New Profile Based on Plant to Increase Cp for Medium Horizontal Axis Wind Turbine
DOI:
https://doi.org/10.37934/cfdl.17.9.81103Keywords:
Banana midrib, plant morphology, aerodynamic, air foilAbstract
This research investigates the feasibility of an air foil profile derived from the morphology of the banana midrib in a low-speed horizontal axis wind turbine blade. A blade is designed, analysed and modelled using the simulation software QBLADE (BEM Method) and ANSYS Fluent (CFD method) with wind speeds varying between 3 and 7 meters per second, a maximum chord length of 3.180 meters, a radius of 12.5 meters and a TSR of 6. The blades can generate a significant amount of energy, namely 3.7 kW at 3 m/s wind speed and 48 kW at 7 m/s wind speed, with an average coefficient of power of 0.46. This research contributes to the potential effectiveness of using plant-inspired air foil profiles as a substitute for conventional blade air foil profiles in wind power generation.
Downloads
References
[1] Yang, Han, Jin Chen, Xiaoping Pang and Gang Chen. "A new aero-structural optimization method for wind turbine blades used in low wind speed areas." Composite Structures 207 (2019): 446-459. https://doi.org/10.1016/j.compstruct.2018.09.050 DOI: https://doi.org/10.1016/j.compstruct.2018.09.050
[2] Tang, Xinzi, Xuanqing Huang, Ruitao Peng and Xiongwei Liu. "A direct approach of design optimization for small horizontal axis wind turbine blades." Procedia CIRP 36 (2015): 12-16. https://doi.org/10.1016/j.procir.2015.01.047 DOI: https://doi.org/10.1016/j.procir.2015.01.047
[3] Purusothaman, M., T. N. Valarmathi and S. Praneeth Reddy. "Selection of twist and chord distribution of horizontal axis wind turbine in low wind conditions." In IOP Conference Series: Materials Science and Engineering, vol. 149, no. 1, p. 012203. IOP Publishing, 2016. https://doi.org/10.1088/1757-899X/149/1/012203 DOI: https://doi.org/10.1088/1757-899X/149/1/012203
[4] Roslan, Siti Amni Husna and Ahmad Kamal Arifin Mohd Ehsan. "The aerodynamic performance of the small-scale wind turbine blade with NACA0012 air foil." CFD Letters 14, no. 10 (2022): 87-98. https://doi.org/10.37934/cfdl.14.10.8798 DOI: https://doi.org/10.37934/cfdl.14.10.8798
[5] Martosaputro, Soeripno and Nila Murti. "Blowing the wind energy in Indonesia." Energy Procedia 47 (2014): 273-282. https://doi.org/10.1016/j.egypro.2014.01.225 DOI: https://doi.org/10.1016/j.egypro.2014.01.225
[6] Rikin Ari Supriyanti. “BPPT: Energi Angin Potensial Dikembangkan di Indonesia.” Berita Satu, (2014). https://www.beritasatu.com/news/230463/bppt-energi-angin-potensial-dikembangkan-di-indonesia
[7] Dewan Energi Nasional. “Energi Indonesia 2019.” Sekretariat Jenderal Dewan Energi Nasional. (2019). https://www.den.go.id/publikasi/hasil-kajian
[8] Amjith, L. R. and B. Bavanish. "Design and analysis of 5 MW horizontal axis wind turbine." Materials Today: Proceedings 37 (2021): 3338-3342. https://doi.org/10.1016/j.matpr.2020.09.202 DOI: https://doi.org/10.1016/j.matpr.2020.09.202
[9] Karthikeyan, N., K. Kalidasa Murugavel, S. Arun Kumar and S. Rajakumar. "Review of aerodynamic developments on small horizontal axis wind turbine blade." Renewable and Sustainable Energy Reviews 42 (2015): 801-822. https://doi.org/10.1016/j.rser.2014.10.086 DOI: https://doi.org/10.1016/j.rser.2014.10.086
[10] Huang, Shengxian, Yu Hu and Ying Wang. "Research on aerodynamic performance of a novel dolphin head-shaped bionic air foil." Energy 214 (2021): 118179. https://doi.org/10.1016/j.energy.2020.118179 DOI: https://doi.org/10.1016/j.energy.2020.118179
[11] Yan, Hao, Xiaozhen Su, Haozhou Zhang, Jianwei Hang, Ling Zhou, Zhifeng Liu and Zhujiang Wang. "Design approach and hydrodynamic characteristics of a novel bionic air foil." Ocean Engineering 216 (2020): 108076. https://doi.org/10.1016/j.oceaneng.2020.108076 DOI: https://doi.org/10.1016/j.oceaneng.2020.108076
[12] Xinyu, L. A. N. G., S. O. N. G. Bifeng, Y. A. N. G. Wenqing and S. O. N. G. Wenping. "Aerodynamic performance of owl-like air foil undergoing bio-inspired flapping kinematics." Chinese Journal of Aeronautics 34, no. 5 (2021): 239-252. https://doi.org/10.1016/j.cja.2020.10.017 DOI: https://doi.org/10.1016/j.cja.2020.10.017
[13] Li, Dian and Xiaomin Liu. "Aerodynamic performance and acoustic characteristics of bionic air foil inspired by three-dimensional long-eared owl wing under low Reynolds number." In Turbo Expo: Power for Land, Sea and Air, vol. 49699, p. V02AT41A006. American Society of Mechanical Engineers, 2016. https://doi.org/10.1115/GT2016-57137 DOI: https://doi.org/10.1115/GT2016-57137
[14] Hao, Lishu, Yongwei Gao, Binbin Wei and Ke Song. "Numerical simulation of flow over bionic air foil." International Journal of Aerospace Engineering 2021, no. 1 (2021): 5556463. https://doi.org/10.1155/2021/5556463 DOI: https://doi.org/10.1155/2021/5556463
[15] Tian, Weijun, Zhen Yang, Qi Zhang, Jiyue Wang, Ming Li, Yi Ma and Qian Cong. "Bionic Design of Wind Turbine Blade Based on Long‐Eared Owl’s Air foil." Applied Bionics and Biomechanics 2017, no. 1 (2017): 8504638. https://doi.org/10.1155/2017/8504638 DOI: https://doi.org/10.1155/2017/8504638
[16] Tian, Weijun, Fangyuan Liu, Qian Cong, Yurong Liu and Luquan Ren. "Study on aerodynamic performance of the bionic air foil based on the swallow's wing." Journal of Mechanics in Medicine and Biology 13, no. 06 (2013): 1340022. https://doi.org/10.1142/S0219519413400228 DOI: https://doi.org/10.1142/S0219519413400228
[17] Ansari, Mohd Imran, Mohammed Hamid Siddique, Abdus Samad and Syed Fahad Anwer. "On the optimal morphology and performance of a modeled dragonfly air foil in gliding mode." Physics of Fluids 31, no. 5 (2019). https://doi.org/10.1063/1.5093230 DOI: https://doi.org/10.1063/1.5093230
[18] Innocenti, Rachel A., Rusty A. Feagin, Bianca R. Charbonneau, Jens Figlus, Pedro Lomonaco, Meagan Wengrove, Jack Puleo et al., "The effects of plant structure and flow properties on the physical response of coastal dune plants to wind and wave run-up." Estuarine, Coastal and Shelf Science 261 (2021): 107556. https://doi.org/10.1016/j.ecss.2021.107556 DOI: https://doi.org/10.1016/j.ecss.2021.107556
[19] Hu, Xiao-yi, Wei-ming Tao and Yi-mu Guo. "Using FEM to predict tree motion in a wind field." Journal of Zhejiang University-Science A 9 (2008): 907-915. https://doi.org/10.1631/jzus.A0720035 DOI: https://doi.org/10.1631/jzus.A0720035
[20] Louf, Jean-François, Logan Nelson, Hosung Kang, Pierre Ntoh Song, Tim Zehnbauer and Sunghwan Jung. "How wind drives the correlation between leaf shape and mechanical properties." Scientific Reports 8, no. 1 (2018): 16314. https://doi.org/10.1038/s41598-018-34588-0 DOI: https://doi.org/10.1038/s41598-018-34588-0
[21] Wolff-Vorbeck, Steve, Olga Speck, Thomas Speck and Patrick W. Dondl. "Influence of structural reinforcements on the twist-to-bend ratio of plant axes: a case study on Carex pendula." Scientific reports 11, no. 1 (2021): 21232. https://doi.org/10.1038/s41598-021-00569-z DOI: https://doi.org/10.1038/s41598-021-00569-z
[22] Aydın, N. E. S. L. İ. H. A. N., İ. R. F. A. N. Karagöz and Mehmet Çalışkan. "A Study on a New Bio-Inspired Wing Design and 2D Analysis of Its Aerodynamic Characteristics." Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences 7, no. 8 (2020). https://doi.org/10.38065/euroasiaorg.29 DOI: https://doi.org/10.38065/euroasiaorg.29
[23] Khedr, Amr and Francesco Castellani. "Design and Performance Analysis of a Bio-Inspired Small Wind Turbine with Maple Seed Aerodynamics." In Advances in Clean Energy Systems and Technologies, pp. 93-102. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-49787-2_10 DOI: https://doi.org/10.1007/978-3-031-49787-2_10
[24] Rosa, F., P. Soetikno, I. W. Suweca and M. A. Moelyadi. "A new air foil based on banana leaf midrib morphology for horizontal axis wind turbine." In IOP Conference Series: Earth and Environmental Science, vol. 1108, no. 1, p. 012001. IOP Publishing, 2022. https://doi.org/10.1088/1755-1315/1108/1/012001 DOI: https://doi.org/10.1088/1755-1315/1108/1/012001
[25] Lanzafame, R., S. Mauro and M. Messina. "HAWT design and performance evaluation: improving the BEM theory mathematical models." Energy Procedia 82 (2015): 172-179. https://doi.org/10.1016/j.egypro.2015.12.015 DOI: https://doi.org/10.1016/j.egypro.2015.12.015
[26] Bavanish, B. and K. Thyagarajan. "Optimization of power coefficient on a horizontal axis wind turbine using bem theory." Renewable and Sustainable Energy Reviews 26 (2013): 169-182. https://doi.org/10.1016/j.rser.2013.05.009 DOI: https://doi.org/10.1016/j.rser.2013.05.009
[27] Dal Monte andrea, Stefano De Betta, Marco Raciti Castelli and Ernesto Benini. "Proposal for a coupled aerodynamic–structural wind turbine blade optimization." Composite Structures 159 (2017): 144-156. https://doi.org/10.1016/j.compstruct.2016.09.042 DOI: https://doi.org/10.1016/j.compstruct.2016.09.042
[28] Khaled, Mohamed, Mostafa Mohamed Ibrahim, HE Abdel Hamed and Ahmed Farouk Abdel Gawad. "Aerodynamic design and blade angle analysis of a small horizontal–axis wind turbine." American Journal of Modern Energy 3, no. 2 (2017): 23-37. https://doi.org/10.11648/j.ajme.20170302.12 DOI: https://doi.org/10.11648/j.ajme.20170302.12
[29] Gupta, Rohit Kumar, Vilas Warudkar, Rajesh Purohit and Saurabh Singh Rajpurohit. "Modeling and aerodynamic analysis of small scale, mixed air foil horizontal axis wind turbine blade." Materials Today: Proceedings 4, no. 4 (2017): 5370-5384. https://doi.org/10.1016/j.matpr.2017.05.049 DOI: https://doi.org/10.1016/j.matpr.2017.05.049
[30] Hu, Hao, Xin-kai Li and Bo Gu. "Flow characteristics study of wind turbine blade with vortex generators." International Journal of Aerospace Engineering 2016, no. 1 (2016): 6531694. https://doi.org/10.1155/2016/6531694 DOI: https://doi.org/10.1155/2016/6531694
[31] Ji, Baifeng, Kuanwei Zhong, Qian Xiong, Penghui Qiu, Xu Zhang and Liang Wang. "CFD simulations of aerodynamic characteristics for the three-blade NREL Phase VI wind turbine model." Energy 249 (2022): 123670. https://doi.org/10.1016/j.energy.2022.123670 DOI: https://doi.org/10.1016/j.energy.2022.123670
[32] Siddiqui, Muhammad Salman, Muhammad Hamza Khalid, Abdul Waheed Badar, Muhammed Saeed and Taimoor Asim. "Parametric analysis using cfd to study the impact of geometric and numerical modeling on the performance of a small scale horizontal axis wind turbine." Energies 15, no. 2 (2022): 505. https://doi.org/10.3390/en15020505 DOI: https://doi.org/10.3390/en15020505
[33] Rosa, Firlya, Priyono Sutikno, I. Wayan Suweca and Mochammad Agoes Moelyadi. "Geometric Morphometric Banana Leaf Midrib As Wind Turbine Air foil Profile." Jurnal Mekanova: Mekanikal, Inovasi dan Teknologi 8, no. 2 (2022): 213-224. https://doi.org/10.35308/jmkn.v8i2.6095 DOI: https://doi.org/10.35308/jmkn.v8i2.6095
[34] Roul, Rajendra and Awadhesh Kumar. "Fluid-structure interaction of wind turbine blade using four different materials: numerical investigation." Symmetry 12, no. 9 (2020): 1467. https://doi.org/10.3390/sym12091467 DOI: https://doi.org/10.3390/sym12091467
[35] Shyam, Aditya, Alok S. Aryan, C. Shailesh, R. Harigovind, V. Vipin and Aravind Krishnan. "Design and analysis of small-scale horizontal axis wind turbine using PVC material." Materials Today: Proceedings 52 (2022): 2238-2254. https://doi.org/10.1016/j.matpr.2021.08.095 DOI: https://doi.org/10.1016/j.matpr.2021.08.095
[36] Khedr, Amr and Francesco Castellani. "Critical issues in the moving reference frame CFD simulation of small horizontal axis wind turbines." Energy Conversion and Management: X 22 (2024): 100551. https://doi.org/10.1016/j.ecmx.2024.100551 DOI: https://doi.org/10.1016/j.ecmx.2024.100551