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In this paper, the effect of throughflow and gravity modulation on thermal convection 
in a couple stress fluids saturating a porous medium with an internal heating source is 
investigated. A weakly nonlinear stability analysis is proposed to study the stationary 
mode of convection. The amplitude of gravity modulation is assumed to be very small 
and the disturbances are extended in terms of the power series of the amplitude of 
convection. Using a non-autonomous Ginzburg- Landau amplitude equation, heat 
transport is evaluated in terms of the Nusselt number. The finite-amplitude of 
convection has been derived in the third order. The amplitude and frequency of 
modulation have the effects of increasing or diminishing heat transport. The presence 
of a couple-stress parameter with internal heat source throughflow and modulation 
effects has been discussed. The effect of the internal heat source increases or 
decreases heat transfer in the system. For suitable ranges of Ω the throughflow and 
internal heating have both destabilizing and stabilizing effects. Finally flow patterns are 
presented in terms of streamlines and isotherms. 

 

Keywords: 
Gravity modulation; throughflow; couple 
stress fluid; weakly non-linear theory; 
internal heating; Ginzburg-Landau model 

 
1. Introduction 
 

Natural convection (buoyancy driven convection, where the gravitational force is a major factor) 
in fluid-saturated porous media is interesting because of its contribution to the numerous practical 
applications, including the oil recovery process in the petroleum industry, reactor vessel insulation 
and geothermal energy extraction. There are many examples in nature when the above mentioned 
uses of porous media are present. In some of these applications control convective instability is to 
maintain a nonlinear temperature gradient. These methods include volumetric distribution of 
internal heat source, radioactive heat transfer, proper thermal and rotation modulation, time-
dependent heating or cooling at the boundaries, and periodic vibration of the porous material. 

A gravitational modulation is essential when the system is under vertical vibrations. In this 
circumstance, the density gradient is vibrating, and the buoyancy forces that result from the 
interaction of the gravity field with the density gradient have a complex spatiotemporal structure. 
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The time-dependent gravity field has applications in crystal formation, large-scale atmospheric 
convection, and space laboratory experiments. Nelson [1] has performed a huge amount of 
theoretical and experimental research on the processing of materials or the physics of fluids in 
microgravity from inside orbiting spacecraft. According to Wadih and Roux [2] and Wadih et al., [3], 
the vibrations can either considerably enhancing or delaying the transfer of heat, thus significant 
affect the convection. The influence of modulated gravity on a convectively stable configuration can 
significantly influence the stability of a system by increasing or diminishing its susceptibility to 
convection. The initial studies were conducted by Gershuni et al., [4] and Gresho and Sani [5] where 
the gravity modulation on the stability of the layer being heated from below is increased by g-jitter. 
Yang [6] has investigated the instability of a viscoelastic fluid layer heated from below in a modulated 
gravitational field numerically. It is observed that, modulation has a destabilization effect at lower 
frequencies and a small stabilization effect at high frequencies that this effect increases as 
modulation amplitude increases. Additionally, it is also found that for viscoelastic fluid acted on by a 
gravity modulation as those of Newtonian fluids, modulation has the same effects at both very low 
and very high frequencies. Malashetty and Padmavathi [7] investigated the onset of convection in 
both fluid and porous layers using Venezian model. They found that, the low amplitude g-jitter can 
have a significant effect on the stability of the problem. The viscous flow limit and Darcy limit are 
obtained as degenerate cases of the Brinkman model. Rees and Pop [8] found the boundary-layer 
flow generated by a vertical surface with constant temperature fixed in a vibrating porous medium. 
The g-jitter amplitude is considered to be small when compared to the mean acceleration. Govender 
[9] investigated a weakly nonlinear analysis in a porous medium under gravity modulation. It is shown 
that, the vibration in frequency causes the convection of amplitude approaches to zero when the 
vibration frequency increases which stabilizes the system. The bio convection in a shallow horizontal 
fluid saturated porous layer that contains a suspension of oxytactic bacteria, such as Bacillusubtilis 
was investigated by Kuznetsov [10]. It is determined that, analysis of linear stability indicates that g-
jitter has a stabilizing effect on the suspension. Some of the important and well documented works 
on gravity modulation are [11-15]. 

Throughflow causes the fundamental state temperature to change from linear to nonlinear with 
layer height, which substantially impacts on the system's stability. When the porous layer's 
boundaries are of the same types, throughflow is found to be stabilising; however, if they are not, 
throughflow is found to be destabilising in one particular direction [16-18]. Moreover, it has been 
observed that the throughflow is unstable even when the boundaries are of the same kind and when 
there is an extra diffusing component [19]. Nield [20] has investigated how throughflow affects the 
onset of convective in a horizontally porous medium for a Newtonian fluid. Suma et al., [21] examine 
the effects of throughflow and a variable gravity field on heat transfer in a porous material. Kiran 
[22,23] investigates nonlinear throughflow and g-jitter effects on porous media for the stationary 
and oscillatory modes of convection. Weakly nonlinear system was constructed in order to examine 
heat and mass transfer across the porous medium, while obtaining the non-autonomous Ginzburg- 
Landau equation. The same phenomenon for modulation of temperature was investigated by Kiran 
and Bhadauria [24], who examined three different types of temperature distributions and discovered 
that when the boundaries are at out of phase modulation the heat transmission is maximum. Darcy 
convection is investigated for nonlinear stationary mode. Vanishree [25] investigated the effects of 
throughflow and internal heating onset of convection in a porous medium. Here, throughflow and 
internal heating effects on onset of convention is mentioned. It is also found that, depending on the 
direction of the flow and internal heat generation the onset of convection mat stabilise or destabilise 
the system. Hetsroni et al., [26] have investigated the heat transfer in a screen for the transport of 
high-energy beams with a porous material made of metal wastes. In the case of internal heating and 
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gravitational modulation, Bhadauria et al., [27] conducted a weakly nonlinear thermal destabilization 
in a porous media. By using Ginzburg Landau equation to derive amplitude of convection and 
observed that modulation of gravity used, to alter the heat transfer, whereas internal heating is to 
increases the heat transfer. Bhadauria et al., [28] and Saravanan [29] were investigated the studies 
of internal heat generation. Bakar and Roslan [30] have investigated the influences of internal heat 
generation or absorption parameters in terms of the flow, heat transfer, and Nusselt number. They 
found that the presence of internal heat generation or absorption has a significant effect on the fluid 
flow and heat transfer process in the horizontal cavity. Mahat et al., [31] it was found that velocity, 
temperature, skin friction and heat transfer coefficients of viscoelastic nanofluid depend strongly on 
viscosity and thermal conductivity together with magnetic field. The critical Rayleigh numbers from 
the double diffusive binary fluid were obtained by using the Galerkin expansion procedure is studied 
by Loni et al., [32]. For the different shapes of cavity receiver were studied under the same operating 
conditions for prediction of the internal heat transfer coefficient correlation for each cavity receiver. 
Their results reveal that the hemispherical cavity receiver had the highest cavity heat gain, heat 
transfer coefficient, and Nusselt number values compared to two other cavity receivers. Abidin et al., 
[33] have investigated the onset of Darcy-Rayleigh convection in a viscoelastic double diffusive binary 
fluid layer saturated in an anisotropic porous with temperature dependent viscosity. The system is 
heated from below and cooled from above. It has been observed that, in the literature several models 
being performed for linear theory with throughflow, but is it scary for nonlinear models with gravity 
modulation. Because, it is due to Kiran [22,23] and Kiran and Bhadauria [24] studied that, under 
temperature or gravity modulation, the throughflow effects are considered. They are the first studies 
to investigate the effects of stationary and oscillatory convection on nonlinear throughflow under 
modulation. The Peclet number, which evaluates the intensity of throughflow, considers the 
conduction state temperature to be nonlinear and thus has an effect on the system through related 
energy and momentum equations. It has been observed that, this nonlinear throughflow has duel 
effect on heat transport in the system. 
 
2. Governing Equation 
 

We consider a non-Newtonian fluid-saturated infinitely extended horizontally porous media 
bounded within two boundaries that are completely free - free at z = 0 and z = d as heated from the 
bottom. ∆T is fixed variation in temperature all over the porous media. We have used the reference 
in Cartesian terms with the origin at the bottom as well as z - axis moving upwards in a vertical 
direction. Its schematic diagram is shown in Figure 1. 
 

  
Fig. 1. A schematic diagram of the program 
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In this paper we consider the throughflow in both vertical and horizontal directions. Furthermore, 
we consider these assumptions are taken under Darcy Brinkman law and the Oberbeck Boussinesq 
approximations, the equations which represent the flow model are given by Kiran and Bhadauria 
[24], and Bhadauria and Kiran [34]. 
 

. 0,q                            (1) 
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where q  is velocity, K is permeability, µ is viscosity, P is pressure, c  is couple stress fluid, Tk  is the 

coefficient of thermal expansion, ρ is density, 0T  is the temperature with 0   is the standard 

density and the heat capacity ratio are equal to   (here   is taken unity for simplicity). The following 

are the externally imposed thermal and periodic gravity field: 
 

0T T T 
                    at  Z = 0,             (5)         

0T T
                                    at  Z = d,     

2

0
ˆ(1 os( )) ,g g c t k   

                         (6) 
 
where   is magnitude of gravity modulation &   is frequency of modulation. 

Therefore, in this stage, the basic state is considered quiescent, with the following quantities: 
 

0((0,0, ( )),q w z  ( ),b z   ( ),bP P z  ( , )bT T z t                       (7) 

 
Substituting Eq. (7) into Eq. (1) to Eq. (4), obtain following expressions, they help to define basic 

state of pressure and temperature: 
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The amplitude solution of the Eq. (9) when subjected to thermal boundary condition in Eq. (5) is 

provided by: 
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The perturbations on the basic state with finite amplitude are superposed in the form: 
 

,bq q q   ,b     ,bP P P   .bT T T  
                               (12) 

 
Since, we introduce two-dimensional convection stream function   as 
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z x
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    

  
 which satisfy Eq. (1) and following non-dimensional physical variables are 

rescaled by:  
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Substituting Eq. (12) into the Eq. (1) to Eq. (4), the resulting non-dimensionlized governing system 

(dropping its asterisk *) by using the dimensionless variables stated above and eliminating the 
pressure gradient term: 
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is internal heat source. The Eq. (14) shows that the factor bT

z




, has been given in Eq. (11), the basic 

state solutions have an effect on the stability problem. The basic state temperature which seen in Eq. 
(14) is obtained from the Eq. (9) numerically and it is given by: 
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Considering small change of time and re-scaling it as 2 ,t   the convection in a stationary mode 

is to be discussed. The linear and non-linear system of Eqs. (13) – (14) may be represented in the 
matrix form as follows 
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      The above system will be solved by considering stress free and isothermal boundary conditions 
as given below (Bhadauria & Kiran [35], Kiran [36, 37]). 
 

0T    on    Z = 0  and  Z = 1                                                                     (17) 

 
3. Heat Transport and Stationary Instability 
 

In order to derive the solution and to resolve nonlinearity the following asymptotic solutions are 
given in the above Eq. (15) [14,35,36]: 
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In the absence of gravitational modulations,
 0R  would be the critical Rayleigh number where 

convection starts. The statement   is suitable with a basic state solution such that if 0  disappears 

at the lower order (following Govender [9], Bhadauria, and Kiran [35]). Further, in addition, 1

vanishes, the equations that were derived in order 2and   shows that the solution has a singularity. 

These findings (Bhadauria and Kiran [35]) show that gravity modulation effect must be provided at 

an early stage 
2

2   , which enable consistency. Furthermore, system will be studied for different 

orders of  . 
 
3.1 First Order System 
 

The system uses the following format at the lowest level: 
 

2 4

1

2 1

0

0
( )

m

b
i

C Rag
x

T T
R Pe

z x z


 

       
     

           
    

                               

(19) 

 

Lowest-order solution accoriding to initial conditions, Eq. (16) evaluated as follows: 
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where 
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  . Onset of stationary convection is quantitatively 

determined by using value of critical Rayleigh number with the related wave number and expressions 
are given by: 
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3.2 System of Second Order 
 

Now, the system adopts the following form: 
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The solutions of second-order subjected to initial conditions as in Eq. (16) are given by: 
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For convection in a stationary mode, the horizontally averaged Nusselt number Nu is calculated as 
follows: 
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In the situation of a porous media which is isotropic in the absence of fluid flow, the following 

conclusions are found in Eq. (21), Eq. (22) and Eq. (28) are presented by Bhadauria et al., [12,13], and 
Lapwood [41]. 
 
3.3 System of Third Order 
 

Now for this point system takes the form as: 
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Here, terms of RHS are given by: 
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Now, putting first-order and second-order solutions into the following Eqs. (30) – (31) and easily 

we get the expressions for 31R  and 32R . Under solvability condition, we get Ginzburg-Landau 

equation for existence of third order system. The Ginzburg-Landau expression is given by: 
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The Eq. (32) is known as Bernoulli equation, because of its non-autonomous structure, finding an 
analytical solution is very difficult in the presence of modulation. As a result, it was numerically solved 

by using Mathematica 12.0 built-in function ND Solution, when necessary initial condition at 0 0A a

where 0a  is defined as present initial convection magnitude. Its analytic solution of Eq. (32) for such 

an un-modulated case is as follows: 
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where 1Q , 3Q  as same in Eq. (32),  
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is an integration constant which appears in Eq. (33), which can be obtained 

by adopting appropriate boundary conditions. 
 
4. Results and Discussions 
 

In this paper, we have investigated effects of throughflow and gravity modification on convective 
instability in a porous media saturated with a coupled stress fluid in the presence of internal heat 
source and sink. To study the effects of gravity modulation and vertical throughflow on coupled stress 
fluid and heat transport, an analysis of nonlinear phenomena of stability was being used. There is 
only minimal amount of amplitude gravity modulation has been considered for Benard - Darcy 

convection where effects of gravity modulation had been assumed for third order O ( 2 ). The 
objective for weakly nonlinear theory is to investigate transmission of heat in ways that a linear study 
could not. In order to study transfer of heat in porous media external regulations are important. The 
purpose of this study is to consider such a gravity modulation and vertical throughflow. Because here 

we examining small amplitude on transport of heat, then the value of 2  may be very small, around 

0.1. Furthermore, because low - frequency has the maximum effect on which onset of convection 
and heat transfer, the amplitude of gravitational modulation is considered to be minimal. The 
problem's purpose is to take gravity modulation and vertical throughflow into consideration for 
either increasing or decreasing heat transfer, where the Darcy- Brinkmen model is considered in a 
momentum equation since the porous medium is assumed to closely packed. Another important 
subject is the internal heat source or sink, which is explained through the energy equation. This 
concept is most important where the system provides its own internal heat generation. Due its 

dominant nature, the moderate values of iR  are considered. 

The values of PrD  may consider (modern porous medium applications, such as mushy layer in 

solidification of binary alloys and fractured porous medium) around 1, and also for low porosity 

medium, the large values considered for PrD . The values of  and   are treated to be small, for 

small values of frequency and amplitudes, the transfer of heat can reach the maximum. The numeric 
findings for Nu from Eq. (27) in respect to amplitude Eq. (31), and the results are shown in Figures 2-
4. The effects of every parameter on heat transfer are shown in Figures 2-4 where Nusselt number 
Nu versus   is graphically presented. From the figures it is found that the values of Nu (Nusselt 
number) oscillates maximum for low frequencies and further for the values of   there is no 
oscillations can be observed, which shows that, the system can convect more quickly due to the low 
modulated frequencies. Therefore, we get nature of oscillatory figures is because of modulation only.  

Now, let us look about the effects of gravity modulation: in Figures 2 the corresponding results 
of internal Rayleigh number and Peclet number are presented. The effect of Pe   with heat transport 
is studied for the circumstances from upward and downwards directed flows. The upward 
throughflow (also known as pro-gravity) ( Pe  > 0), has destabilizing effect which is given in Figure 2a, 
whereas downward throughflow (also known as anti-gravity) ( Pe  < 0), has stabilizing effect which is 
presented in Figure 2b. The related results for linear theory are due to Vanishree [26], this is because 
of temperature dependence of viscosity. When Pe  varies in either direction the nonlinear 
temperature distribution significantly matters at conduction state and there is significant or drastic 
variation in the energy supply to the disturbance. The corresponding results are also obtained by 
Nield [21] in the case of fluid layer for small amount of throughflow. The present results are 
computable with the results obtained by Shivakumara et al., [18] and Suma et al., [22]. Shivakumara 
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et al., [19] pointed that; the destabilization effect may be due to the distortion of basic state 
temperature distribution from linear to nonlinear throughflow. The corresponding results of 
throughflow under modulation the reader may look at the articles [25, 26]. It is noted that, for 
nonlinear theories Pe  has duel effect [25] but, for linear case Pe  only stabilizing effect [26], the 
reason could be guessed as the finite amplitude interaction in the fluid flow through coupled 
formation of momentum and energy equations. 

The effects of the internal Rayleigh number iR , on heat transfer is given in Figure 2c for both the 

cases of heat source and heat sink, Figure 2c for heat source and Figure 2d for heat sink. For many 
chemical and industrial experiments, the system may produce or absorb energy throughout 
its operation, which is why internal heat occurs. In such a circumstance, one needs to learn how to 
control these oscillations in the system. As a result, it can be seen from the graphs that the heat 
transmission in the system is enhanced or decreased by positive and negative values of the heat 
source or heat sink, respectively. To understand more about internal heat generation, we can see [3, 
13, 26]. In Astrophysics provides an example of internally driven convection for uniformly heated 
medium. In the cores of stars heat is produced by thermonuclear reactions. In such situation the 
heating rate is very sensitive to temperature, and this sensitivity creates steep thermal gradients that 
drive powerful convection in the cores (Kippenhahn et al., [41]). Clearly, this and many other 
instances (related space science) of internally driven convection contain more complications. It is 

observed that, for low porosity medium, large values [29] considered for PrD . The Nusselt number 

Nu increases with PrD  showing heat transfer increases (see Figure 3a). The results could be gained 

for lower values of Prandtl Darcy number. The related article which presents the results 
corresponding to heat transfer in a porous medium under modulation may be observed in the 
following studies [12, 13, 35]. 

Further, it is observed that, large values of PrD  are considered, for low porosity medium. The 

Nusselt number Nu increases with value of PrD , which shows that heat transfer increases. The 

outcomes could be improved for smaller values of Prandtl-Darcy numbers. The following research [3, 
12, 13], contains the relevant article that offers the results corresponding to heat transport in 
the porous media under modulation effect. 

According to Figures 2 - 4, the effect of frequency of modulation on heat transport diminishes 
heat transfer where it can be observed that as increase in Ω decreases the magnitude of Nu. The 
gravitational modulation on convective instability completely vanishes at high rates of frequencies. 
The above findings are agree quite well for temperature modulation with the linear theory of 
Venezian [38], which shows that in the critical value of Rayleigh number due to thermal modulation 
becomes almost zero at higher frequency. The more related research results for gravity modulation 
on weakly nonlinear studies we can see [7, 11, 23, 29].  In general the modulation frequency 
compresses the wavelengths and reduces the amplitude of Nu, because of this reason heat transfer 
decreases. Furthermore, Figure 3b shows that the effect of modulation amplitude and it is observed 
that heat transfer increases as   increases. Therefore, amplitude of modulation is to increase the 
heat transfer in the system. In Figure 4, the comparison between modulated and unmodulated case 
are presented. It is shown that gravitationally modulated system flows transport less heat transfer 
than unmodulated systems the corresponding finding obtained from the studies of [39, 40]. 
Therefore, it should be noticed that Eq. (32) is the analytical solution for unmodulated case. 
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Fig. 2. Effect of Pe and iR  on heat transport 

 

 
 

Fig. 3. Ect of PrD  and   on heat transport 

 

 
Fig. 4. Comparison between modulated and unmodulated 
case 

 
Finally, the nature of stream lines and corresponding isotherms presented in Figure 5 and Figure 

6. Figure 5 shows the variation of stream lines and isotherms at different instants of times, 



CFD Letters 

Volume 15, Issue 3 (2023) 66-80 

77 
 

respectively. Figure 5 shows the magnitudes of stream lines increase as time increases. Also, initially 
the isotherms are flat and parallel, thus heat transport is due to conduction only. However, as time 
increases, isotherms form contours, showing convective regime is taking place, after reaching certain 
instant there is no change in the magnitude of stream lines and isotherms, thus showing the steady 
state. In particular Figure 6 is drawn to see the effect of throughflow on isotherms. While 
strengthening the throughflow there forms a boundary layer at the bottom plate, then the significant 
results may observe at corresponding isotherms, where isotherms are missing at the bottom plate 
due to throughflow disturbances. The reason would be, when there is flow at the bottom plate there 
may not be stream line flow due to heavy boundary layer and hence the nature of the Figure 6. 
 

 
Fig. 5. Streamlines and Isotherms for Pe = 0.3, iR = 0, PrD  = 100, = 0.5 

 

 
Fig. 6. Isotherms for  = 4.0, iR = 1.0, PrD  = 100, = 0.5 
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5. Conclusions 
 

The effects of gravity modulation and vertical throughflow and with an internal heating on 
Benard-Dacry convection is investigated with a weakly nonlinear theory. Internal heating is applied 
to the porous media. For weakly nonlinear theory, the Ginzburg-Landau model is used. On previous 
analysis the following conclusions are made: 

 

a) The effects of PrD  is to increases the transport of heat for smaller values of Ω and decreases 

for large values of Ω. 
b) Heat transmission is increased by antigravity flow ( 0)Pe , while it is decreased by pro-gravity 

flow ( 0)Pe . 

c) With the increasing value of δ, rate of heat transfer increases. 
d) The amplitude of convection diminishes with an increase in gravity modulation frequency Ω., 

and for larger values of Ω, the influence of the g-jitter is negligible.  
e) G-jitter exhibits its maximum stabilizing or destabilizing influence at low frequencies, whereas 

high frequencies stabilize the system. 

f) Anti-gravity flow ( 0)Pe  and Heat source ( 0)iR   have destabilizing effect, whereas pro-

gravity flow ( 0)Pe  and heat sink ( 0)iR   have stabilizing effect on the system.  

g) The magnitude of streamlines expands with time and reaches a maximum for increasing values 
of the time. 

h) Isotherms are flat initially due to the conduction state before taking on a contour to show the 
convection regime. 
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