Using Computational Fluid Dynamic (CFD) Simulation to Predict the Silica Particle Size in Spray Dryer under the Influence of Colloidal Properties

Authors

  • Nurdiana Ratna Puri Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia
  • Lailatul Qomariyah Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia
  • Sugeng Winardi Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia
  • Achmad Dwitama Kharisma Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia
  • Saidah Altway Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia
  • Lailatul Alawiyah Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia
  • Farhan Firmansyah Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia
  • Nicky Rahmana Putra Centre of Lipid Engineering and Advanced Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Johor, Malaysia
  • Sumiyyah Sabar Chemical Sciences Programme, School of Distance Education (SDE), Universiti Sains Malaysia, Minden, 11700 Gelugor, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.37934/cfdl.17.9.3044

Keywords:

Spray drying, silica, nanoparticles, CFD, sodium silicate, particle track

Abstract

The prediction of the particle tracking inside spray drying which equipped with tubular furnace is rarely investigated. Also, the relationship between the precursor used with the droplet characteristics is not elaborated. To this end, the CFD modelling was utilized to give better understanding about the particle track. Silica was used a model particle which prepared from sodium silicate (Na2SO3). The effect of colloidal properties e.g., solution pH and concentration on the produce silica particle’s size have been investigated in this research both theoretically and experimentally. The silica particle size and morphology changed by altering the pH of the solution from 8 to 11 and the concentration of the solution from 0.1 to 0.3 mol/L. This observation was validated by the presence of two different morphologies such as spherical and non-spherical doughnut-like particles. Numerical computational fluid dynamic (CFD) simulation was developed to predict the particle tracks and the generated average silica particle size in a spray drying. The application of the simultaneous mass transfer due to droplet evaporation was done in conjunction with a general dynamic equation solution which considered the initial droplet’s size. The experimental and theoretical result have results agree with approximately 5% minimum and 30% negative discrepancy. This happened owing to the morphological change in the silica particles.

Downloads

Download data is not yet available.

Author Biographies

Nurdiana Ratna Puri, Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia

Lailatul Qomariyah, Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia

Sugeng Winardi, Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia

Achmad Dwitama Kharisma, Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia

Saidah Altway, Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia

Lailatul Alawiyah, Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia

Farhan Firmansyah, Department of Industrial Chemical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Jawa Timur 60111, Indonesia

Nicky Rahmana Putra, Centre of Lipid Engineering and Advanced Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, 81310 Johor Bahru, Johor, Malaysia

Sumiyyah Sabar, Chemical Sciences Programme, School of Distance Education (SDE), Universiti Sains Malaysia, Minden, 11700 Gelugor, Pulau Pinang, Malaysia

References

[1] Wang, Shaobo, Fangang Zeng, Yanwei Liu, Yanghao Meng, Wenjia Wang, Chang Liu, Jinglai Zhang, Hongbiao Du and Jie Li. "Preparation and application of ZrO2–SiO2 complex oxide for efficient biocrude generation by hydrothermal liquefaction of Spirulina." Fuel 317 (2022): 123325. https://doi.org/10.1016/j.fuel.2022.123325 DOI: https://doi.org/10.1016/j.fuel.2022.123325

[2] Jiang, Daiping, Jin Qin, Xiangfa Zhou, Qiaoli Li, Danqing Yi and Bin Wang. "Improvement of thermal insulation and compressive performance of Al2O3–SiO2 aerogel by doping carbon nanotubes." Ceramics International 48, no. 11 (2022): 16290-16299. https://doi.org/10.1016/j.ceramint.2022.02.178 DOI: https://doi.org/10.1016/j.ceramint.2022.02.178

[3] Khanin, Dmitriy A., Yuriy N. Kononevich, Vasily P. Morgalyuk, Maxim N. Temnikov, Viktor G. Vasil'ev, Valery K. Brel and Aziz M. Muzafarov. "Hybrid cyclotriphosphazene–polysiloxane–nano-SiO2 composites with improved mechanical properties." Mendeleev Communications 32, no. 2 (2022): 234-237. https://doi.org/10.1016/j.mencom.2022.03.027 DOI: https://doi.org/10.1016/j.mencom.2022.03.027

[4] Bharadwaja, K. and T. Baburao. "Epoxy/SIO2 nanocomposite mechanical properties and tribological performance." Materials Today: Proceedings 62 (2022): 1712-1716. https://doi.org/10.1016/j.matpr.2021.12.172 DOI: https://doi.org/10.1016/j.matpr.2021.12.172

[5] Tang, Fangqiong, Linlin Li and Dong Chen. "Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery." Advanced materials 24, no. 12 (2012): 1504-1534. https://doi.org/10.1002/adma.201104763 DOI: https://doi.org/10.1002/adma.201104763

[6] Liu, Hai Cheng, Jin Xi Wang, Yan Mao and Rong San Chen. "The preparation and growth of colloidal particles of concentrated silica sols." Colloids and Surfaces A: Physicochemical and Engineering Aspects 74, no. 1 (1993): 7-13. https://doi.org/10.1016/0927-7757(93)80393-S DOI: https://doi.org/10.1016/0927-7757(93)80393-S

[7] Che, Liming, Yafei Wu, Yang Wang and Xiao Dong Chen. "Experimental determination and mathematical modeling of the drying kinetics of a single droplet of colloidal silica." Drying Technology 35, no. 11 (2017): 1337-1346. https://doi.org/10.1080/07373937.2017.1319857 DOI: https://doi.org/10.1080/07373937.2017.1319857

[8] Maleki, Aziz, Helene Kettiger, Aurélie Schoubben, Jessica M. Rosenholm, Valeria Ambrogi and Mehrdad Hamidi. "Mesoporous silica materials: From physico-chemical properties to enhanced dissolution of poorly water-soluble drugs." Journal of Controlled Release 262 (2017): 329-347. https://doi.org/10.1016/j.jconrel.2017.07.047 DOI: https://doi.org/10.1016/j.jconrel.2017.07.047

[9] Breznan, Dalibor, Dharani D. Das, Christine MacKinnon-Roy, Stephane Bernatchez, Abdelhamid Sayari, Myriam Hill, Renaud Vincent and Prem Kumarathasan. "Physicochemical properties can be key determinants of mesoporous silica nanoparticle potency in vitro." ACS nano 12, no. 12 (2018): 12062-12079. https://doi.org/10.1021/acsnano.8b04910 DOI: https://doi.org/10.1021/acsnano.8b04910

[10] Mehrabi, Fatemeh, Maryam Mohamadi, Ali Mostafavi, Hamid Hakimi and Tayebeh Shamspur. "Magnetic solid phase extraction based on PVA-TEOS/grafted Fe3O4@ SiO2 magnetic nanofibers for analysis of sulfamethoxazole and trimethoprim in water samples." Journal of Solid State Chemistry 292 (2020): 121716. https://doi.org/10.1016/j.jssc.2020.121716 DOI: https://doi.org/10.1016/j.jssc.2020.121716

[11] Hsu, Cheng-Chih, Wen-Lin Lan, Nien-Po Chen and Chyan-Chyi Wu. "The hydrophobic and omnidirectional antireflection coating of SiO2 nanospheres with C18-TEOS." Optics & Laser Technology 58 (2014): 202-206. https://doi.org/10.1016/j.optlastec.2013.11.019 DOI: https://doi.org/10.1016/j.optlastec.2013.11.019

[12] Xu, M., S. Xu, Y. C. Ee, Clare Yong, J. W. Chai, S. Y. Huang and J. D. Long. "Visible photoluminescence from the annealed TEOS SiO2." Materials Science and Engineering: B 128, no. 1-3 (2006): 89-92. https://doi.org/10.1016/j.mseb.2005.11.020 DOI: https://doi.org/10.1016/j.mseb.2005.11.020

[13] Malpani, Sakshi Kabra and Deepti Goyal. "Synthesis, analysis and multi-faceted applications of solid wastes-derived silica nanoparticles: A comprehensive review (2010–2022)." Environmental Science and Pollution Research 30, no. 11 (2023): 28321-28343. https://doi.org/10.1007/s11356-022-23873-1 DOI: https://doi.org/10.1007/s11356-022-23873-1

[14] Xiong, Li, Xiangping Huang, Ya Liu and Liqing Pan. "One-step preparation and characterization of core-shell SiO2/Ag composite spheres by pulse plating." Science and Engineering of Composite Materials 24, no. 3 (2017): 423-427. https://doi.org/10.1515/secm-2015-0227 DOI: https://doi.org/10.1515/secm-2015-0227

[15] Ajiz, Hendrix Abdul, Abdurrahman Anis Albar, W. Widiyastuti, Tantular Nurtono, Heru Setyawan and I. Made Joni. "High surface area silica particles using anionic surfactant template prepared by one-step spray drying system for dye removal application." Periodica Polytechnica Chemical Engineering 66, no. 4 (2022): 585-595. https://doi.org/10.3311/PPch.19730 DOI: https://doi.org/10.3311/PPch.19730

[16] Nandiyanto, Asep Bayu Dani and Kikuo Okuyama. "Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges." Advanced powder technology 22, no. 1 (2011): 1-19. https://doi.org/10.1016/j.apt.2010.09.011 DOI: https://doi.org/10.1016/j.apt.2010.09.011

[17] Zbicinski, Ireneusz. "Modeling and scaling up of industrial spray dryers: A review." Journal of Chemical Engineering of Japan 50, no. 10 (2017): 757-767. https://doi.org/10.1252/jcej.16we350 DOI: https://doi.org/10.1252/jcej.16we350

[18] Amin, Adil, Moritz Loewenich, Stefan O. Kilian, Theresa Wassmer, Stefan Bade, Julia Lyubina, Hartmut Wiggers, Fatih Özcan and Doris Segets. "One-step non-reactive spray drying approach to produce silicon/carbon composite-based hierarchically structured supraparticles for lithium-ion battery anodes." Journal of The Electrochemical Society 170, no. 2 (2023): 020523. https://doi.org/10.1149/1945-7111/acb66b DOI: https://doi.org/10.1149/1945-7111/acb66b

[19] Jamil Ur Rahman, Umair, Artur K. Pozarlik and Gerrit Brem. "Experimental analysis of spray drying in a process intensified counter flow dryer." Drying Technology 40, no. 15 (2022): 3128-3148. https://doi.org/10.1080/07373937.2021.2004160 DOI: https://doi.org/10.1080/07373937.2021.2004160

[20] Albar, Abdurrahman Anis, Widiyastuti Widiyastuti and Heru Setyawan. "Controlled Morphology of Silica Particle by Spray Drying Method." IPTEK Journal of Proceedings Series 6 (2021): 330-335. https://doi.org/10.12962/j23546026.y2020i6.11118 DOI: https://doi.org/10.12962/j23546026.y2020i6.11118

[21] Youn, Chan Ki, Hyung Mi Lim, Sujin Cha, Dae Sung Kim and Seung-Ho Lee. "Preparation of hollow silica by spray drying of nano silica particles and its heat transfer property." Korean Journal of Materials Research 22, no. 10 (2012): 531-538. https://doi.org/10.3740/MRSK.2012.22.10.531 DOI: https://doi.org/10.3740/MRSK.2012.22.10.531

[22] Rajashekhara, M. C. and N. Raghavendra. "CFD Simulation of a Co-Current Spray Dryer for Silica Powder Production." International Advanced Research Journal in Science, Engineering and Technology 2 (2015): 105-109.

[23] Qomariyah, L., N. R. Puri, E. Grady, T. Nurtono, S. Madhania and S. Winardi. "Computational Fluid Dynamics (CFD) Modelling of ZnO-SiO2 Composite Through a Consecutive Electrospray and Spray Drying Method." In Journal of Physics: Conference Series, vol. 2344, no. 1, p. 012004. IOP Publishing, 2022. https://doi.org/10.1088/1742-6596/2344/1/012004 DOI: https://doi.org/10.1088/1742-6596/2344/1/012004

[24] Tadanaga, Kiyoharu, Koji Morita, Keisuke Mori and Masahiro Tatsumisago. "Synthesis of monodispersed silica nanoparticles with high concentration by the Stöber process." Journal of sol-gel science and technology 68 (2013): 341-345. https://doi.org/10.1007/s10971-013-3175-6 DOI: https://doi.org/10.1007/s10971-013-3175-6

[25] Choi, Jin Seok and Sung Jin An. "The effect of pH on synthesis of nano-silica using water glass." Korean Journal of Materials Research 25, no. 4 (2015): 209-213. https://doi.org/10.3740/MRSK.2015.25.4.209 DOI: https://doi.org/10.3740/MRSK.2015.25.4.209

[26] Nurtono, Tantular, Widiyastuti Widiyastuti, Annie Mufyda Rahmatika, Siti Machmudah and Sugeng Winardi. "Simulation of the Drying Process of Polysaccharide Extract Solution in a Spray Dryer." In IOP Conference Series: Materials Science and Engineering, vol. 778, no. 1, p. 012168. IOP Publishing, 2020. https://doi.org/10.1088/1757-899X/778/1/012168 DOI: https://doi.org/10.1088/1757-899X/778/1/012168

[27] Tamrakar, Ishan, Jitendra Khadka and Bivek Baral. "Optimization of spray dryer design for small scale drying of milk using computational fluid dynamics." Kathmandu University Journal of Science, Engineering and Technology 15, no. 2 (2021). https://doi.org/10.3126/kuset.v15i2.63354 DOI: https://doi.org/10.3126/kuset.v15i2.63354

[28] Langrish, Timothy AG, James Harrington, Xing Huang and Chao Zhong. "Using CFD simulations to guide the development of a new spray dryer design." Processes 8, no. 8 (2020): 932. https://doi.org/10.3390/pr8080932 DOI: https://doi.org/10.3390/pr8080932

[29] Ali, Muzammil, Tariq Mahmud, Peter John Heggs, Mojtaba Ghadiri andrew Bayly, Hossein Ahmadian and Luis Martin de Juan. "CFD simulation of a counter-current spray drying tower with stochastic treatment of particle-wall collision." Procedia engineering 102 (2015): 1284-1294. https://doi.org/10.1016/j.proeng.2015.01.259 DOI: https://doi.org/10.1016/j.proeng.2015.01.259

[30] Singh, Sunil Kumar. "Computational investigation of air solid flow in a spray dryer for effluent treatment." (2020).

[31] Hu, Howard H. "Computational fluid dynamics." In Fluid mechanics, pp. 421-472. Academic Press, 2012. https://doi.org/10.1016/B978-0-12-382100-3.10010-1 DOI: https://doi.org/10.1016/B978-0-12-382100-3.10010-1

[32] Celik, Ismail. "Numerical uncertainty in fluid flow calculations: needs for future research." (1993): 194-195. https://doi.org/10.1115/1.2910123 DOI: https://doi.org/10.1115/1.2910123

[33] Okuyama, Kikuo and I. Wuled Lenggoro. "Preparation of nanoparticles via spray route." Chemical engineering science 58, no. 3-6 (2003): 537-547. https://doi.org/10.1016/S0009-2509(02)00578-X DOI: https://doi.org/10.1016/S0009-2509(02)00578-X

[34] Peltonen, Leena, Hanna Valo, Ruzica Kolakovic, Timo Laaksonen and Jouni Hirvonen. "Electrospraying, spray drying and related techniques for production and formulation of drug nanoparticles." Expert opinion on drug delivery 7, no. 6 (2010): 705-719. https://doi.org/10.1517/17425241003716802 DOI: https://doi.org/10.1517/17425241003716802

[35] Qomariyah, L., F. N. Sasmita, H. R. Novaldi, W. Widiyastuti and S. Winardi. "Preparation of stable colloidal silica with controlled size nano spheres from sodium silicate solution." In IOP Conference Series: Materials Science and Engineering, vol. 395, no. 1, p. 012017. IOP Publishing, 2018. https://doi.org/10.1088/1757-899X/395/1/012017 DOI: https://doi.org/10.1088/1757-899X/395/1/012017

[36] Qomariyah, Lailatul, Widiyastuti Widiyastuti and Sugeng Winardi. "Effect of colloidal properties on the particle characteristics in the flame-assisted spray-drying process." Chemical Papers 74 (2020): 285-296. https://doi.org/10.1007/s11696-019-00878-8 DOI: https://doi.org/10.1007/s11696-019-00878-8

[37] Qomariyah, Lailatul, W. Widiyastuti, Sugeng Winardi, K. Kusdianto and Takashi Ogi. "Volume fraction dependent morphological transition of silica particles derived from sodium silicate." International Journal of Technology 10, no. 3 (2019): 603-612. https://doi.org/10.14716/ijtech.v10i3.2917 DOI: https://doi.org/10.14716/ijtech.v10i3.2917

[38] Ré, Maria-Inês. "Formulating drug delivery systems by spray drying." Drying Technology 24, no. 4 (2006): 433-446. https://doi.org/10.1080/07373930600611877 DOI: https://doi.org/10.1080/07373930600611877

[39] Møller, Jens Thousig, Søren Fredsted and G. E. A. Niro. "A primer on spray drying." Chemical Engineering 116, no. 12 (2009): 34-40.

[40] Lee, Sin Young, W. Widiyastuti, Ferry Iskandar, Kikuo Okuyama and Leon Gradoń. "Morphology and particle size distribution controls of droplet-to-macroporous/hollow particles formation in spray drying process of colloidal mixtures precursor." Aerosol Science and Technology 43, no. 12 (2009): 1184-1191. https://doi.org/10.1080/02786820903277553 DOI: https://doi.org/10.1080/02786820903277553

[41] Medhat, Moataz, Mohamed Yehia, Miguel C. Franco and Rodolfo C. Rocha. "A numerical prediction of stabilized turbulent partially premixed flames using ammonia/hydrogen mixture." Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 87, no. 3 (2021): 113-133. https://doi.org/10.37934/arfmts.87.3.113133 DOI: https://doi.org/10.37934/arfmts.87.3.113133

Downloads

Published

2025-03-31

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.