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This study explores the thermal performance of double-pass photovoltaic thermal 
(PVT) systems by investigating the influence of turn shape on heat transfer 
characteristics using computational fluid dynamics (CFD) simulations. The aim is to 
evaluate various turn shapes, including half-circle, triangle, half-hexagon, half-octagon, 
and box, to determine their impact on turbulent intensity, effective thermal 
conductivity, and outlet temperature in PVT systems. The investigation reveals 
significant variations in heat transfer efficiency among the different turn shapes, with 
the triangle-shaped turn demonstrating superior performance across multiple 
parameters. The findings highlight that the triangle-shaped turn exhibits enhanced 
turbulence generation and heat exchange efficiency compared to other shapes. 
Specifically, the triangle-shaped turn achieves a maximum turbulent intensity of 
approximately 70%, surpassing other shapes which achieve around 60%. Moreover, 
the triangle-shaped turn displays a longer and more substantial area of high heat 
exchange, resulting in an effective thermal conductivity improvement of up to 20% 
compared to alternative shapes. Furthermore, the analysis indicates that the triangle-
shaped turn exhibits a faster increase in outlet temperature, reaching steady-state 
conditions within 15 seconds, while other shapes require up to 19 seconds. These 
results underscore the significance of turn shape in optimizing the thermal efficiency 
of PVT systems. 
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1. Introduction 
 

The depletion of fossil fuel supplies has become the next major global issue, after the increased 
need for energy. One strategy to lessen the effects of the global energy crisis is to employ renewable 
energy sources and create pertinent technologies [1]. One sustainable and eco-friendly renewable 
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energy source is solar energy [2]. Because solar cells can directly convert solar energy into electrical 
energy, solar energy can be used to generate electricity [3]. Additionally, PV technology is the most 
reliable energy source and is suited for commercialization, claim [4]. Nevertheless, because PV 
technology's efficiency drops as operating temperature rises, [5] argue that the technology's possible 
application in hot climates cannot be maximized [6]. As a result, numerous researchers are 
attempting to cool solar panels using various efficient methods [7]. 

Studies on photovoltaic thermal (PVT) have been conducted since the 1970s [8]. In order to 
generate heat energy and electrical energy simultaneously [9, 10], this system blends a thermal 
collector with a PV panel. The installation rate is lowered from two to one when comparing self-
deployed PV and PV-T systems, greatly lowering expenses [11]. Furthermore, PVT systems becoming 
more economical when PV panel costs decline [12].  

To determine the efficiency and characteristics of PVT, researchers have carried out simulation 
tests on a laboratory scale and directly in real-world conditions. Hasan et al., [13] used CFD to analyze 
the impact of using nanofluid concentration photovoltaic thermal (CPVT). CFD can also be used to 
validate experimental results [14]. Zohri et al., [15] This research applies an experimental approach 
in the laboratory and outdoors. The higher the mass flow rate used, the higher the sustainability 
index. Mustafa et al., [16] conducted tests with the help of a solar simulator and found that the use 
of fiberglass collectors could produce a total PVT efficiency of 82.68%. Muna Ali Talib et al., [17] 
discovered that the efficiency of the current panel under investigation dramatically increased in a 
simulation utilizing water fluid. 

Researchers are still working to improve the PVT system to boost its effectiveness. Making the 
design novel, including the collector design [18-20], was one of the actions carried out that also 
investigated the influence of each PVT component on its efficiency [21]. Numerous collector types 
have seen innovation as a result of collector design optimization, including the groove collector [22, 
23] and the compound parabolic collector (CPC) [24]. In addition to collectors, researchers started 
experimenting with different fluids. Initially, water [25, 26] and air [27] were the fluids employed in 
PV systems. Furthermore, the use of phase change materials (PCM) is increasingly in demand, and 
research on mathematical models to assess the transient processes of a hybrid photovoltaic thermal 
solar system with phase change materials in comparison to a conventional photovoltaic panel was 
carried out [28]. Next, testing PCM capsules and water were combined by Hamada et al., [29], 
yielding the greatest PVT system effectiveness of 74.1%. Additionally, Diwania et al., [30] research 
demonstrated how various nanoparticles affect PVT systems, while other research also discusses 
using MWCNT/water nanofluids [31]. 

This type of bifacial PV, which has the advantage of being able to produce electricity from the 
back side, is also being researched for its use in PVT systems. Ishak et al., [32] tested several bifacial 
PV facing factors on a PEVT system, and they produced the highest efficiency of 72.35% at a facing 
factor of 0.66. The performance of thermal photovoltaic (PV/T) type solar collectors can be optimized 
by using bifacial photovoltaic panels because they can utilize solar radiation absorbed from the front 
and back surfaces. To increase efficiency, it is necessary to increase the reflection of solar radiation 
on the back surface of the panel. Therefore, for PVT systems with bifacial panels, it is more 
appropriate to use a double-pass system [33]. Saberi et al., [34] obtained the results that the 
optimum mass flow rate of a bifacial PV/T collector with CPC and mirror reflector was found to be 
0.0589 kg/s, so that it could achieve a temperature output as high as 51 °C. 

Based on literature studies, no one has discussed in detail the type of u-turn that is suitable for 
use in double-pass PVT systems. In general, the type of u-turn chosen is box [35]. Furthermore, based 
on the problems described previously, this research will investigate the relationship between the u-
turn and the thermal conductivity focused on the bottom surface of the solar panel. This is in line 
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with the findings in the reference, which explain that there have been an increasing number of 
studies using bifacial PV panels in PVT systems, hereinafter called bifacial photovoltaic thermal (B-
PVT). In this research, it is hoped that we can find out the type of u-turn that is most responsive in 
heat transfer and reaches a steady point the fastest as a function of time. In this study, computational 
fluid dynamics (CFD) will be employed to analyze the thermal conductivity and heat transfer 
performance of different types of u-turns in double-pass PVT systems. This approach will provide 
detailed insights into the thermal behavior of the u-turns and help identify the most efficient design 
for maximizing heat transfer in B-PVT systems. 
 
2. Methodology  
2.1 Description of the CFD Model 

 
The proposed CFD model is 2D, as this research is only interested in the effect of the shape of the 

turn of the double pass on heat transfer. The lower and upper passages are kept at the same height. 
The PV is modeled as a very thin void with a constant temperature, as the research only focuses on 
the turn geometry effect on the heat transfer phenomenon. The investigated shapes are selected 
based on their side amounts. The sides are equal, and the gap between the furthest point of the 
shape and the PV is kept equal. The furthest point is equal to the lower and upper passages, so there 
would be no continuity difference resulting from the turn, and the result would only be influenced 
by the geometric characteristics. The side length for each shape is also equal. The shape is shown in 
Figure 1 below. 

 

   

(a) (b) (c) 

 

 

 
(d)  (e) 

Fig. 1. Geometry variation illustration (a) Half-Circle, (b) Triangle, (c) Half-Hexagon, (d) Half-Octagon 
(e) Box 

 
Figure 1 shows a geometry variation illustration, where there are five shapes to be discussed in 

this research. Figure 1(a) shows a half-circle with an infinite number of equal sides; Figure 1(b) 
triangle with 2 equal sides; Figure 1(c) half-hexagon with 3 equal sides; Figure 1(d) half-octagon with 
4 equal sides; and finally Figure 1(e) box. form Figure 1(e) box, which is commonly used by previous 
researchers. The shapes are shown below. In the CFD model, gravity is taken into account, the air is 
viscous and incompressible, and the wall is a no-slip wall. So, there is turbulent flow and heat 
convection happening between the wall and the flow.  

In a double-pass PVT system, the direction of fluid flow starts from the top through the bend 
towards the bottom. By flowing fluid through two passes, a double-pass system allows heat to be 
absorbed more efficiently by the solar panels, improving the overall performance of the PVT system. 
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The flow direction scheme that will be tested in the research by testing each type of bend shape 
variation is shown in Figure 2 below. 

 

 
Fig. 2. PVT flow direction schema 

 
The design size is based on the type of bifacial photovoltaic thermal (BPV) available in Indonesia. 

From the BPV size, it will be reduced to the size of the entire B-PVT system. The detailed specification 
of the domain is shown in Table 1 below. 

 
Table 1 
Parameter of B-PVT 
Parameter Value 

The B-PV length 2.2400 m 

The box length 2.3725 m 

The PV and furthest U-Turn distance 0.1325 m 

The passage height 0.1325 m 

 
2.2 Computational Domain and Boundary Conditions 

 
The computational domain is discretized with structured grid method. This would enhance the 

computational efficiency for the simulation. This would ensure a lower residual result that implies 
more accurate computation result. The structured grid is shown below. 

Figure 3 shows the overall domain computation. These images are also made for each type of 
shape. Next, Figure 4 shows details of the cases per case that will be investigated in this study. The 
image explains the computation domain variation illustration. Half-Circle, Triangle, Half-Hexagon, 
Half-Octagon, and Box. 

 

 
Fig. 3. Computation domain 
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(a) (b) (c) 

 

 

 
(d)  (e) 

Fig. 4. Computation domain variation illustration (a) Half-Circle, (b) Triangle, (c) Half-Hexagon, (d) 
Half-Octagon and (e) Box 
 

The boundary condition is shown in Table 2 below. The boundary conditions are created so that 
they only focus on the heat transfer phenomenon from the PV wall to the flow. Therefore, every wall 
except for the PV wall has the same temperature as the inlet temperature. The inlet velocity is the 
only parameter to be varied so that the behavior of the heat transfer can be seen across multiple 
Reynolds numbers. The flow is assumed to be a fully developed turbulent flow with 10% turbulent 
intensity at the inlet [36]. 

 
Table 2 
The boundary condition 
Name Momentum Thermal 

Inlet  0.4 m/s < x>1.2 m/s  300 K 

Pv wall - 333.15 K 

Casing wall - 300 K 

Outlet Calculated  Calculated 

 
2.3 Governing Equation 

 
The governing equations for a viscous flow that include heat transfer consist of 3 Navier Stokes 

equations, Continuity, momentum, and energy equation. For this case, the domain only 2D therefore 
the equation only consists of 2 axes, x and y. To capture the cooling process from the flow, the case 

is time dependent or transient. To apply the transient case, the unsteady factor 
∂u

∂t
 on the Navier-

Stokes Equation is kept for the equations. The equations are written below [37, 38].  
 
Continuity Equation: 

 
∂u

∂x
+

∂v

∂y
= 0             (1) 

 

Momentum Equation: 
 

∂u

∂t
+ u

∂u

∂x
+

∂u

∂y
= −

1

ρ

∂p

∂x
+

μ

ρ
{
∂

∂x
(u

∂u

∂x
) +

∂

∂y
(u

∂u
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)} − gβf cos α     (2) 
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Energy Equation: 
 

u
∂T

∂x
+ v

∂T

∂y
=

λf

ρfCpf
[
∂2T

∂x2
+

∂2T

∂y2
]         (4) 

 
2.4 Time Discretization 

 
For the time discretization, the stability criterion that used in the CFD simulation is CFL (Courant-

Friedrich-Lewy) number. The formula for CFL calculation as follows [39].  
 

CFL =
u∆t

∆x
            (5) 

 
The formula consists of three factors, flow velocity, the time step interval and mesh sizes. These 

factors are crucial in determining the convergence and accuracy of the simulation. Identical CFL value 
for each geometry is applied for every simulation that conducted in this research. This would ensure 
that the effect of different grid total that naturally occurs between different geometry is kept at 
minimal. This would also keep the effect of different Reynolds number to the numerical error are 
minimal because the time discretization is adaptive to the change of Reynolds number inside the 
flow. 

In summary, the CFL criterion is used to determine the adaptive time discretization so that the 
effect of different grid total and Reynolds number in the simulation are kept at minimum and 
enhance the validity of the simulation results [40, 41].  

 
2.5 Validation 

 
The validation of the simulation conducted for this research is the grid independence test. In 

other studies, independent grid analysis was also carried out to determine the ideal mesh [17]. This 
method was selected because there is no experimental data available to cross-reference this 
simulation. The grid independence test is done by varying the grid sizes for the same geometry and 
comparing each result to ensure that the result is not affected by the grid sizes. The test was 
conducted using five different grid sizes. It ranges from a 10mm grid to a 3mm grid. The comparison 
parameter selected is outlet temperature. The results are shown in Table 3 below. 

 
Table 3 
The grid independence test 

Grid Type Grid Size (mm) Outlet Temperature (K) 

Very coarse 10 307.57 

Coarse 7.5 307.75 

Standard 5 308.12 

Fine 4 307.82 

Very fine 3 307.90 

 
For a more intuitive impression, the results and the total number of grid nodes are graphically 

shown in Figure 5 below. From the graph, it can be concluded that after 40000 node counts, the 
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result is saturated because there is no significant difference in the result after that point. Therefore, 
for this research, all of the geometry uses fine discretization with 4mm grid sizes. This would ensure 
grid-independent value, resulting in excessive computational time costs.  

 

 
Fig. 5. Grid independence test result 

 
2.6 Selection of the CFD Model  

 
The numerical simulation type is transient type as the turn shape effect would be more significant 

on the cooling process rather than only the end result. The simulation is done using adaptive time 
stepping govern by CFL criterion [39]. In total, the simulation would run for 25 seconds flow time. 
This flow time is enough to capture the transient process until the steady state of the flow.  

For the turbulent model, the case is handled using URANS (Unsteady Reynolds Averaged Navier 
Stokes). It is a method that solves the Navier Stokes equations in a time-dependent manner, allowing 
for some unsteady effects to be captured [42]. The turbulence model that used for the URANS is SST 
(Shear Stress Transport) k-ω. The model is suitable for both the wall effected flow and the freestream 
flow that occurs on the double pass configuration [43]. This is consistent with studies by N 
Kaewchoothong, et al., [44], who examined the parameters of flow and heat transfer in a ribbed 
parallel channel in order to assess thermal performance using a photovoltaic/thermal (PV/T) 
collector.  

 
3. Results and Discussions 
3.1 Turbulent Intensity  
 

To investigate the effect of the geometry investigated in this research, turbulent intensity will be 
measured. Turbulent intensity can be seen as having a relationship with heat transfer. Highly 
turbulent flow would contribute to better heat transfer. Figure 6 below shows the turbulent intensity 
on the geometry after the turn for each shape after 25 seconds of flow time and reaching the steady-
state solution. The data point used for the illustration is the 1.2 m/s inlet velocity. The high velocity 
would accentuate the difference between each shape, therefore making it easier to observe and 
analyze. 
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(a) (b) 

  
(c) (d) 

 
(e) 

 

Fig. 6. Turbulent intensity contours (a) Half Circle, (b) Triangle, (c) Half Hexagon, (d) Half Octagon, and 
(e) Box 

 

From Figure 6, turbulent contour comparisons can be carried out. From these five images, it can 
be seen that the triangle shape has a redder area than the other shape. This implies that the triangle 
geometry is able to produce turbulence significantly better than the other shapes. while The half 
circle has the least orange area of the other shapes. This implies that this particular shape is good at 
keeping the turbulence at a minimum. 

The parametric analysis was also conducted to compare the shape performance across different 
flow velocities. The comparison parameter is the maximum turbulent intensity. The results are shown 
in Figure 7 below. 

 

 
Fig. 7. The parametric analysis on turbulent intensity with radius axis turbulent 
intensity and the perimeters axis flow velocity 
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From Figure 7, it can be seen that increasing flow velocity results in an increase in turbulent 
intensity for all shapes of the turn offered. Furthermore, from the graph, it can also be seen that the 
triangle-shaped turn is indeed superior in producing turbulence. The turbulence value produced 
when the flow velocity is 1.2 m/s is close to 70%, while for other shapes it is only around 60%. From 
the graph, it can also be seen that the type of box that has often been used by researchers has the 
lowest value. 

 
3.2 Effective Thermal Conductivity 

 
The next analysis carried out is on effective thermal conductivity. This analysis aims to determine 

the influence of the turbulent intensity on the heat transfer from the PV. Theoretically, higher 
turbulent flow should increase the efficiency of heat transfer in the flow. Figure 8 shows the effective 
thermal conductivity contours to compare each turn shape. The data points used for the illustration 
are the same as in the in the previous analysis. 
 

  
(a) (b) 

  
(c) (d) 

 
(e) 

 
Fig. 8. Effective thermal conductivity contours (a) Half Circle, (b) Triangle, (c) Half Hexagon, (d) Half 
Octagon, and (e) Box 

 
From the five images presented in Figure 8. From the contours, it can be seen that, again, the 

triangle-shaped turn does have a bigger and longer red area. This means that a longer area of high 
heat exchange from the PV to the flow happened. This is consistent with previous analyses of 
turbulent intensity. 

To see the effect of time on the effective thermal conductivity, the value is plotted along the flow 
time as shown in Figure 9. From the graph, there is a bulge in the first 3 seconds of the simulation, 
with the triangle-shaped turn having the highest value with the shortest duration. Octagon and 
hexagon had similar peak and duration of the bulge, with the half-circle-shaped turn having the 
lowest peak and duration of the bulge. This implies that the geometry affects the flow process under 
steady conditions. The graph also shows different steady values, with the triangle-shaped turn being 
the highest. 
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Fig. 9. Maximum effective thermal conductivity versus flow time 

 

3.2 Outlet Temperature 
 

Many air-based PVT systems are applied for drying, where the hot air produced by the system 
will flow into the drying room. For a system like this, a high air temperature is required at the outlet. 
For this reason, this chapter will discuss outlet air temperature. The turbulent intensity and effective 
thermal conductivity should contribute to the increase in flow temperature. In the BPV-T context, 
the higher the outlet temperature, the more effective the drying and cooling of the PV module, which 
prevents the PV from overheating and maintains its efficiency. The heating process of the outlet 
temperature is illustrated by plotting the outlet temperature with the flow time, as shown below. 
The data points used for this comparison are 0.4 m/s flow velocity, which has higher outlet 
temperatures, thus making it easier to observe the difference between shapes. 

 

 
Fig. 10. Outlet temperatures versus flow time 

 

Figure 10 explains the relationship between outlet temperatures and flow time. From the graphs, 
the triangle-shaped turn is particularly interesting, with it increasing outlet temperature earlier than 
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other shapes. The triangle's graph has two bulges in the period of 5 to 10 seconds and 12 to 15 
seconds before finally becoming steady. Other shapes are quite similar, with only one bulge in the 
period of 14 to 19 seconds before finally becoming steady. This implies that the triangle-shaped turn 
is able to provide faster and higher temperatures; therefore, it is the most responsive shape out of 
the others. Next The analysis was also conducted at various flow velocities with five different 
velocities: 0.4 m/s, 0.6 m/s, 0.8 m/s, and 1.2 m/s. The results are shown in Figure 11 below. 

 

 
Fig. 11. The parametric analysis on outlet temperature with radius axis turbulent 
intensity and the perimeters axis flow velocity 

 

Based on the parametric analysis of outlet temperature with the radius axis turbulent intensity 
and the perimeter axis flow velocity in Figure 10, the results are consistent with the triangle-shaped 
turn outlet temperature being superior across the flow velocities. The hexagon performed slightly 
better than the octagon, and the lowest outlet temperature is produced by a half-circle-shaped turn. 
 
4. Conclusion and Recommendation 
 

The study investigated the impact of different turn shapes in double-pass photovoltaic thermal 
(PVT) systems on heat transfer and thermal performance. Computational fluid dynamics (CFD) 
simulations were conducted to analyze turbulent intensity, effective thermal conductivity, and outlet 
temperature for various turn shapes, including half-circle, triangle, half-hexagon, half-octagon, and 
box. The results revealed significant variations in heat transfer characteristics among the different 
shapes, with the triangle-shaped turn demonstrating superior performance in generating turbulence 
and facilitating heat exchange. Specifically, the triangle-shaped turn exhibited a maximum turbulent 
intensity of approximately 70%, whereas other shapes achieved around 60%. Furthermore, the 
triangle-shaped turn displayed a longer and more substantial area of high heat exchange, resulting 
in enhanced effective thermal conductivity compared to other shapes. The triangle-shaped turn also 
exhibited a faster increase in outlet temperature, reaching steady-state conditions within 15 seconds, 
while other shapes required up to 19 seconds. Moreover, the triangle-shaped turn exhibited a faster 
increase in outlet temperature, reaching steady-state conditions earlier than other shapes. This 
finding suggests that the choice of turn shape can profoundly influence the thermal efficiency of PVT 
systems. Additionally, the study underscored the importance of considering geometric factors in 
optimizing PVT system design for enhanced heat transfer and overall performance. 
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