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The boundary layer flow and heat transfer across an exponentially stretched sheet with 
buoyancy, magnetic field, and thermal radiation are investigated. The similarity 
transformation is applied to the governing equations to generate nonlinear ordinary 
differential equations. They are resolved using a numerical technique referred to the 
Keller-box method. The impact of determined controlling parameters on flow and heat 
transfer characteristics are investigated. It has been discovered that the buoyancy 
parameter increases both the heat transfer rate and fluid flow from the exponentially 
extending sheet to the fluid. 
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1. Introduction 
 

The exponentially stretching sheet that includes the aspects of heat and mass transmission are 
crucial to industry processes has contributed to many applications such as the metal spinning 
manufacturing, glass-fiber manufacturing utilizing plastic film, hot rolling production, metal and 
polymer extraction and wire drawing manufacturing. Throughout engineering and industrial 
operations, the quality of the final products relies on kinematics expansion and simultaneous heating 
as well as cooling. The unique properties of the exponentially stretching sheet have piqued the 
researcher’s curiosity, leading to the rapidly increasing number of papers that extending previous 
knowledge with various aspects of this problem. The exponentially stretching sheet was investigated 
by Idowu and Usman [1] with viscous fluid, Mushtaq et al., [2] with variable fluid, Loganathan and 
Vimala [3] with nanofluid, Asghar et al., [4] with hybrid nanofluid, Yusof et al., [5] with Casson fluid, 
and Abu Bakar and Soid [6] with micropolar fluid.  

It is important to know about magnetohydrodynamics (MHD) since it is essential in the process 
of engineering manufacturers that occur at high temperatures. Rajput et al., [7] said MHD or known 
as the magnetic field is the study of the interaction Newtonian or non-Newtonian fluid and magnetic 
properties. The existence of currents in a conductive fluid led to the creation of Lorentz force drag in 
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fluid actuate by magnetic field. Mahat et al., [8] stated that the Lorentz force plays a role in 
determining the flow of fluid. MHD could be found in engineering processes such as nuclear reactors, 
electromagnetic casting, petroleum refinement and plasma confinement. Furthermore, Ganesan and 
Palani [9] said that, depending on the significant distinction of the fluid towards the direction 
perpendicular to the motion and magnetic field, MHD might be used to solve the cooling of nuclear 
reactors caused by liquid sodium and an induction flow valve. The studies of MHD also gained the 
interest of Khan et al., [10], Hanafi and Shafie [11], Nayan et al., [12], and Shafique et al., [13]. 

Thermal radiation can be defined as the emission of energy from a source and travels over some 
material or space. It is significantly important in the study of controlling heat transfer process, 
operating temperature, and design of the pertinent equipment in industries. The examples involving 
engineering areas are nuclear power plants, solar power technology, satellites, missiles, gas turbines, 
fossil fuel combustion energy process and space vehicles. The study on thermal radiation through an 
exponentially stretching sheet has been investigated by numerous researchers. The thermal 
radiation effect was considered by Sajid and Hayat [14] and Bidin and Nazar [15] by applying the 
numerical solution, Ishak [16] for MHD boundary layer flow, Mukhopadhyay [17] for thermally 
stratified medium and Mukhopadhyay [18] for MHD boundary layer flow slip effects with suction or 
blowing.  

The study on buoyancy or mixed convection in the fluid flow has given a big impact on science 
and technology fields thanks to its expanded implementation in many engineering products. The fuel 
generator of nuclear reactors and the different temperature atmospheric flow are the two examples 
of mixed convection application. The effects of mixed convection have been studied by Lok et al., 
[19] under non-orthogonal stagnation point flow, Ishak et al., [20] under stretching vertical surface, 
Bhattacharyya [21] under the vertical plate, Daniel and Daniel [22] under the viscous fluid flow, 
Mahat et al., [8] under the viscoelastic nanofluid, Ali et al., [23] under the flow of hybrid nanofluid, 
and Jahan et al., [24] under a non-isothermal hybrid nanofluid.  

The present study expands the work of Ishak [16] by incorporating the influence of buoyancy into 
the existing permeability equation in the governing equations. This study aims to: (i) use the Keller-
box method to establish a numerical scheme for the problem of laminar boundary layer flow and 
heat transfer across an exponentially stretching sheet in the presence of buoyancy, magnetic, and 
thermal radiation; and (ii) investigate the impacts of the buoyancy parameter on the surface shear 
stress of the magnetic parameter, thermal radiation parameter, and Prandtl number. The numerical 
results for multiple governing parameters are derived and represented graphically. In addition, the 
numerical comparison results for limited instances are performed using existing released data. 
 
2. Mathematical Modelling  
 

Consider a steady two-dimensional boundary layer flow and heat transfer across an exponentially 
stretching sheet in the influence of buoyancy, magnetic field, and thermal radiation. Under the 
boundary layer along with the Boussinesq approximations, the governing equations by Ishak [16] was 
modified into:  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0, (1) 

  

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2
−

𝜎𝐵2

𝜌
𝑢 ± 𝑔𝛽(𝑇 − 𝑇∞) −

𝜈

𝐷∗
𝑢, (2) 
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𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝜅

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2
−

1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦
, (3) 

 
The boundary conditions for this problem are: 

 
𝑢 = 𝑈𝑤(𝑥),  𝑣 = 0,  𝑇 = 𝑇𝑤(𝑥) at 𝑦 = 0, 

(4)  
𝑢 → 0,  𝑇 → 𝑇∞ 𝑎𝑠 𝑦 → ∞, 

 
Expression of 𝑈𝑤(𝑥), 𝑇𝑤(𝑥) and 𝐵(𝑥) are presented in the following form: 

 

𝑈𝑤 = 𝑈0𝑒
𝑥/𝐿 , 𝑇𝑤 = 𝑇∞ + 𝑇0𝑒

𝑥/2𝐿, 𝐵(𝑥) = 𝐵0𝑒
𝑥/2𝐿, (5) 

 
where 𝑢 and 𝑣 are the velocity components pointed to the x and y directions, and 𝑇 is the fluid 
temperature, 𝑇∞ is the ambient medium of temperature and mass concentration that was assumed 
to be linearly stratified.  

Following Eq. (2), 𝜎 is refer to the fluid electrical conductivity, 𝐵 is the magnetic field that adapted 
normally to the sheet, 𝜌 is fluid density, 𝑔 is the acceleration due to gravity, 𝛽 is the coefficient of 
thermal expansion, 𝜈 is the kinematic viscosity and 𝐷∗ is permeability constant. Meanwhile in Eq. (3), 
𝜅 is refer to the fluid thermal conductivity, 𝑐𝑝 is specific heat at constant pressure, and 𝑞𝑟 is the 

radiative heat flux. Later in Eq. (4) and Eq. (5), 𝑈𝑤 is the exponential velocity where it manipulates 
the plate to stretch as 𝑈0 > 0, 𝑇𝑤 is the sheet temperature of the stretching surface, 𝑈0 is the 
reference velocity and  𝐵0 is a constant. The sign of "+" and "-" in Eq. (2) corresponds to the buoyancy 
parameter's effect on assisting and opposing flow, which illustrates the buoyancy parameter's effect 
on fluid flow. The physical model and the coordinate system of the flow under a condition where 
stretching sheet applied can be seen in Figure 1. As fluid flows through a vertically stretched heated 
sheet, the buoyancy force opposes the lower half of the fluid field and assist the upper half. However, 
this study will focus on the assisting flow of buoyancy effect toward exponentially stretching sheet. 
In assisting flow, the x-axis travels upwards in the direction of the stretched heated surface as the 
thermal buoyant flow and the stretching induced flow collude. If the surface is cooled under the 
surrounding temperature, the tendency reverses. 

The governing equations of Eq. (1) to Eq. (3) are contingent on boundary conditions in Eq. (4) and 
being reduced to nonlinear ordinary differential equations under the similarity transformation by 
Ishak [16] as follows: 

 

𝑢 = 𝑈0𝑒
𝑥/𝐿𝑓′(𝜂), 𝑣 = −(

𝜈𝑈0

2𝐿
)

1
2
𝑒

𝑥
2𝐿[𝑓(𝜂) + 𝜂𝑓′(𝜂)], 

(6)  

𝑇 = 𝑇∞ + 𝑇0𝑒
𝑥/2𝐿𝜃(𝜂),  𝜂 = (

𝑈0

2𝜈𝐿
)
1/2

𝑒𝑥/2𝐿𝑦, 

 
where 𝜂 is the similarity variables and 𝜃 is the dimensionless temperature. 

On using the transformed nonlinear ordinary differential equations are: 
 

𝑓′′′ − 2(𝑓′)2 + 𝑓𝑓′′ − 𝑀𝑓′ + 𝜆𝜃 − 𝐷𝑓′ = 0, (7) 
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(1 +
4

3
𝑅)𝜃′′ + Pr[𝑓𝜃′ − 𝑓′𝜃] = 0, (8) 

 

 

Fig. 1. Physical representation and 
coordinate system under a vertical 
flat plate 

 
Subject to the boundary conditions: 

 
𝑓(0) = 0,  𝑓′(0) = 1,  𝜃(0) = 1 at 𝜂 = 0, 

(9)  
𝑓′(𝜂) → 0,  𝜃(𝜂) → 0 as 𝜂 → ∞, 

 
where 𝑀 represent magnetic field, 𝜆 represent buoyancy parameter, 𝐷 is the permeability 
parameter, the Prandtl number is referred to Pr and the thermal radiation parameter is referred to 
𝑅, which can be defined as: 
 

𝑀 =
2𝐿𝜎𝐵0

𝜌𝑈0
, 𝜆 =

2𝑔𝛽(𝑇𝑤 − 𝑇∞)𝐿

𝑈𝑤
2

, 𝐷 =
2𝜈𝐿

𝑈𝑤𝐷∗
 , 

 
(10) 

 

Pr =
𝜇𝑐𝑝

𝑘
, 𝑅 =

4𝜎∗𝑇∞
3

𝑘∗𝑘
, 

 
3. Keller-Box Method  
 

Solving the analytical model of the nonlinear boundary layer equation for fluid mechanics is 
technically challenging. Keller-box approach is a viable option for solving a complex set of ODEs due 
to its excellent accuracy and speed in solving nonlinear equations. The Keller-box method is chosen 
to interpret Eq. (7) and Eq. (8) that were subject to the boundary equations of Eq. (9) as described by 
Cebeci and Bradshaw [25], Jamaludin et al., [26, 27]. The recent studies by Jamshed et al., [28, 29] 
acknowledged that the Keller-box have a swift convergence makes it effective for solving equations. 
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The Keller-box method contains three parts of the numerical method, which are finite difference 
method, Newton method and block elimination method.  

Before all of that, the transformed ordinary differential equations in Eq. (7) and Eq. (8) are 
elucidate by transforming them to an initial value problem across the boundary conditions. The 
transformation process begins with introducing new variables of 𝑧 = 𝑧(𝜂), 𝑝 = 𝑝(𝜂), 𝜃 = 𝜃(𝜂) and 
𝑞 = 𝑞(𝜂) as dependent variables. The new momentum and energy equations arrangement are as 
follow: 

 
𝑓′ = 𝑧, (11) 
  
𝑧′ = 𝑝, (12) 
  
𝜃′ = 𝑞, (13) 
  
𝑝′ − 2𝑧2 + 𝑓𝑝 − 𝑀𝑧 + 𝜆𝜃 − 𝐷𝑧 = 0, (14) 
  

(1 +
4

3
𝑅) 𝑞′ + Pr(𝑓𝑞 − 𝑧𝜃) = 0, (15) 

 
The boundary conditions in Eq. (9) in term of the new dependent variables then become: 

 
𝑓(0) = 0,  𝑧(0) = 1,  𝜃(0) = 1, 
 
𝑧(∞) = 0,  𝜃(∞) = 0, 

(16) 

 
3.1 Finite Difference Method 
 

The central differences are used to write the midpoint 𝜂𝑗−1/2of the segment 𝜂𝑗−1, 𝜂𝑗 for the 

finite-difference approximations to the ordinary differential Eq. (11) to Eq. (15) [27]: 
 

𝑓𝑗 − 𝑓𝑗−1

ℎ𝑗
=

𝑧𝑗 + 𝑧𝑗−1

2
= 𝑧𝑗−1/2, (17) 

  
𝑧𝑗 − 𝑧𝑗−1

ℎ𝑗
=

𝑝𝑗 + 𝑝𝑗−1

2
= 𝑝𝑗−1/2, (18) 

  
𝜃𝑗 − 𝜃𝑗−1

ℎ𝑗
=

𝑞𝑗 + 𝑞𝑗−1

2
= 𝑞𝑗−1/2, (19) 

  

(
𝑝𝑗 − 𝑝𝑗−1

ℎ𝑗
) − 2(𝑧𝑗−1/2)

2
− 𝑀𝑧𝑗−1/2 + 𝑓𝑗−1/2𝑝𝑗−1/2 + 𝜆𝜃𝑗−1/2 − 𝐷𝑧𝑗−1/2 = 0, (20) 

  

(1 +
4

3
𝑅)(

𝑞𝑗 − 𝑞𝑗−1

ℎ𝑗
) + Pr(𝑓𝑗−1/2𝑞𝑗−1/2 − 𝑧𝑗−1/2𝜃𝑗−1/2) = 0, (21) 

 
Rearranging the Eq. (17) to Eq. (21): 
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𝑓𝑗 − 𝑓𝑗−1 −
1

2
ℎ𝑗(𝑧𝑗 + 𝑧𝑗−1) = 0, (22) 

  

𝑧𝑗 − 𝑧𝑗−1 −
1

2
ℎ𝑗(𝑝𝑗 + 𝑝𝑗−1) = 0, (23) 

  

𝜃𝑗 − 𝜃𝑗−1 −
1

2
ℎ𝑗(𝑞𝑗 + 𝑞𝑗−1) = 0, (24) 

  

(
𝑝𝑗 − 𝑝𝑗−1

ℎ𝑗
) −

(𝑧𝑗 + 𝑧𝑗−1)
2

2
−

𝑀

2
(𝑧𝑗 + 𝑧𝑗−1) +

1

4
(𝑓𝑗 + 𝑓𝑗−1)(𝑝𝑗 + 𝑝𝑗−1) 

+
𝜆

2
(𝜃𝑗 + 𝜃𝑗−1) −

𝐷

2
(𝑧𝑗 + 𝑧𝑗−1) = 0, 

(25) 

  

(1 +
4

3
𝑅)(

𝑞𝑗 − 𝑞𝑗−1

ℎ𝑗
) + Pr[(𝑓𝑗 + 𝑓𝑗−1)(𝑞𝑗 + 𝑞𝑗−1) − (𝑧𝑗 + 𝑧𝑗−1)(𝜃𝑗 + 𝜃𝑗−1)] = 0, (26) 

 
While the boundary conditions in Eq. (16) turned to be as follows: 

 
𝑓0 = 0,  𝑧0 = 1,  𝜃0 = 1, 

(27)  
𝑧𝑗 = 0,  𝜃𝑗 = 0, 

 
3.2 Newton’s Method 
 

Aiming to solve the nonlinear system in Eq. (22) to Eq. (26), the Newton’s method is used by 
introducing the following expressions from [25]. 

 

𝑓𝑗
(𝑖+1)

= 𝑓𝑗
(𝑖) + 𝛿𝑓𝑗

(𝑖), 𝑧𝑗
(𝑖+1)

= 𝑧𝑗
(𝑖) + 𝛿𝑧𝑗

(𝑖), 𝑝𝑗
(𝑖+1)

= 𝑝𝑗
(𝑖) + 𝛿𝑝𝑗

(𝑖), 

(28)  

𝜃𝑗
(𝑖+1)

= 𝜃𝑗
(𝑖) + 𝛿𝜃𝑗

(𝑖), 𝑞𝑗
(𝑖+1)

= 𝑞𝑗
(𝑖) + 𝛿𝑞𝑗

(𝑖), 

 

The superscript 𝑖 and quadratic terms in 𝛿𝑓𝑗
(𝑖)

,  𝛿𝑧𝑗
(𝑖)

,  𝛿𝑝𝑗
(𝑖)

,  𝛿𝜃𝑗
(𝑖)

 and 𝛿𝑞𝑗
(𝑖)

are dropped for 

simplicity following [25]. The equations of linear tridiagonal system obtained as follows: 
 

𝛿𝑓𝑗 − 𝛿𝑓𝑗−1 −
1

2
ℎ𝑗(𝛿𝑧𝑗 + 𝛿𝑧𝑗−1) = (𝑟1)𝑗−1/2, (29) 

  

𝛿𝑧𝑗 − 𝛿𝑧𝑗−1 −
1

2
ℎ𝑗(𝛿𝑝𝑗 + 𝛿𝑝𝑗−1) = (𝑟2)𝑗−1

2
, (30) 

  

𝛿𝜃𝑗 − 𝛿𝜃𝑗−1 −
1

2
ℎ𝑗(𝛿𝑞𝑗 + 𝛿𝑞𝑗−1) = (𝑟3)𝑗−1

2
, (31) 

  
(𝑎1)𝑗𝛿𝑝𝑗 − (𝑎2)𝑗𝛿𝑝𝑗−1 − (𝑎3)𝑗𝛿𝑧𝑗 − (𝑎4)𝑗𝛿𝑧𝑗−1 + (𝑎5)𝑗𝛿𝑓𝑗 

+(𝑎6)𝑗𝛿𝑓𝑗−1 + (𝑎7)𝑗𝛿𝜃𝑗 + (𝑎8)𝑗𝛿𝜃𝑗−1 = (𝑟4)𝑗−1/2, 
(32) 
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(𝑏1)𝑗𝛿𝑞𝑗 − (𝑏2)𝑗𝛿𝑞𝑗−1 + (𝑏3)𝑗𝛿𝑓𝑗 + (𝑏4)𝑗𝛿𝑓𝑗−1 − (𝑏5)𝑗𝛿𝜃𝑗  

−(𝑏6)𝑗𝛿𝜃𝑗−1 − (𝑏7)𝑗𝛿𝑧𝑗 − (𝑏8)𝑗𝛿𝑧𝑗−1 = (𝑟5)𝑗−1
2
, (33) 

 
where 
 

(𝑎1)𝑗 =
1

ℎ𝑗
+

1

2
𝑓𝑗−1/2, (𝑎2)𝑗 =

1

ℎ𝑗
−

1

2
𝑓
𝑗−

1
2
, (𝑎3)𝑗 = 2𝑧

𝑗−
1
2
+

𝑀

2
+

𝐷

2
, 

 

(𝑎4)𝑗 = 2𝑧𝑗−1/2 +
𝑀

2
+

𝐷

2
, (𝑎5)𝑗 =

1

2
𝑝𝑗−1/2, (𝑎6)𝑗 =

1

2
𝑝𝑗−1/2, 

 

(𝑎7)𝑗 =
𝜆

2
, (𝑎8)𝑗 =

𝜆

2
, 

 
and 
 

(𝑏1)𝑗 = (1 +
4

3
𝑅)

1

ℎ𝑗
+

1

2
Pr 𝑓𝑗−1/2 , (𝑏2)𝑗 = (1 +

4

3
𝑅)

1

ℎ𝑗
−

1

2
Pr 𝑓

𝑗−
1
2
, 

 

(𝑏3)𝑗 =
1

2
Pr 𝑞𝑗−1/2 , (𝑏4)𝑗 =

1

2
Pr 𝑞𝑗−1/2 , (𝑏5)𝑗 =

1

2
Pr 𝑧𝑗−1/2, 

 

(𝑏6)𝑗 =
1

2
Pr 𝑧𝑗−1/2 , (𝑏7)𝑗 =

1

2
Pr 𝜃𝑗−1/2 , (𝑏8)𝑗 =

1

2
Pr𝜃𝑗−1/2, 

 
with 
 

(𝑟1)𝑗−1/2 = −(𝑓𝑗 − 𝑓𝑗−1) + ℎ𝑗𝑧𝑗−1
2
, 

 

(𝑟2)𝑗−1/2 = −(𝑧𝑗 − 𝑧𝑗−1) + ℎ𝑗𝑝𝑗−
1
2
, 

 

(𝑟3)𝑗−1/2 = −(𝜃𝑗 − 𝜃𝑗−1) + ℎ𝑗𝑞𝑗−
1
2
, 

 

(𝑟4)𝑗−1/2 = 2(𝑧𝑗−1/2)
2
−

1

ℎ𝑗
(𝑝𝑗 − 𝑝𝑗−1) − (𝑓𝑝)

𝑗−
1
2
+ 𝑀𝑧

𝑗−
1
2
− 𝜆𝜃

𝑗−
1
2
+ 𝐷𝑧

𝑗−
1
2
, 

 

(𝑟5)𝑗−1/2 = (1 +
4

3
𝑅)

1

ℎ𝑗
(𝑞𝑗 − 𝑞𝑗−1) − Pr(𝑓𝑞)

𝑗−
1
2
+ Pr(𝑧𝜃)

𝑗−
1
2
, 

 
Boundary conditions can be represented as: 

 
𝛿𝑓0 = 0,  𝛿𝑧0 = 0,  𝛿𝜃0 = 0, 𝛿𝑧𝑗 = 0,  𝛿𝜃𝑗 = 0, (34) 

 
3.3 The Block Elimination Method 
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The block tridiagonal structure of the linearized difference Eq. (29) to Eq. (33) consists of either 
constants or variables. However, here it consists of block matrices. The elements of the matrices on 
constant wall temperature are defined as follows: 

 

[
 
 
 
 
 
 
 
[𝐴1]  [𝐶1]

[𝐵2]  [𝐴2]  [𝐶2]
         ⋱
         ⋱
         ⋱
           [𝐵𝐽−1] [𝐴𝐽−1]  [𝐶𝐽−1]

                   [𝐵𝐽−1]  [𝐴𝐽−1]]
 
 
 
 
 
 
 

 

[
 
 
 
 
 
[𝛿1]

[𝛿2]
  ⋮
[𝛿𝐽−1]

[𝛿𝐽] ]
 
 
 
 
 

=  

[
 
 
 
 
 
[𝑟1]

[𝑟2]
  ⋮
[𝑟𝐽−1]

[𝑟𝐽] ]
 
 
 
 
 

 , 

 
That is 

 
[𝐴][𝛿] = [𝑟] , (35) 

 
where the elements of the matrices are as follows: 
 

[ 𝐴1 ] =

[
 
 
 
 
 
 

0 0 1 0 0

−
1

2
ℎ1 0 0 −

1

2
ℎ1 0

0 −
1

2
ℎ1 0 0 −

1

2
ℎ1

− (𝑎2)1 0 (𝑎5)1 (𝑎1)1 0

0 −(𝑏2)1 (𝑏3)1 0 (𝑏1)1 ]
 
 
 
 
 
 

 , 

[𝐴𝑗] =

[
 
 
 
 
 
 
 
 −

1

2
ℎ𝐽−1 0 1 0 0

−1 0 0 −
1

2
ℎ𝐽−1 0

0 −1 0 0 −
1

2
ℎ𝐽−1

(𝑎4)𝐽−1 (𝑎8)𝐽−1 (𝑎5)𝐽−1 (𝑎1)𝐽−1 0

0 0 (𝑏3)𝐽−1 0 (𝑏1)𝐽−1 ]
 
 
 
 
 
 
 
 

, 2 ≤ 𝑗 ≤ 𝐽, 

(36) 

  

[𝐵𝑗] =

[
 
 
 
 
 
 
0 0 −1 0 0

0 0 0 −
1

2
ℎ𝐽−1 0

0 0 0 0 −
1

2
ℎ𝐽−1

0 0 (𝑎6)𝐽−1 −(𝑎2)𝐽−1 0

0 0 (𝑏4)𝐽−1 0 − (𝑏2)𝐽−1]
 
 
 
 
 
 

, 2 ≤ 𝑗 ≤ 𝐽, 
 
(37) 

  

[𝐶𝑗] =

[
 
 
 
 
 −

1

2
ℎ 0 0 0 0

1 0 0 0 0
0 1 0 0 0

− (𝑎3)𝐽−1 (𝑎7)𝐽−1 0 0 0

0 0 0 0 0]
 
 
 
 
 

, 1 ≤ 𝑗 ≤ 𝐽 − 1, (38) 
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[𝛿1] =

[
 
 
 
 
𝛿𝑝0

𝛿𝑞0

𝛿𝑓1
𝛿𝑝1

𝛿𝑞1]
 
 
 
 

, [𝛿𝑗] =

[
 
 
 
 
 
𝛿𝑧𝐽−2

𝛿𝜃𝐽−2

𝛿𝑓𝐽−1

𝛿𝑝𝐽−1

𝛿𝑞𝐽−1]
 
 
 
 
 

, 2 ≤ 𝑗 ≤ 𝐽, 
(39) 

 

 
and 
 

[𝑟𝑗] =

[
 
 
 
 
 
(𝑟1)(𝐽−1)−1/2

(𝑟2)(𝐽−1)−1/2

(𝑟3)(𝐽−1)−1/2

(𝑟4)(𝐽−1)−1/2

(𝑟5)(𝐽−1)−1/2]
 
 
 
 
 

, 1 ≤ 𝑗 ≤ 𝐽, 
 
(40) 

  
𝐴 is assumed to be nonsingular in order to solve[𝐴][𝛿] = [𝑟]. The factorised equation as follows: 
 

[𝐴] =   [𝐿] [𝑈] , (41) 
 
where 
 

[𝐿] =

[
 
 
 
 
 
[𝛼1]  
[𝐵2]  [𝛼2] 
      ⋱
      ⋱    [𝛼𝐽−1]

              [𝐴𝐽]  [𝛼𝐽]]
 
 
 
 
 

, [𝑈] =

[
 
 
 
 
[𝐼]  [𝛤1]   

     [𝐼]  [𝛤2] 
      ⋱
      ⋱    [𝐼]  [𝛤𝐽−1] 

                   [𝐼] ]
 
 
 
 

 , 

 
where identity matrix of order 5 is defined as [𝐼] . Meanwhile, [𝛼1] and [𝛤1] are 5 × 5matrices whose 
components are determined by the formulae below: 
 
[𝛼1] = [𝐴1] , (42) 
  
[𝐴1] [𝛤1] = [𝐶1],  (43) 
  

[𝛼𝑗] = [𝐴𝑗] − [𝐵𝑗] [𝛤𝑗−1],  𝑗 = 2,3, . . . , 𝐽, (44) 

  

[𝛼𝑗] [𝛤𝑗] = [𝐶𝑗],  𝑗 = 2,3, . . . , 𝐽 − 1, (45) 

 
Eq. (41) is substituted into Eq. (35) and get: 

 
[𝐿][𝑈][𝛿] = [𝑟] , (46) 
  

[𝑊] is defined as: 
 
[𝑈][𝛿] = [𝑊],  (47) 
  

[𝑊] is substituted into Eq. (46) and becomes: 
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[𝐿][𝑊] = [𝑟],  (48) 
 
where 
 

[𝑊] =

[
 
 
 
 
 
 [𝑊1]

 [𝑊2]
   ⋮
[𝑊𝐽−1]

 [𝑊𝐽] ]
 
 
 
 
 

, 
 
(49) 

 

and the [𝑊𝑗] are the 5 × 1 column matrices. Next, the Eq. (48) was used to solve elements 𝑊 as 

follows: 
 
[𝛼1][𝑊1] = [𝑟1], (50) 
  

[𝛼𝑗][𝑊𝑗] = [𝑟𝑗] − [𝐵𝑗][𝑊𝑗−1],  2 ≤ 𝑗 ≤ 𝐽, (51) 

 
The forward sweep is referred to the step in which 𝛤𝑗, 𝛼𝑗  and 𝑊𝑗 are calculated. Then, the 

backwards sweep is used to gives the solution of 𝛿 by the Eq. (47). The obtained elements of the 
following relations are: 

 

[𝛿𝐽] = [𝑊𝐽],  (52) 

  

[𝛿𝑗] = [𝑊𝑗] − [𝛤𝑗][𝛿𝑗+1],  1 ≤ 𝑗 ≤ 𝐽 − 1, (53) 

 

The Eqs. (29) – (33) can be used to find the (𝑖 + 1)th iteration in Eq. (28) by using the calculated 
elements of 𝛿. This routine calculates the fluid properties and, accounts for the boundary layer 
growth. Cebeci and Bradshaw [25] stated by using the wall shear parameter 𝑣0 as the convergence 
criterion, the convergence of the iterations can also be checked. For laminar flows, calculations are 
repeated until a convergence condition is met, and calculations cease when convergence is achieved 
as below. 

 

|𝛿𝑣0
(𝑖)

| < 10−5, 

 
which gives about four-figure accuracy for most predicted quantities. The calculations are stopped 
when 𝑣0 becomes negative during any iteration. 
 
4. Results and Discussion 
 

The numerical results are obtained based on the test run of Keller-box method through MATLAB 
by applying the boundary condition from Ishak [16] into the transformed equations. The results are 
discussed in parts depending on the governing parameters involved. Table 1 show the comparison of 
the heat transfer change by Bidin and Nazar [15] and Ishak [16] and the present result by 
manipulating the parameters of thermal radiation, magnetic and buoyancy. Noted that the local 
Nusselt number is the heat transfer rate and the permeability parameter, 𝐷 is set into 0 since porous 
media will not be discussed in this study. The comparison between the previously published paper 
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and the present results are made in order to test the accuracy and the validity of the numerical results 
obtained. As been tabulated in Table 1, the numerical value of local Nusselt number −𝜃′(0) in this 
research with different involvement of parameter 𝑅, 𝑀, 𝜆 and Pr in each case are in better agreement 
with the result published by Bidin and Nazar [15] and Ishak [16]. 

 
Table 1 
Values of −𝜃′(0) for different values of 𝑅, 𝑀, 𝜆 and Pr 

𝑅 𝑀 𝜆 𝐷 Pr Bidin and Nazar [15] Ishak [16] Present results 

0.0 0.0 0.0 0.0 1.0 -0.9548 -0.9548 -0.9548 
    2.0 -1.4714 -1.4715 -1.4715 
    3.0 -1.8691 -1.8691 -1.8691 
    5.0  -2.5001 -2.5002 
0.0 1.0 0.0  1.0  -0.8611 -0.8596 
  1.0     -0.9682 
1.0 0.0 0.0   -0.5315 -0.5312 -0.5330 
  1.0     -0.6520 
1.0 1.0 0.0    -0.4505 -0.4570 
  1.0     -0.5913 

 
Figures 2 and 3 exhibit the velocity and thermal boundary layer for several buoyancy parameter 

values as parameter Pr, 𝑅 and 𝑀 are equal to 1. Based on Figure 2, the velocity boundary layer 
thickness grows as 𝜆 increases, while the velocity boundary layer gradient at the surface, which 
represents the surface shear stress, decreases. As 𝜆 increases in Figure 3, the thermal boundary layer 
thickness decreases and the thermal boundary layer gradient develops. As a result of a drop in shear 
stress and an increase in temperature gradient, Table 2 reveals that the coefficient of surface friction 
reduces while the heat transfer rate increases. 
 

 
Fig. 2. Development of 𝑓′(𝜂) for several point of 𝜆 
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Fig. 3. Variant of 𝜃(𝜂) for several point of 𝜆 

 
Table 2 
Characteristics of skin friction coefficient and heat transfer rate for 
varies of 𝜆 as Pr,𝑀 and 𝑅 = 1 
𝜆 Skin friction coefficient Heat transfer rate 

0.0 1.6292 0.4570 
0.5 1.3905 0.5461 
1.5 0.9801 0.6241 
2.5 0.6082 0.6728 
3.5 0.2591 0.7099 

 
Meanwhile, Figure 4 depicts the velocity boundary layer for several values of the magnetic 

parameter, 𝑀 as 𝜆, Pr and 𝑅 are equal to 1. The thickness of the velocity boundary layer diminishes. 
The velocity boundary layer gradient rises, which causes the skin friction coefficient in Table 3 to rise. 
The decrease in transport rate is a result of the magnetic parameter increasing. It demonstrates that 
the transverse magnetic field resists transport phenomena due to the fact that Lorentz force 
produces resistance to transport phenomena in response to the variation of magnetic parameter. 
 

 
Fig. 4. Disparity of 𝑓′(𝜂) for several point of 𝑀 
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Table 3 
Characteristics of skin friction coefficient and heat transfer rate for 
multiple values of 𝑀 as 𝜆, Pr and 𝑅 = 1 
𝑀 Skin friction coefficient Heat transfer rate 

0.0 0.7967 0.6520 
1.0 1.1786 0.5913 
2.0 1.4969 0.5436 
3.0 1.7727 0.5053 
4.0 2.0180 0.4740 

 
Next, the thermal boundary layer can be seen in Figure 5 with multiple values of radiation 

parameter, 𝑅, as parameter 𝜆,𝑀 and Pr are equal to 1. The thermal boundary layer found to be 
increases as 𝑅 increases and led to the decrement in thermal boundary layer gradient. Table 4 shows 
the result commensurable to Figure 5 as it concludes the increasing of 𝑅 cause the skin friction 
coefficient and heat transfer rate decreases in number.  

 

 
Fig. 5. Variation of 𝜃(𝜂) for several point of 𝑅 

 
Table 4 
Characteristics of skin friction coefficient and heat transfer rate for 
variation of 𝑅 as 𝜆, 𝑀 and Pr = 1 
𝑅 Skin friction coefficient Heat transfer rate 

0.0 1.2505 0.9682 
1.0 1.1786 0.5913 
2.0 1.1477 0.4567 
3.0 1.1296 0.3837 
4.0 1.1175 0.3367 

 
Lastly, Figure 6 depicts the thermal boundary layer for various values of the Prandtl number, Pr, 

when the parameters of 𝜆, 𝑅 and 𝑀 are equal to 1. As Pr grows, the thermal boundary layer thickness 
decreases, causing the thermal boundary layer gradient to increase. Table 5 demonstrates that an 
increase in Pr induces an increase in fluid viscosity and a decrease in thermal conductivity, which 
raises the skin friction coefficient and heat transfer rate. 
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Fig. 6. Variant of 𝜃(𝜂) for several point of Pr 

 
Table 5 
Characteristics of skin friction coefficient and heat transfer rate for 
different values of Pr as 𝜆,𝑀 and 𝑅 = 1 
𝜆 Skin friction coefficient Heat transfer rate 

1.0 1.1786 0.5913 
2.0 1.2362 0.8847 
3.0 1.2747 1.1217 
5.0 1.3256 1.5113 
7.0 1.3588 1.8354 

 
5. Conclusions 
 

In the present study, the laminar boundary layer flow and heat transfer across an exponentially 
extending sheet in the existence of buoyancy, magnetic field, and thermal radiation have been 
evaluated by applying established Keller-Box method. The accuracy of the results in this study has 
achieved agreement with the result published by Bidin and Nazar [15] and Ishak [16]. The increment 
of buoyancy parameter, speed up the fluid movement and promote the heat transfer rate. The 
presence of buoyancy in flow causes the surface shear stress decreases as 𝑀,𝑅 and Pr increases. 
However, the heat transfer rate of fluid found to be escalated as Pr increases.  
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