Numerical Analysis for the Airflow Behaviour around Vortex Generators Used for Air-Cooling Technologies Considering Rotation
DOI:
https://doi.org/10.37934/cfdl.17.9.127144Keywords:
Vortex generators, air-cooling, convection, CFD, turbine blade coolingAbstract
This study investigates the airflow behaviour around vortex generators (VG) utilized in air-cooling technologies, considering the impact of rotation. The analysis encompasses a numerical approach to study the flow around vortex generators (conventional and curved delta winglet type) installed inside a duct with a heated wall. The vortex generators' set number effect on the heat transfer behaviour was investigated. Three sets of vortex generators were examined, two-VG set, four-VG set and six-VG set, equally aligned along the duct. The range of Reynolds numbers (Re) from 4000 to 12000, with the rotation number (Ro) fixed at 0.20 is covered. In this study, the thermal behaviour (measured by Nusselt Number (Nu)) and the flow behaviour (represented by) the friction factor (f)) were presented. Validation for the employed numerical model was performed based on the available experimental outcomes. The impact of using the vortex generator was evaluated and compared with the clean duct, the duct with conventional delta winglet and the curved one. The results revealed that installing the vortex generator increases the Nu (by 1.34 times at Re 4000 for four-VG and two-VG sets) and reduces the friction factor. Additionally, using the newly designed curved VG increased Nu by about 1.35. However, as the number of employed VGs enlarged, the rate of increase declined to about 0.9 of the Nusselt number value associated with the conventional VG. Furthermore, f (friction factor) reduces with the number of VG and increases with Re. In all cases, the rotation increases the Nu and f factor and using the curved VG showed a higher rate of increase. The newly designed VGs showed improved heat transfer behaviour, performing best with a four-VG set installed and worst with a six-VG set.
Downloads
References
[1] Al-dulaımı, Mustafa J., Fadhil Abdulrazzaq Kareem and Faik A. Hamad. "Numerical investigation of the heat transfer enhancement inside a square duct with rectangular vortex generators." Journal of Thermal Engineering 8, no. 1 (2022): 1-13. https://doi.org/10.18186/thermal.1066981 DOI: https://doi.org/10.18186/thermal.1066981
[2] Gupta, Anirudh and Mayank Uniyal. "Review of heat transfer augmentation through different passive intensifier methods." IOSR Journal of Mechanical and Civil Engineering (IOSRJMCE) ISSN 1, no. 4 (2012). https://doi.org/10.9790/1684-0141421 DOI: https://doi.org/10.9790/1684-0141421
[3] Niknahad, Ali and Abdolamir Bak Khoshnevis. "Numerical study and comparison of turbulent parameters of simple, triangular and circular vortex generators equipped airfoil model." Journal of Advanced Research in Numerical Heat Transfer 8, no. 1 (2022): 1-18.
[4] Fiebig, M. "Vortices, generators and heat transfer." Chemical Engineering Research and Design 76, no. 2 (1998): 108-123. https://doi.org/10.1205/026387698524686 DOI: https://doi.org/10.1205/026387698524686
[5] Yousif, Ahmed H., Maher R. Khudhair and Mohannad A. Kadhom. "Augmentation of heat transfer in duct by staggered vortex generators." In AIP Conference Proceedings, vol. 2776, no. 1. AIP Publishing, 2023. https://doi.org/10.1063/5.0137309 DOI: https://doi.org/10.1063/5.0137309
[6] Chormale, Vitthal and D. D. Palande. "Heat Transfer Enhancement in Tube in Tube Heat Exchanger Using Rectangular Wing Type Vortex Generator-A Review." (2016).
[7] Ali, R. K. "Heat transfer enhancement of a heat source located in a wake zone using rectangular vortex generators." Applied Thermal Engineering 106 (2016): 1209-1216. https://doi.org/10.1016/j.applthermaleng.2016.06.062 DOI: https://doi.org/10.1016/j.applthermaleng.2016.06.062
[8] Oneissi, Mohammad, Charbel Habchi, Serge Russeil, Thierry Lemenand and Daniel Bougeard. "Heat transfer enhancement of inclined projected winglet pair vortex generators with protrusions." International Journal of Thermal Sciences 134 (2018): 541-551. https://doi.org/10.1016/j.ijthermalsci.2018.08.032 DOI: https://doi.org/10.1016/j.ijthermalsci.2018.08.032
[9] Kamlapure, N., S. Talwar and P. A. Patil. "Experimental study of heat transfer enhancement in a rectangular duct channel with delta wing vortex generator." Int. J. Eng. Tech. Res 5 (2016): 61-4.
[10] Gupta, Sachin, Aditya Roy and Arvind Gupta. "Computer-aided engineering analysis for the performance augmentation of a fin-tube heat exchanger using vortex generator." Concurrent Engineering 28, no. 1 (2020): 47-57. https://doi.org/10.1177/1063293X19891770 DOI: https://doi.org/10.1177/1063293X19891770
[11] Fahad, Mostafa Kamal, Nowroze Farhan Ifraj, Sharzil Huda Tahsin and Md Jahid Hasan. "Numerical investigation of the hydrothermal performance of novel vortex generators in a rectangular channel by employing inclination and rotational angles." International Journal of Thermofluids 20 (2023): 100500. https://doi.org/10.1016/j.ijft.2023.100500 DOI: https://doi.org/10.1016/j.ijft.2023.100500
[12] Li, Zheng, Xianchen Xu, Kuojiang Li, Yangyang Chen, Guoliang Huang, Chung-lung Chen and Chien-Hua Chen. "A flapping vortex generator for heat transfer enhancement in a rectangular airside fin." International Journal of Heat and Mass Transfer 118 (2018): 1340-1356. https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.067 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.067
[13] Kharge, Sandip B., N. C. Ghuge and V. S. Daund. "Experimentation using delta winglet type vortex generator attached on tube surface of tube in tube heat exchanger for heat transfer augmentation." International Journal of Current Engineering and Technology 5 (2016): 398-402.
[14] Nfawa, Sadeq Rashid, Abd Rahim Abu Talib, Siti Ujila Masuri, Adi Azriff Basri and Hasril Hasini. "Heat transfer enhancement in a corrugated-trapezoidal channel using winglet vortex generators." CFD Letters 11, no. 10 (2019): 69-80.
[15] Pérez, Rubén Borrajo, Jurandir Ititzo Yanagiharab and Juan José González Bayón. "An experimental study of heat transfer enhancement using vortex generators in a finned elliptical tube." Ingeniería Energética 37, no. 3 (2016): 165-175.
[16] Hukire, Pritam R., S. M. Sawant and Mr Vivek P. Warade. "Numerical Analysis Of Application Of Vortex Generator In Perforated Plate-fin Heat Sink." JournalNX (2018): 290-293.
[17] Majmader, Fawaz Bukht and Md Jahid Hasan. "Multi-objective hydrothermal performance optimization of a microchannel heat sink equipped with delta winglet vortex generators using NSGA-II genetic algorithm." International Journal of Thermal Sciences 201 (2024): 109046. https://doi.org/10.1016/j.ijthermalsci.2024.109046 DOI: https://doi.org/10.1016/j.ijthermalsci.2024.109046
[18] Mirzaei, M. and A. Sohankar. "Heat transfer augmentation in plate finned tube heat exchangers with vortex generators: a comparison of round and flat tubes." Iranian Journal of Science and Technology. Transactions of Mechanical Engineering 37, no. M1 (2013): 39.
[19] Pal, Divyprakash C. and Abhik Majumder. "Numerical Study Of Fin-Tube Type Heat Exchanger With Delta Winglets." Frontiers In Heat And Mass TransfeR 7 (2016). https://doi.org/10.5098/hmt.7.1 DOI: https://doi.org/10.5098/hmt.7.1
[20] Shlash, Bassam Amer Abdulameer and Ibrahim Koç. "Turbulent fluid flow and heat transfer enhancement using novel Vortex Generator." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 96, no. 1 (2022): 36-52. https://doi.org/10.37934/arfmts.96.1.3652 DOI: https://doi.org/10.37934/arfmts.96.1.3652
[21] Darvankar, Surajkumar. “Heat Transfer Augmentation Techniques in a Plate-Fin Heat Exchanger.” 7: 2–6.
[22] Waghmare, Piyush Pruthviraj, Mudassar Gazi Sahab Qaimi and Avinash Patil. "Heat Transfer Augmentation Dealing with Aerodynamic Device (Flag Vortex Generator)." (2021).
[23] Gawande, Vipin B., A. S. Dhoble, D. B. Zodpe and Sunil Chamoli. "Experimental and CFD investigation of convection heat transfer in solar air heater with reverse L-shaped ribs." Solar Energy 131 (2016): 275-295. https://doi.org/10.1016/j.solener.2016.02.040 DOI: https://doi.org/10.1016/j.solener.2016.02.040
[24] Lu, Zhongjie, Mingjie Li, Chenlong Yang, Xiangqiang Cheng and Jianfei Zhang. "Experimental and numerical study on the heat transfer and flow characteristics of micro-gap chip with longitudinal vortex generator array." Case Studies in Thermal Engineering 45 (2023): 102979. https://doi.org/10.1016/j.csite.2023.102979 DOI: https://doi.org/10.1016/j.csite.2023.102979
[25] Zhao, Lumei, Zuoqin Qian, Xinyu Wang, Qiang Wang, Changyi Li and Zhicheng Zhang. "Analysis of the thermal improvement of plate fin-tube heat exchanger with straight and curved rectangular winglet vortex generators." Case Studies in Thermal Engineering 51 (2023): 103612. https://doi.org/10.1016/j.csite.2023.103612 DOI: https://doi.org/10.1016/j.csite.2023.103612
[26] Saha, Pankaj, Gautam Biswas and Subrata Sarkar. "Comparison of winglet-type vortex generators periodically deployed in a plate-fin heat exchanger–A synergy based analysis." International Journal of Heat and Mass Transfer 74 (2014): 292-305. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.015 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.015
[27] Wang, Jiangbo, Ting Fu, Liangcai Zeng, Fue-sang Lien and Guang Chen. "Thermal-hydraulic performance in a tube with punched delta winglets inserts in turbulent flow." International Journal of Thermal Sciences 172 (2022): 107326. https://doi.org/10.1016/j.ijthermalsci.2021.107326 DOI: https://doi.org/10.1016/j.ijthermalsci.2021.107326
[28] Caliskan, Sinan, Seyfi Şevik and Özgür Özdilli. "Heat transfer enhancement by a sinusoidal wavy plate having punched triangular vortex generators." International Journal of Thermal Sciences 181 (2022): 107769. https://doi.org/10.1016/j.ijthermalsci.2022.107769 DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107769
[29] Nabilah, Hasna, MSK Tony Suryo Utomo, Agus Suprihanto and Maria F. Soetanto. "Numerical simulation of heat transfer enhancement from tubes surface to airflow using concave delta winglet vortex generators." Results in Engineering 16 (2022): 100710. https://doi.org/10.1016/j.rineng.2022.100710 DOI: https://doi.org/10.1016/j.rineng.2022.100710
[30] Brodnianská, Zuzana and Stanislav Kotšmíd. "Heat transfer enhancement in the novel wavy shaped heat exchanger channel with cylindrical vortex generators." Applied Thermal Engineering 220 (2023): 119720. https://doi.org/10.1016/j.applthermaleng.2022.119720 DOI: https://doi.org/10.1016/j.applthermaleng.2022.119720
[31] Naik, Hemant, Shaligram Tiwari and Heuy Dong Kim. "Flow and thermal characteristics produced by a curved rectangular winglet vortex generator in a channel." International Communications in Heat and Mass Transfer 135 (2022): 106103. https://doi.org/10.1016/j.icheatmasstransfer.2022.106103 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106103
[32] Awais, Muhammad and Arafat A. Bhuiyan. "Enhancement of thermal and hydraulic performance of compact finned-tube heat exchanger using vortex generators (VGs): a parametric study." International Journal of Thermal Sciences 140 (2019): 154-166. https://doi.org/10.1016/j.ijthermalsci.2019.02.041 DOI: https://doi.org/10.1016/j.ijthermalsci.2019.02.041
[33] Naik, Hemant and Shaligram Tiwari. "Thermal performance analysis of fin-tube heat exchanger with staggered tube arrangement in presence of rectangular winglet pairs." International Journal of Thermal Sciences 161 (2021): 106723. https://doi.org/10.1016/j.ijthermalsci.2020.106723 DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106723
[34] Arora, Amit, P. M. V. Subbarao and R. S. Agarwal. "Numerical optimization of location of ‘common flow up’delta winglets for inline aligned finned tube heat exchanger." Applied Thermal Engineering 82 (2015): 329-340. https://doi.org/10.1016/j.applthermaleng.2015.02.071 DOI: https://doi.org/10.1016/j.applthermaleng.2015.02.071
[35] Hasan, Md Jahid, Kazi Tawkir and Arafat A. Bhuiyan. "Improvement of an exhaust gas recirculation cooler using discrete ribbed and perforated louvered strip vortex generator." International Journal of Thermofluids 13 (2022): 100132. https://doi.org/10.1016/j.ijft.2022.100132 DOI: https://doi.org/10.1016/j.ijft.2022.100132
[36] Yeranee, Kirttayoth and R. A. O. Yu. "A review of recent studies on rotating internal cooling for gas turbine blades." Chinese Journal of Aeronautics 34, no. 7 (2021): 85-113. https://doi.org/10.1016/j.cja.2020.12.035 DOI: https://doi.org/10.1016/j.cja.2020.12.035
[37] Wright, Lesley M. and Je-Chin Han. "Enhanced internal cooling of turbine blades and vanes." The gas turbine handbook 4 (2006): 1-5.
[38] Rao, Yu, Yamin Xu and Chaoyi Wan. "An experimental and numerical study of flow and heat transfer in channels with pin fin-dimple and pin fin arrays." Experimental Thermal and Fluid Science 38 (2012): 237-247. https://doi.org/10.1016/j.expthermflusci.2011.12.012 DOI: https://doi.org/10.1016/j.expthermflusci.2011.12.012
[39] Majmader, Fawaz Bukht and Md Jahid Hasan. "Effects of bidirectional rib arrangements on turbulent flow structure and heat transfer characteristics of a two-pass channel for turbine blade internal cooling." International Communications in Heat and Mass Transfer 156 (2024): 107688. https://doi.org/10.1016/j.icheatmasstransfer.2024.107688 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2024.107688
[40] Kini, Chandrakant R., Harishkumar Kamat and B. Satish Shenoy. "Effect of twisted tape inserts and stacks on internal cooling of gas turbine blades." Indian Journal of Science and Technology 9, no. 31 (2016): 95978. https://doi.org/10.17485/ijst/2016/v9i31/95978 DOI: https://doi.org/10.17485/ijst/2016/v9i31/95978
[41] Chen, Jinfu, Ran Yao, Jianhua Wang, Xu Wang, Wei Song and Hang Su. "Novel multi-stage vortex cooling with bypass for turbine blade leading edge design considering rotational effect." Applied Thermal Engineering 226 (2023): 120347. https://doi.org/10.1016/j.applthermaleng.2023.120347 DOI: https://doi.org/10.1016/j.applthermaleng.2023.120347
[42] Liu, Jie, Jiabing Wang and Kun Yang. "Heat transfer enhancement by employing inserted plate in turbine blade internal cooling channel." Case Studies in Thermal Engineering 45 (2023): 102977. https://doi.org/10.1016/j.csite.2023.102977 DOI: https://doi.org/10.1016/j.csite.2023.102977
[43] Nourin, Farah Nazifa and Ryoichi S. Amano. "Review of gas turbine internal cooling improvement technology." Journal of Energy Resources Technology 143, no. 8 (2021): 080801. https://doi.org/10.1115/1.4048865 DOI: https://doi.org/10.1115/1.4048865
[44] Gesell, Hendrik, Varchasvi Nandana and Uwe Janoske. "Numerical study on the heat transfer performance and efficiency in a rectangular duct with new winglet shapes in turbulent flow." Thermal Science and Engineering Progress 17 (2020): 100490. https://doi.org/10.1016/j.tsep.2020.100490 DOI: https://doi.org/10.1016/j.tsep.2020.100490
[45] Majmader, Fawaz Bukht and Md Jahid Hasan. "Thermal enhancement and entropy generation of an air-cooled 3D radiator with modified fin geometry and perforation: A numerical study." Case Studies in Thermal Engineering 52 (2023): 103671. https://doi.org/10.1016/j.csite.2023.103671 DOI: https://doi.org/10.1016/j.csite.2023.103671
[46] Zhou, Guobing and Qiuling Ye. "Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators." Applied Thermal Engineering 37 (2012): 241-248. https://doi.org/10.1016/j.applthermaleng.2011.11.024 DOI: https://doi.org/10.1016/j.applthermaleng.2011.11.024