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The Riga plate is a substantial alteration in the world of engineering. Mainly used in 
submarines to regulate water flow, studying the behaviour of fluid flowing over a Riga 

plate is very advantageous. Although there are ample studies on fluid flowing over  a Riga 

plate, the introduction of fractional derivatives, coupled with a non-Newtonian fluid, has 
yet to be done. Within the field of fluid mechanics, specifically boundary layer flow, 

fractional derivatives do not have a proven geometrical representation . However, 

analytical solutions would be useful in aiding experimental researches in the future. Thus, 
this study aims to present an analytical function for a Caputo -Fabrizio fractional 

derivative on an unsteady Casson fluid flowing over an accelerating ve rtical Riga plate by 

using the Laplace transform method. The parametric effects considered in this study is 

elucidated. Through observation of obtained graphical results generated via the obtained 
analytical solutions, it is found that amplification of the  fractional parameter and 

modified Hartmann number increases the fluid velocity with an average increment of 

42.05% and 1.56%, respectively. While amplification of the Casson parameter and Prandtl 

number dampens the fluid velocity by an average of 45.09% a nd 43.56%, respectively. 
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1. Introduction 

 

Introduced by Gailitis and Lielausis [1], the Riga plate is an actuator built by stacking together 
electrodes and magnets of the same size together side by side. Due to its 
electromagnetichydrodynamic (EMHD) properties, Riga plates are able to generate a Lorentz force. 

Changing the position of the Riga plate, the Lorentz force generated would either aid or hinder fluid 
flow. Making Riga plates very convenient as a medium in controlling fluid flow. It is often used in 
submarines to reduce drag flow and turbulence [2]. Modelling fluid flowing over a Riga plate 

generates the Grinberg term in the governing momentum equation. Through the process of non -
dimensionalisation, the Grinberg term is reduced to a term with the modified Hartmann number as 
its coefficient [3]. Evaluation of the Riga plate is done through observing the effects of the modified 
Hartmann number on fluid flow.  
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Early works of fluid flow over a Riga plate includes Loganathan and Deepa [4, 5] and Loganathan 
and Dhivya [6] where authors considered Casson fluid flowing over a Riga plate. Each study 

considered different effects applied on the fluid flow, but all of them flows over a Riga plate. Authors 
noted that with an increase in the modified Hartmann number, the fluid velocity increases. This is 
due to the position of the Riga plate, where the Lorentz force generated are parallel to fluid flow, 

aiding it and increasing its velocity. Later, the study was replicated by Nasrin et al., [7] by considering 
a rotating Casson fluid and the result, with regards to the modified Hartmann number, were in 
accordance to that of Loganathan et al., [4–6, 8]. Other works on fluid flow over Riga plates includes 
Shah et al., [9], Rizwana et al., [10], Mallawi et al., [11] and Khatun et al., [12]. The study of Riga plates 

is very diverse. Nanofluids, fluid containing nano-sized particles in, were also considered when 
investigating fluid flow over a Riga plate. Bhatti and Micaelides [13] investigated the Arrhenius 
activation energy of a nanofluid over a Riga plate. Abbas et al., [14] studied mixed convection flow of 

Casson nanofluid over a Riga plate. Other studies on nanofluids include Prasad et al., [15], Waini et 
al., [16], Waini et al., [17] and Khashi'ie et al., [18]. 

Most of the literature mentioned above solved their problems through a numerical approach. 

Exact or analytical solutions on fluid flowing over a Riga plate is very scarce. Furthermore, none of 
the literature considered fractional derivatives in their studies. Fractional derivatives have been 
proven to produce a spectrum of solutions, providing more options for experimental and numerical 

researchers to validate their studies. Even though the geometrical representations of fractional 
derivatives have yet to be found, the analytical solutions will be very benef icial to future researchers 
to validate their studies. 

The Caputo fractional derivative was first introduced into an unsteady Casson fluid flow over a 
vertical plate by Khan et al., [19]. The Laplace transform of Caputo’s fractional derivative contains 
frequency domain parameter with powers of  . Special functions called the Mittag-Lefler and Wright 
function is generated from analytically solving a function with the Caputo fractional derivative. 

Authors presented the boundary layer problem solution in terms of Wright function and proceeded 
to plot the solution via numerical method of inverse Laplace transform. This would indicate that the 
final analytical solution presented as a smidgen impractical in terms of future experimental s tudies. 

Another effect considered in the study is an exponentially accelerated plate. Ali et al., [20], extended 
the same study by considering an oscillating plate. Outcome of the study were complimentary to that 
of Khan et al.,[19]. Another approach to solving the Caputo fractional derivative was showcased by 

Khan et al., [21]. The method involves transforming the equation using Laplace transform, solving the 
ODE and finally Laplace inverse suing Zakian's method. This approach is considered as a semi-
analytical approach instead of an analytical approach due to the nonexistence of a final analytical 

solution. The semi-analytical approach is an excellent alternative in solving complicated problems 
such as the one considered by Khan et al., [21], where fluid flow was considered to be in a channel. 

Another definition of fractional derivative is known as the Caputo-Fabrizio fractional derivative. 
Based on the decay exponential law, the fractional operator of the Caputo-Fabrizio fractional 

derivative does not contain a singular kernel [22]. Essentially, when solving the Caputo-Fabrizio 
fractional derivative via Laplace transform and Laplace inverse transform, the final solutions are 
presented as a linear integral function without any special functions. Making it easier to compute 

since special functions tend to have singularities and is indefinite for certain values of 𝑦. A 
comparative study by Sheikh et al., [23,24] suggested that boundary value problems, where the 
Caputo-Fabrizio fractional derivative is considered, are able to generate a final analytical solution 

that is map-able onto a graphical solution. It is also shown that different definitions, carries different 
analytical solutions and produces different numerical values. Another study by Jamil et al., [25] 
explored the Caputo-Farbizio fractional derivative on a Casson model for blood flow within a multi-
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stenosed artery at an incline. Utilising both the Laplace and Hankel transform, governing equations 
are solved analytically and obtained solutions suggests that velocity of fluid were amplified with an 

increase in the Casson parameter and Reynold's number. However, with the increment of the 
Hartmann number, the velocity of the fluid was dampened. A similar study was done by Maiti et al., 
[26] showcased similar findings. 

To the best of authors knowledge, up to now, there are no analytical studies on the Caoputo -
Fabrizio fractional derivatives on Casson fluid flow over an accelerated Riga plate. The aim of this 
study is to produce analytical solutions for a Caputo-Fabrizio fractional derivative for an unsteady 
Casson fluid flow over an accelerating Riga plate by utilising the Laplace and Laplace inverse 

transform method. Novelties of this study includes: 
 

i. Introducing an accelerated Riga plate to an existing unsteady Casson fluid flow problem.  

ii. Introducing the Caputo-Fabrizio fractional derivative into an unsteady Casson fluid flow 
over a accelerated Riga plate. 

iii. Providing analytical solutions for an unsteady Casson fluid flow over a accelerated Riga 

plate with Caputo-Fabrizio fractional derivative. 
 

Parametric evaluation on obtained solutions, including the skin friction and Nusselt number, are 

also elucidated. 
 
2. Mathematical Formulation 

 
An unsteady free convection flow of a Casson fluid past a semi-infinite vertical Riga plate is 

considered. The 𝑥 -axis is taken along the Riga plate in the vertical direction and the 𝑦 -axis is taken 
normal to the plate. The fluid is considered to be flowing along the 𝑥 -direction and to only occupy 

the space of 𝑦 > 0. Initially, both the fluid and the plate are at rest and their temperature is 𝑇∞, the 
ambient temperature. When 𝑡 > 0, the plate begins to move and accelerates in the 𝑥 -direction, 
against the gravitational field, at the rate of 𝐴𝑡. Where 𝐴 is the acceleration of the plate. Meanwhile, 

the temperature of the plate is raised to 𝑇𝑊  and remained constant thereafter. The electromagnetic 
field induced from the Riga plate, generates an upthrust Lorentz force, 𝐹. The Reynold number is 
assumed to be very minute. Therefore, the magnetic field induced by the movement of the fluid is 

negligible. A permeated uniform thermal radiation, 𝑞𝑟 parallel to the 𝑥 -axis is applied to the fluid. 
Velocity, 𝑈 and temperature, 𝑇 are dependent on space variable, 𝑦 and time, 𝑡. Figure 1 shows a 
geometrical representation of the fluid flow and an example of a Riga plate is shown in Figure 2.  
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Fig. 1. Physical representation of a free convection flow of a 
Casson fluid flow 

 

 
Fig. 2. Riga plate 

 

Based on these assumptions and taking the Boussinesq's approximation into consideration, the 
governing momentum and energy equations are written as [27-31] 

 
𝜕𝑈(𝑦,𝑡)

𝜕𝑡
= 𝜐(1 +

1

𝛽
)
𝜕2𝑈(𝑦,𝑡)

𝜕𝑦2
+ 𝑔𝛽𝑇(𝑇 − 𝑇∞) +

𝜋𝐽0𝑀0

8𝜌
𝑒𝑥𝑝 (−

𝜋

𝑙
𝑦),   (1) 

 

𝜌𝐶𝑃
𝜕𝑇(𝑦,𝑡)

𝜕𝑡
= 𝑘

𝜕2𝑇(𝑦,𝑡)

𝜕𝑦2
−

𝜕𝑞𝑟

𝜕𝑦
.    (2) 

 
Both Eq. (1) and Eq. (2) are bounded by initial and boundary conditions: 

 
𝑈(𝑦, 0) = 0, 𝑇(𝑦,0) = 𝑇∞,
𝑈(0, 𝑡) = 𝐴𝑡, 𝑇(0, 𝑡) = 𝑇𝑊 ,

𝑈(∞, 𝑡) → 0, 𝑇(∞, 𝑡) → 𝑇∞,
    (3) 

 
where   is the kinematic viscosity,   is the Casson fluid parameter, 𝑔 is the gravitational 

acceleration, T  is the thermal expansion coefficient, 𝐽0 is the density of electrical current, 𝑀0 the 

magnitude of magnetization of magnets,   is the density of fluid, 𝑙 is the width of magnets and 

electrodes of the Riga plate,𝐶𝑃 is the specific heat capacity of the fluid at a constant density, 𝑘 is the 

thermal conductivity parameter and 𝑞𝑟 is the thermal radiation parameter. 
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According to Rosseland's approximation [32–34], the governing energy equation from Eq.(2) is 
reduced to: 

 

𝜌𝐶𝑃
𝜕𝑇(𝑦,𝑡)

𝜕𝑡
= 𝑘

𝜕2𝑇(𝑦,𝑡)

𝜕𝑦2
+

16𝜎1𝑇∞
3

3𝑘1

𝜕2𝑇(𝑦,𝑡)

𝜕𝑦2
,    (4) 

 
where 𝜎1 is the Stefan-Boltzman constant and 𝑘1 is the mean absorption coefficient. 

 

𝑈∗ =
𝑈

(𝜐𝐴)1/3
, 𝑦∗ =

𝑦𝐴1/3

𝜐2/3
,

𝑡∗ =
𝑡𝐴2/3

𝜐1/3
, 𝑇∗ =

𝑇−𝑇∞

𝑇𝑊−𝑇∞
,
    (5) 

 
Utilising the dimensionless parameters from Eq. (5) [35–37] and by dropping the asterisk (*) 

notation, Eq. (1), Eq. (3) and Eq. (4) is further reduced to their dimensionless form such as: 
 

𝜕𝑈(𝑦,𝑡)

𝜕𝑡
= 𝛽0

𝜕2𝑈(𝑦,𝑡)

𝜕𝑦2
+ 𝐺𝑟𝑇(𝑦, 𝑡) + 𝐸 𝑒𝑥𝑝(−𝐿𝑦),    (6) 

 
𝜕𝑇(𝑦,𝑡)

𝜕𝑡
= (1 +

4

3
𝑁)

1

Pr

𝜕2𝑇(𝑦,𝑡)

𝜕𝑦2
,    (7) 

 
bounded by dimensionless initial and boundary conditions: 

 
𝑈(𝑦, 0) = 0, 𝑇(𝑦,0) = 0,
𝑈(0, 𝑡) = 𝑡, 𝑇(0, 𝑡) = 1,

𝑈(∞, 𝑡) → 0, 𝑇(∞, 𝑡) → 0,
    (8) 

 

where the parameters of 
0 , 𝐺𝑟, 𝐸, 𝐿, 𝑁 and 𝑃𝑟  are defined as: 

 

𝛽0 = 1 +
1

𝛽
, 𝐺𝑟 =

𝑔𝛽𝑇(𝑇𝑊−𝑇∞)

𝐴
, 𝐸 =

𝜋𝐽0𝑀0

8𝐴𝜌
, 𝐿 =

𝜋𝜐2/3

𝐴1/3𝑙
, 𝑁 =

4𝜎1𝑇∞
3

𝑘𝑘1
, 𝑃𝑟 =

𝜐𝜌𝐶𝑃

𝑘
.   (9) 

 
Here in Eq. (9), 

0  is the dimensionless Casson fluid parameter, 𝐺𝑟 is the Grashof number, 𝐸 is 

the modified Hartmann number, 𝐿 is a constant parameter, 𝑁 is dimensionless thermal radiation 
parameter and 𝑃𝑟  is the Prandtl number. 

 

𝐷𝑡
𝛼𝑓(𝑦, 𝑡) =

1

1−𝛼
∫

𝜕𝑓(𝑦,𝑠)

𝜕𝑦

𝑡

0 𝑒𝑥𝑝 (−𝛼
𝑡−𝑠

1−𝛼
) 𝑑𝑠.    (10) 

ℒ{𝐷𝑡
𝛼𝑓(𝑦, 𝑡)} =

𝑞𝑓(𝑦,𝑞)−𝑓(𝑦,0)

𝑞+𝛼(1−𝑞)
,    (11) 

 

Eq. (10) and Eq. (11) is the definition of the Caputo-Fabrizio fractional derivative and its respective 

Laplace transform definition [38–40]. Here, ℒ denotes the Laplace transform, 𝑞 denotes the 
frequency domain and   the fractional derivative parameter. 

 

Replacing the partial derivative with respect to time, 
𝜕

𝜕𝑡
, in Eq. (6) and Eq. (7), with the fractional 

derivative 𝐷𝑡
𝛼(⋅), from Eq. (10), converts them into fractional governing momentum and energy 

equations respectively and can be written as: 
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𝐷𝑡
𝛼𝑈(𝑦, 𝑡) = 𝛽0

𝜕2𝑈(𝑦,𝑡)

𝜕𝑦2
+ 𝐺𝑟𝑇(𝑦, 𝑡) + 𝐸 𝑒𝑥𝑝(−𝐿𝑦),   (12) 

 

𝐷𝑡
𝛼𝑇(𝑦, 𝑡) = (1 +

4

3
𝑁)

1

Pr

𝜕2𝑇(𝑦,𝑡)

𝜕𝑦2
.    (13) 

 
3. Analytical Solutions 

 

Obtaining the final analytical solutions was done by first reducing the governing equations from 
Eq. (12) and Eq. (13) to a frequency domain, 𝑞, via the Laplace transform. Using the method of 
undetermined coefficients and initial and boundary conditions from Eq.  (8), solutions of the 

momentum and energy equations are expressed as: 
 

 

01 1
1 32 2 2

2 0 1

1
1 0 02

1

1
3 2

2

1
( , ) exp

exp Pr

exp ,

aq a q a q
U y q b b y

q q q b q q a

q a q
b y a

q q a

q a
b Ly

q b q



     
                

  
        

 
  

 

   (14) 

 

0 0

1

1
( , ) exp Pr .

q
T y q y a

q q a

 
    

    (15) 

 
The constant parameters 𝑎0, 𝑎1, 𝑏1, 𝑏2, 𝑏3 and 𝑃𝑟  are expressed as: 

 

0 1 0

2

0 1
1 2 32 2

0 0 0 0 0 0 0 0

0

1
, ,

1

, , ,
Pr

Pr
Pr .

4
1

3

a a a

L aGr E
b b b

a a L a L a

N






  

 


    
  





   (16) 

 
Next, Eq. (14) and Eq. (15) are separated into: 

 

𝜉1(𝑦, 𝑞) =
1

𝑞2
−𝑏1𝜉2(𝑦,𝑞) − 𝑏3𝜉3(𝑦,𝑞), 

𝜉2(𝑦, 𝑞) =
𝑞 + 𝑎1
𝑞2

, 

𝜉3(𝑦, 𝑞) =
𝑞 + 𝑎1
𝑞2 +𝑏2𝑞

, 

𝜉4(𝑦, 𝑞) =
1

𝑞
,    (17) 
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𝜓1(𝑦,𝑞) = 𝑒𝑥𝑝(−𝑦√
𝑎0
𝛽0
√

𝑞

𝑞 + 𝑎1
) , 

𝜓2(𝑦, 𝑞) = 𝑒𝑥𝑝 (−𝑦√𝑃𝑟
0
𝑎0√

𝑞

𝑞+𝑎1
).    (18) 

 
Denoting the product of inverse Laplace transform such as: 

 
ℒ−1{𝜉1(𝑦,𝑞)} = 𝜉1(𝑦, 𝑡), ℒ−1{𝜉2(𝑦,𝑞)} = 𝜉2(𝑦, 𝑡),

ℒ−1{𝜉3(𝑦,𝑞)} = 𝜉3(𝑦, 𝑡), ℒ−1{𝜉4(𝑦,𝑞)} = 𝜉4(𝑦, 𝑡),

ℒ−1{𝜓1(𝑦,𝑞)} = 𝜓1(𝑦, 𝑡), ℒ−1{𝜓2(𝑦,𝑞)} = 𝜓2(𝑦, 𝑡),

   (19) 

 

where ℒ−1 is the notation for inverse Laplace transform. The inverse Laplace transform of Eq. (17) 
are expressed as: 

 
𝜉1(𝑦, 𝑡) = 𝑡 − 𝑏1𝜉2(𝑦, 𝑡) − 𝑏3𝜉3(𝑦, 𝑡), 
𝜉2(𝑦, 𝑡) = 1 + 𝑎1𝑡, 

𝜉3(𝑦, 𝑡) =
𝑎 − 1

𝑏2
+ (

𝑏2 −𝑎1
𝑏2

) 𝑒𝑥𝑝(−𝑏2𝑡) , 

𝜉4(𝑦, 𝑡) = 1.    (20) 
 

Meanwhile, the inverse Laplace transform of Eq. (18) were obtained using the compound function of 

inverse Laplace transform method and are expressed as [41–43]: 
 

𝜓1(𝑦, 𝑡) = ∫
√𝑎0/𝛽0

2√𝜋𝑈3/2

∞

0
𝑒𝑥𝑝 (−

𝑎0/𝛽0
4𝑈

− 𝑈𝑦2 −𝑎1𝑡) [√
𝑎1𝑈𝑦

2

𝑡
𝐼1 (2√𝑎1𝑈𝑦

2𝑡)+ 𝛿(𝑡)] 𝑑𝑢, 

𝜓2(𝑦, 𝑡) = ∫
√𝑎0𝑃𝑟0

2√𝜋𝑈3/2

∞

0 𝑒𝑥𝑝 (−
𝑎0𝑃𝑟

0

4𝑈
− 𝑈𝑦2 −𝑎1𝑡) [√

𝑎1𝑈𝑦2

𝑡
𝐼1(2√𝑎1𝑈𝑦

2𝑡) + 𝛿(𝑡)] 𝑑𝑢.   (21) 

 
Here, the notation 𝐼1(⋅)and 𝛿(⋅)are the modified Bessel function of the first kind of order one and 

the Dirac delta function, respectively. 
Denoted by 𝑈(𝑦, 𝑡) and 𝑇(𝑦, 𝑡) the analytical solutions of Eq. (14) and Eq. (15), after they have 

been inverse Laplace transform, are written in the form of the convolution product such as follow s: 
 

𝑈(𝑦, 𝑡) = ∫ 𝜉1
𝑡

0 (𝑦, 𝑡 − 𝑠)𝜓1(𝑦, 𝑠)𝑑𝑠 + ∫ 𝑏1
𝑡

0 𝜉2(𝑦, 𝑡 − 𝑠)𝜓2(𝑦, 𝑠)𝑑𝑠 + 𝑏3𝜉3(𝑦, 𝑡) 𝑒𝑥𝑝(−𝐿𝑦),   (22) 

 

𝑇(𝑦, 𝑡) = ∫ 𝜉4
𝑡

0 (𝑦, 𝑡 − 𝑠)𝜓2(𝑦, 𝑠)𝑑𝑠.    (23) 

 
Substituting Eq. (20) and Eq. (21) as well replacing the modified Bessel function with its integral form 

in Eq. (22) and Eq. (23), the final analytical solutions of the momentum and the energy equations 
from Eq. (12) and Eq. (13) are written as: 
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2
3 1 2 1 2 1 3 1 1 2 2

2

0 0 20 0

3/20

1 2 1
1 1 3 2

0 0 0
2 2

2
0 0 1

3/2

exp( )
( , ) 1 exp( ) 2 ( ) 1

/ /
exp

42

1
1 ( ) exp ( )

/
cos exp

2

t

b t
U y t b a b b b a b a b b t b t t

b

a a
Uy du

uU

a b a
t s b a t s b b t s

b b

a a Uy

sU



 















         

 
  
 

   
            

    



  

  

 

 

 

2 20 0
1 1

0 00 20
1 1 3/20

2
0

0 1
1 1 3/20 0 0

0 2 20
1 1

3

2

/
(2 )cos( )

4

Pr Pr
1 2 ( ) 1 exp

42

Pr1
1 ( ) cos( )

2

Pr
exp 2 cos( )

4

1
exp

t

a
Uy a s a Uy s d dsdu

U

a a
a t t b Uy du

UU

a a Uy
b a t s

sU

a
Uy a s a Uy s

U

a
b Ly

b




 




 







 
    
 

 
      

 
 

  

 
    
 
 


  



  

 2 1
2

2

exp ,
b a

b t
b

  
  

  

   (24) 

 

 

 

0 0 20 0

3/20

2

0 0 1

3/20 0 0

2 20 0
1 1

( , ) 2 ( ) 1 exp
42

1
cos( )

2

exp 2 cos( ) .
4

t

a Pr a Pr
T y t t uy du

uu

a Pr a uy

u s

a Pr
uy a s a uy s d dsdu

u






 

 





 
    

 



 
   

 



      (25) 

 
3.1 Limiting Cases 

 
The skin friction, 𝐶𝑓, and Nusselt number,𝑁𝑢, for this problem is investigated numerically and 

graphically by considering the following equations: 
 

𝐶𝑓(𝑦, 𝑡) = −𝛽0
𝜕𝑈

𝜕𝑦
|
𝑦=0

,    (26) 

 

𝑁𝑢(𝑦, 𝑡) =
𝜕𝑇

𝜕𝑦
|
𝑦=0

.    (27) 

 

Obtained solutions for both the skin friction and Nusselt number will be discussed in the next  
section. 
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4. Results and Discussions 
 

Graphical representations of velocity and temperature profiles obtained from Eqn Eq. (24) and 
Eq. (25) are illustrated in Figure 3-Figure 10. The MathCad-15 software were used to generate these 
profiles. A numerical validation of obtained results with published results are displayed in Table 1.  

Using the same approach, numerical validation and solutions of skin friction as well as the Nusselt 
number is tabulated in Table 2-Table 3. Meanwhile, the corresponding skin friction and Nusselt 
number graphical solutions against varied 𝑦 values are shown in Figure 11 and Figure 12. 

The velocity profile with variation in the fractional parameter,  , is shown in Figure 3. As 

observed, as   increases, so does the velocity profile with an average of 42.05% increment with 
every value of  . As discussed in the Introduction section, geometrical application of fractional 
derivatives on the mechanics of fluid flow has yet to be discovered. Nonetheless, the obtained 

analytical solutions in Eq. (24) and Eq. (25) will be crucial in validating future numerical and 
experimental research. Figure 3 merely demonstrates the behaviour of a Casson fluid flow over an 
accelerated Riga plate when the Caputo-Fabrizio fractional derivative is considered with variations in 

the fractional value. 
 

 
Fig. 3. Velocity of fluid with variations in   when 𝑡 = 3, 

10 , 𝐺𝑟 = 21, 𝑃𝑟 =14, 𝑁 = 9, 𝐿 = 2, 𝐸 = 9 

 
Meanwhile, Figure 4 shows the velocity profile with variations in the modified Hartman number, 

𝐸. The modified Hartmann number defines the Riga plate existence. Presence of a Riga plate 
introduces Lorentz force, into the fluid flow. In this case, the Lorentz force generated is parallel to 
the fluid flow, increasing the upthrust force experienced by the fluid. Thus, aid ing the fluid flow and 

increasing the velocity of the fluid with an average increment of 1.56%. A large modified Hartmann 
number signifies a larger Riga plate, which in turns increases the Lorentz force, consequently the fluid 
velocity. 
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Fig. 4. Velocity of fluid with variations in 𝐸 when 5.0 , 

𝑡 = 3, 10 , 𝐺𝑟 = 21, 𝑃𝑟 =14, 𝑁 = 9, 𝐿 = 2 

 
The Casson fluid, a non-Newtonian fluid, is considered in this study. A Casson fluid behaves like a 

solid when the shear stress is lower than the yield stress, otherwise it exhibits a Newtonian fluid 
behaviour. It is observed in Figure 5, when 𝑦 > 0 the velocity profile increases with the Casson 
parameter,  . After a certain point in the 𝑦 -direction, between 3.2 and 3.4, the velocity profile 

decreases as   increases. The fluctuation is caused due to the variation in the shear stress. When 

0 ≤ 𝑦 ≤ 3.2, shear stress is larger than the yield stress, showcasing a Newtonian fluid behaviour. On 

the other hand, when 𝑦 ≥ 3.4, the shear stress is smaller than the yield stress, increasing the 
plasticity of the fluid, showcasing a non-Newtonian fluid behaviour. this in turn, decreases the fluid 
velocity with an average of 45.09% decrement. 

 

 
Fig. 5. Velocity of fluid with variations in   when 5.0 , 

𝑡 = 3, 𝐺𝑟 = 21, 𝑃𝑟 = 14, 𝑁 = 9, 𝐿 = 2, 𝐸 = 9 

 
Concurrently, Figure 6 showcases the velocity profile of the fluid with variations in the Prandtl 

number, 𝑃 𝑟. 𝑃 𝑟 is the ratio between the momentum diffusivity rate and the heat diffusivity rate. An 

increase in 𝑃 𝑟 dampens the heat diffusivity rate, decreasing the kinetic energy in the fluid. Thus, fluid 
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velocity decreases, with an average of 43.56% decrement, with the amplification of the Prandtl 
number. This is true in this study as observed in Figure 6. 

 

 
Fig. 6. Velocity of fluid with variations in 𝑃 𝑟 when 5.0 , 

𝑡 = 3, 10 , 𝐺𝑟 = 21, 𝑁 = 9, 𝐿 = 2, 𝐸 = 9 

 
At the same time, Figure 7 showcases the velocity profile of the fluid with variations in the Grashof 

number, 𝐺𝑟. 𝐺𝑟 approximates the ratio between the buoyancy and hydrodynamic viscous force. An 

increase in 𝐺𝑟 amplifies the buoyancy force, increasing the upthrust force experienced by the fluid. 
Thus, fluid velocity increases with the amplification of the Grashof number with an average increment 
of 41.72%. This is true for this study as well, as observed in Figure 7. 

 

 
Fig. 7. Velocity of fluid with variations in 𝐺𝑟 when 5.0 , 

𝑡 = 3, 10 , 𝑃𝑟 =14, 𝑁 = 9, 𝐿 = 2, 𝐸 = 9 

 

In this study, thermal radiation effect is considered. Radiating heat is introduced to the fluid 
through the plate. As more heat is introduced, the kinetic energy within the fluid is intensified. Thus, 
increasing the fluid velocity with an average increment of 76.58%. This behaviour is observed clearly 
in Figure 8. 
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Fig. 8. Velocity of fluid with variations in 𝑁 when 5.0 , 

10 , 𝐺𝑟 = 21, 𝑃𝑟 =14, 𝑡 = 3, 𝐿 = 2, 𝐸 = 9 

 
Figure 9 illustrates the velocity profile with variation in time, 𝑡. An accelerating plate is considered 

in this study. Through the process of non-dimentionalisation, the initial velocity when 𝑦 = 0 is set at 

𝑡. This is stated in Eq. (8). Variations in 𝑡 suggests different initial values. This can be observed clearly 
in Figure 9. 

 

 
Fig. 9. Velocity of fluid with variations in 𝑡 when 5.0 , 

10 , 𝐺𝑟 = 21, 𝑃𝑟 =14, 𝑁 = 9, 𝐿 = 2, 𝐸 = 9 

 
Both Figure 10 and Figure 11 displays the temperature profiles for the fluid with variations in 𝑃 𝑟 

and 𝑁, respectively. The fluid temperature dampens as the value of 𝑃 𝑟 is increased. As discussed 

earlier, a decrease in heat diffusivity occurs when the 𝑃 𝑟 is increased, lowering the kinetic energy of 
the fluid. Thus, decreasing the fluid temperature, with an average decrement of 73.78%, as observed 
in Figure 10. Concurrently, the fluid temperature increases, with an average increment of well over 

100%, with an increase in 𝑁. With some values of 𝑦, the increment can even reach up to 300%. With 
the increase in 𝑁, kinetic energy in the fluid is amplified. Thus, increasing the fluid temperature as 
shown in Figure 11. 
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Fig. 10. Temperature of fluid with variations in 𝑃 𝑟 when 
𝑡 = 3, 𝑁 = 9 

 

 
Fig. 11. Temperature of fluid with variations in 𝑁 when 
𝑡 = 3, 𝑃𝑟 = 14 

 
Table 1 shows the numerical validations of obtained results with published results from Ali et al., 

[20] and Reyaz et al., [44]. It is observed from the table that the average relative difference from 
obtained results with that of Ali et al., [20] is 0.27 and 0.44 with Reyaz et al., [44]. These values are 
due to varied assumptions between current problem and published studies from Ali et al., [20] and 
Reyaz et al., [44]. For instance, Ali et al., [20] considered the Caputo fractional derivative instead of 

the Caputo-Fabrizio fractional derivative. Additionally, Reyaz et al., [44] considered mass transfer in 
their study, however the current study does not. Nonetheless, the relative difference between 
current study and published study is significantly low. Thus, obtained results from current study is 

valid. 
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Table 1 
Validation of obtained numerical results with published results 
𝑦 Obtained Ali et al., [20] Relative Difference Reyaz et al., [44] Relative difference 
0 1 1 0 1 0 
2 0.356000 0.370000 -0.037838 0.341000 0.043988 
4 0.052000 0.047000 0.106383 0.042000 0.238095 
6 0.007488 0.005858 0.278252 0.005047 0.483654 
8 0.001081 0.000722 0.496608 0.000609 0.773876 
10 0.000156 0.000088 0.767310 0.000073 1.124147 

 

Table 2 showcases the skin friction, 𝐶𝑓(𝑦, 𝑡) at 𝑦 = 0, with varied values of  ,  , 𝐺𝑟, 𝑃 𝑟, 𝐸, 𝑁 

and 𝑡. These values are obtained by using Eq. (26). It is observed in the third row, that the value for 
𝐶𝑓(𝑦, 𝑡) decreases by 26.4% when compared to the control values at the first row. This contradicts 

the properties of a non-Newtonian fluid where the skin friction should have increased when the 
values of   is increased. However, as discussed previously, since Casson fluid models showcases 

both properties of Newtonian and non-Newtonian fluid according to the shear stress applied, a 
decrease in skin friction is plausible. The value also corresponds well with finding from Figure 5. Other 
than that, the skin friction values correspond well with obtained graphical results from Figure 3-

Figure 9. 
 

Table 2 

Skin friction, 𝐶𝑓(𝑦,𝑡)|𝑦=0, coefficient with variations in 𝛼, 𝛽, 

𝐺𝑟, 𝑃 𝑟, 𝐸, 𝑁 and 𝑡 
𝛼 𝛽 𝐺𝑟 𝑃𝑟 𝐸 𝑁 𝑡 𝐶𝑓(𝑦,𝑡)|𝑦=0

  

0.1 0.25 0.3 0.3 3 3 4 6.73  
0.3 0.25 0.3 0.3 3 3 4 5.599 ⇓16.81% 
0.1 0.5 0.3 0.3 3 3 4 4.953 ⇓26.40% 
0.1 0.25 0.7 0.3 3 3 4 6.067 ⇓9.85% 
0.1 0.25 0.3 0.7 3 3 4 6.809 ⇑1.17 % 
0.1 0.25 0.3 0.3 6 3 4 5.472 ⇓18.69% 
0.1 0.25 0.3 0.3 3 9 4 6.653 ⇓1.14% 
0.1 0.25 0.3 0.3 3 3 5 8.566 ⇑27.28 % 

 
Table 3 showcases the Nusselt number, 𝑁𝑢(𝑦, 𝑡) at 𝑦 = 0, with varied values of  , 𝑃 𝑟, 𝑁 and 𝑡. 

These values are obtained using Eq. (27). The Nusselt number showcase the heat transfer rate 

between the pate and the fluid. According to Table 3, the numbers corresponds well with obtained 
graphical solutions from Figure 10 and 11. 
 

Table 3 
Nusselt number, 𝑁𝑢(𝑦, 𝑡)|𝑦=0 , coefficient 

with variations in 𝛼, 𝑃 𝑟, 𝑁 and 𝑡 

𝛼 𝑃 𝑟 𝑁 𝑡 𝑁𝑢(𝑦, 𝑡)|𝑦=0  

0.1 0.3 3 3 0.22  
0.3 0.3 3 3 0.17 ⇓22.72% 
0.1 0.7 3 3 0.336 ⇑52.72% 
0.1 0.3 9 3 0.136 ⇓38.18% 
0.1 0.3 3 4 0.209 ⇓5.00% 

 
Meanwhile, Figure 12 and Figure 13 showcase the skin friction and Nusselt number behaviour 

with varied values of 𝑦. It is shown that the graphical representation of 𝐶𝑓(𝑦, 𝑡) and 𝑁𝑢(𝑦, 𝑡) is in 



CFD Letters 

Volume 15, Issue 4 (2023) 114-131 

128 
 

agreement with both graphical solutions, from Figure 3-Figure 11, as well as numerical solution from 
Table 2 and Table 3. 

 

 
Fig. 12. Skin friction, 𝐶𝑓(𝑦, 𝑡), with varied values of  ,   

and 𝑃 𝑟 

 

 
Fig. 13. Nusselt number, 𝑁𝑢(𝑦, 𝑡), with varied values of  , 
𝑃 𝑟 and 𝑁 

 
5. Conclusions 

 

A study on an unsteady Caputo-Fabrizio fractional Casson fluid flowing over an accelerating Riga 
plate treated analytically has been done. It is concluded that: 

 

i. An increase in the fractional parameter,  , increases the velocity profile with an average 
increase of 42.05%. 

ii. Amplification in the modified Hartmann number, 𝐸, raises the fluid velocity with an 
average increase of 1.56%. 

iii. Fluctuation in the fluid velocity is observed when amplifying the Casson parameter,  . 

After 𝑦 = 3.4, fluid velocity dampens, with an average of 45.09%. 
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iv. Amplification in the Prandtl number, 𝑃𝑟 , dampens the fluid velocity with an average 
decrease of 43.56%. 

v. Amplification in the Grashof number, 𝐺𝑟, raises fluid velocity with an average increase of 
41.72%. 

vi. Amplification in the thermal radiation parameter, 𝑁, raises the fluid velocity with an 

average increase of 76.58%. 
vii. Amplification in time, 𝑡, raises the initial velocity of fluid. 

viii. Amplification in the Prandtl number, 𝑃𝑟 , dampens the fluid temperature with an 
average decrease of 73.78%. 

ix. Amplification in the thermal radiation parameter, 𝑁, raises the fluid temperature. 
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