding research, the main objective of this study is to apply the Caputo 
fractional derivative operator on Casson fluid convective flow via oscillating plate as well as oscillating 
microchannel. Because it has yet to be addressed, this study will do so to fill in the gap. The Laplace 
transform method is used to acquire the exact solutions for fractional convective flow of Casson fluid. 
The impact of a variety of variables on fluid flow is investigated and addressed.  
 
2. Methodology  
2.1 Problem Formulation 

 
The microchannel is represented by two plates separated by distance of   apart whereas the 

plate is considered as an infinite vertical flat plate. The flow is restricted to   in both geometries, 
where   is the coordinate measured in the plate’s normal direction. Both the fluid and the 
geometries, the plate and the microchannel, at  are at rest. The temperature for the plate while 
at rest is at uniform temperature,  Meanwhile for the microchannel, it is at rest at constant 
ambient temperature    For both geometries, they begins to oscillate in their respective planes at 

time  corresponding to its velocity, 
 
   (1) 

 
where the constant   is the plate oscillations amplitude,  is the unit step function, and   is 
the frequency with which the plate oscillates. For both geometries, the plate temperature is raised 
to  at the same moment as oscillating motion occurred. And then it is kept constant at that 
temperature. The temperature and velocity are regulated by the time variable   and space variable 

 The momentum and energy equations following forms when utilizing unidirectional and one-
dimensional Casson fluid flow and the Boussinesq’s approximation. 
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   (2) 

   (3) 

 
Here, the fluid velocity is denoted by   the temperature of the fluid is symbolized by  

 is the parameter of Casson fluid, the kinematic viscosity is expressed by   is the acceleration 
of gravitational,  is the thermal expansion coefficient,  is the specific heat at constant pressure, 

and   is the conductivity of thermal. For oscillating plate, equations (2) and (3) are subjected to 
equation (4) whereas equation (5) depicts the initial and boundary conditions for oscillating 
microchannel.  
 

   (4) 

 

   (5) 

 
The following non-dimensional variables are introduced to transform the governing equations 

into non-dimensional equations. Equation (6) are used for oscillating plates, while oscillating 
microchannel used non-dimensional variables as in equation (7) 

 

   (6) 

 

   (7) 

 
The momentum and energy equations, as well as the initial and boundary conditions, are derived 

in non-dimensional form using the non-dimensional variables as in equation (7). Therefore, the non-
dimensional governing equations are as follows 
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for oscillating plate. While the initial and boundary conditions for oscillating microchannel are 
 

   (11) 

where     shows the phase angle. Then, the non-dimensional governing equations are 

then transformed into fractional non-dimensional governing equations using the Caputo fractional 
derivative. The definition of the Caputo fractional derivative are as follows 
 

   (12) 

 
where   represents the Euler Gamma function and the fractional parameter is described by   

 
2.2 Solutions 
2.2.1 Solution for oscillating plate 
 

The fractional non-dimensional governing equations are applied with Laplace transform method. 
The changed system is then produced as follows: 

 

   (13) 

   (14) 

   (15) 

 
Based on condition (15), the following is the solution to equations (13) and (14) respectively. 
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   (17) 

 

The inverse Laplace transform of equation (16) and (17) gives 

( ) ( )
( ) ( ) ( )

( ) ( )

,0 0, ,0 0,
0, cos , 0, 1,

, 0, , 0,

v
v H

v

x q x
t t wt q t

t q t

= =
= =
¥ = ¥ =

( ) ( )
( ) ( )

( ) ( ) ( )

,0 0, ,0 0,
0, 0, 0, 0,

1, cos , 1, 1,

v
v

v H

x q x
t q t

t t t q t

= =
= =

= W =
2

.dw
n

W = tW

( ) ( )
( )

0

1 1 ;0 1
1( )

( ) ; 1

t f
f t t
t f t

t

aa

a

t
t a

a tt

a

ì ¶
¶ < <ïG - ¶¶ ï -= í¶ ¶ï =ï ¶î

ò

G .a

( )
2

Pr
2

1, ,q
o o

v q v q Gr e
q

axab x b
x

-¶
- = -

¶
2

2Pr ,qa qq
x
¶

=
¶

( ) ( )2 2

10, , 0, ,qv q q
q q

q
w

= =
+

( ) Pr
2 2

1 1,  = ,
(Pr ) (Pr )

o oq q qo o

o o

Gr Grqv q e e e
q q q q q q q

a a ax b x b x
a a a ax

w b b
- - -+ -

+ - -

( ) Pr1, ,qq e
q

axq x -=



CFD Letters  
Volume 14, Issue 11 (2022) 1-8 

5 
 

   (18) 

   (19) 

 
 
2.2.2 Solution for oscillating microchannel 

 
The same method as in oscillating plate, the Laplace transform method is also used to solve the 

fractional non-dimensional governing equations for the oscillating microchannel. The modified 
system is created as follows: 

 

   (20) 

   (21) 

   (22) 

 
The following is the solution to equation (20) and (21) based on condition (22): 
 

   (23) 

   (24) 

 

Since the equations obtained (23) and (24) cannot be inverted analytically using tabular forms, 
therefore the inverse Laplace transform is numerically computed using the Zakian’s explicit formula 
approach, to display the temperature and velocity profiles, respectively. 
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where   and  are constants either in real or complex conjugate pairs form. The values for 

  and  are taken from Wang et al., [18]. 
 

3. Results  
 

In this section, the velocity and temperature profiles for the influence of the fractional parameter 
study are described. The effect of fractional parameter,  on the fluid temperature is represented 
in Fig. 1. It can be seen that both of the geometries have an opposite pattern of graph. The oscillating 
plates have depicted a decreasing exponentially curve. Meanwhile for the oscillating microchannel, 
the curves increase exponentially. The findings indicate as those since the surface area for the plate 
is much wider compared to microchannel. Whereas, since the surface area for the microchannel is 
enclosed, the temperature favor to be kept in surrounding. The influence of   for both geometries 
show an increasing pattern for the temperature profile. The temperature profile is higher for the 
classical Casson fluid model as compared for the fractional Casson fluid model. At   the 
temperature profile’s maximum curve is attained.  
 

 
Fig. 1. Temperature profile 

 
Fig. 2 illustrates the velocity profile results for both geometries. In comparison to the oscillating 

microchannel, the oscillating plate has a higher velocity. Since the plate has an infinite length, its 
tendency to oscillate with a higher velocity is elevated as compared to the microchannel who have a 
finite length. For both geometries, as the fractional parameter   increase, the velocity profile 
increases as well. It shows that fluid velocity es enhanced by increasing fractional parameter,  The 
thickness of thermal and momentum boundary layers increases along with the increasing of 
fractional parameter,  values which causes the velocity profile to rise as well.  
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Fig. 2. Velocity profile 

 
 
4. Conclusions 
 

The Caputo fractional derivative is used to model the convective flow of Casson fluid via an 
oscillating motion of plates and microchannel in this article. The exact solutions for both geometries 
were derived using the Laplace transform method, which is then utilized to develop the velocity and 
temperature profiles. However, since it is not possible to compute the inversion of exact equations 
for the oscillating microchannel, the inverse Laplace transform is numerically calculated using the 
Zakian’s explicit formula. The oscillating plate has a higher velocity compared to oscillating 
microchannel. Meanwhile, the temperature profile for both geometries has an opposite pattern of 
curve. Where the temperature profile for oscillating plate decreases exponentially, whereas for 
oscillating microchannel, it increases exponentially. The fractional parameter’s influence is displayed 
for both profiles. Both profiles increased as the fractional parameter increased.  
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