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Indonesia is an agrarian country with abundant agricultural and plantation land, where 
farmers often face severe challenge of pests damaging crop yields. To address this 
challenge, chemical agents such as pesticides and herbicides are used for plant 
management and care. However, the inappropriate use of these chemical agents poses 
significant risks to the environment when the prevalence surpasses environmental and 
human tolerance limits. Pesticides and herbicides containing endosulfan components 
require proper management to prevent adverse effects on humans and the 
environment. Therefore, this research aimed to develop Molecularly Imprinted 
Polymer (MIP) endosulfan pollutant sensors to assess the kinetics of MIP adsorption to 
endosulfan analyte. Among the various models used for assessment, the Freundlich 
Isotherm showed optimal results, with an AT value of 1.79 × 107 L/mg, B (Constant 
related to heat of sorption) of 6 x 10-8 J/mol, and b (Freundlich Isotherm constant) of 
4.13×1010. Furthermore, the obtained distribution coefficient (R2) at 0.9768 was more 
effective compared to other models.  

 

 

 

Keywords: 
Endosulfan; kinetic model; molecularly 
imprinted polymer; sensor 

 
1. Introduction 
 

Indonesia is an agrarian country with extensive agricultural and plantation land, where farmers 
often face numerous pests capable of reducing or damaging crop yields. To address this problem, 
pesticides and herbicides are predominantly used for plant management and care. Pesticides and 
herbicides are active chemical agents used to eradicate plant pests, which are contaminants for the 
environment and humans consuming agricultural products [1]. The use of these chemical agents has 
been projected to rise annually, due to the necessity perceived by farmers to increase crop yields [2]. 
Meanwhile, the inappropriate use of herbicides containing endosulfan is hazardous, posing a 
significant risk of contaminating the surrounding environment [3]. 

Endosulfan is a non-systemic pesticide with a broad spectrum through direct contact or the 
digestive tract. The effectiveness of endosulfan in controlling various pests has led to its widespread 
use in fruit and vegetable plantations, flower cultivation, ornamental plants, as well as rice fields. 
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However, the use of endosulfan is limited and prohibited in several countries due to its high toxicity 
to fish and other aquatic biota. In Indonesia, endosulfan is limited to areas not connected to water 
and is prohibited for use in rice fields. This is because the inappropriate use of endosulfan can cause 
damage to the aquatic environment including fish poisoning in river basins and traditional shrimp 
ponds. 

In this context, analysis of pesticide residues in food and the environment is required to 
determine the level of toxicity and risks. The methods that are commonly used to detect pesticide 
residues are gas chromatography (GC) or high-pressure liquid chromatography (HPLC) [4]. The 
limitations of both methods include the extraction and purification treatment in the laboratory, 
which requires solvents and a longer analysis time. To overcome this deficiency, a new method is 
currently being developed for the analysis of endosulfan pesticide residues using Molecular 
Imprinted Polymer (MIP) [5-7].  

MIP is a synthetic polymer with cavities that are specific for target molecules. These cavities are 
obtained due to template removal to recognize molecules with the same size, structure, and 
physicochemical properties. The selectivity and affinity of the template will increase with high 
concentration values, as shown in the general principles of MIP in Figure 1 [8,9].  

 

 
Fig. 1. General principles of MIP formation 

 
MIP is a cross-linking method used to produce polymers with specific cavities, capable of 

recognizing molecules with the same size, shape, structure, and physico-chemical properties by 
mechanical interaction based on molecular conformity [10-14]. In MIP synthesis, several parameters 
must be considered to avoid alteration of morphology, characteristics, and usefulness of polymers. 
Furthermore, the selection of chemical reagents is important in producing efficient functional MIP. 

Polymers that are produced using MIP method can be applied to the surface of the sensor 
material with high selectivity and effectiveness, speed of response, relatively low cost, and easy 
operation. Consequently, MIP becomes an analytical alternative as a detection and analyzing 
instrument. Another advantage is the ability to provide analysis results for pollutants quickly, easily, 
and reliably in small amounts [15-17].  

MIP method is used to make polymer materials that can be applied as sensors to recognize 
"target" foreign objects, including chemical and biological elements such as those found in medicines 
and food [18-20]. This method is developed to produce cavities from special molecules that resemble 
receptor binding in place. After growth, the template is removed and the control polymer is able to 
recognize the presence of template molecules with a high degree of capability [21]. Due to the 
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sensing properties, MIP has significant potential for application as sensor materials across various 
fields. 

Sensing properties are part of MIP-based polymers, which depend on the characteristics of the 
cavities produced. During template removal process, the cavities produced serve as quality indication 
when polymers have formed as a solid. Subsequently, polymers with cavities that have the same 
physicochemical properties and spatial shape as the template will be able to recognize the target 
[12]. Positive results from testing the sensing properties of the MIP particles show that the polymers 
have the potential to be applied as potentiometric sensors [22,23].  

The advantages of this potentiometric method include lower cost compared to other modern 
scientific instruments, and ease of use across various target molecules. This method is also non-
destructive, indicating that inserting the sensor does not change the composition of the test solution. 
However, potentiometric method is not suitable for cells with high internal resistances, including 
glass sensors, which function by measuring voltage based on concentration changes in the test 
solution, namely endosulfan [24]. 

Templates direct functional groups that depend on functional monomers in all molecular 
imprinting processes. Although the majority of MIP uses small organic molecules as templates, 
several larger imprinting structures are still a major challenge in facilitating the removal of binding 
cavities properly during the printing process. These cavities result from the washing process of the 
polymers formed using a solvent that dissolves only the analyte molecules. Therefore, MIP polymers 
serve as active sensor materials with high sensing properties for the analyte or other molecules that 
have similar physicochemical properties and spatial shapes [12]. 

The MIP manufacturing process consists of three stages, namely, the polymerization, template 
removal, and the sensing test. Potentiometric sensors in the form of ion-selective electrodes (ESI) are 
membrane electrodes that respond selectively to the activity of certain ions [25]. In this research, 
MIP endosulfan is used as the membrane in the potentiometric sensors to measure the electrode 
potential of galvanic cells, which depends on the activity of various species included in cell reactions. 
The relationship is expressed by the Nernst equation, where the characteristics of potentiometric 
sensors are indicated by several parameters, including immersion time, Nernst factor, concentration 
range, detection limit, selectivity, response time, and service life. These parameters show the quality 
of the potentiometric sensor for use as a measurement tool [26]. 

In this research, a wire electrode consisting of aluminum metal coated with MIP membrane was 
developed as a sensing agent. Subsequently, aluminum metal was used as a comparison electrode 
and the notation for potentiometric cell is expressed using equation (1). 

 
Al | analyte solution| |Al            (1) 
 

When the left Al functions as an anode, the electrochemical reaction at the left Al electrode is as 
shown in equations (2) and (3). 

 
Al → Al3+ + 3e      (Eleft)            (2) 

 
Al | analyte solution| |Al            (3) 

 
When the right Al functions as a cathode, the electrochemical reaction at the right Al electrode is 

shown in equations (4) and (5). 
 

Al3+ + 3e ⇌ Al       (Eright)            (4) 
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Ecell = Eleft + Eright + EM             (5) 
 
with the provisions: EM = membrane potential 
since: Eleft = - Eright 
then: Ecell = Emembrane 

 
MIP evaluation was carried out using several mathematical models that estimate adsorption 

interactions, namely the Langmuir Isotherm, Freundlich Isotherm, Temkin Isotherm, and Dubinin-
Radushkevich (DRK) Isotherm models. In batch systems, the Freundlich Isotherm and Langmuir 
Isotherm models are most often applied. 

Adsorption kinetics explains the rate at which adsorbate molecules bind to MIP surface, using 
reaction order. The Langmuir isotherm model describes monolayer adsorption, assuming that all 
adsorption sites have an equal template affinity, without affecting each other. Meanwhile, the 
Freundlich isotherm model assumes that the adsorption process occurs on a heterogeneous surface, 
with capacity based on adsorbate concentration. When the adsorbate concentration increases, the 
adsorption capacity will also increase. The Temkin isotherm model incorporates adsorbent-adsorbate 
interactions by ignoring the concentration value (low or high), assuming that the heat of adsorption 
(a function of temperature) of all molecules in the layer decreases linearly. The DRK isotherm is 
generally applied to express the adsorption mechanism with Gaussian energy distribution onto 
heterogeneous surfaces. This model is usually applied to differentiate physical and chemical 
adsorption on metal ions with the average free energy per adsorbate molecule to remove a molecule 
from its location in the adsorption space to infinity. 
 
2. Methodology  
2.1 Materials and Equipment 
 

The material used in this research included a pre-polymer solution which was a mixture of 
endosulfan, methacrylic acid (MAA) from Sigma-Aldrich, ethylene glycol methacrylic acid (EDMA), 
and benzoyl peroxide (BPO) from Merck, functioning as template, monomer, cross-linker, and 
initiator, respectively. BPO was selected due to its cost-effectiveness and stable free radicals, 
facilitating reactive interaction with monomer molecules [1]. Previous research has established that 
the selection of the right cross-linker and solvent will affect the resulting polymer [1]. Furthermore, 
the tools used are an Ag/AgCl reference sensor, voltmeter, and potentiometer. 

 
2.2 Measurement Stages 
 

This research aimed to develop endosulfan MIP for application as a sensing layer in a 
potentiometric sensor. The developmental phase included several stages, namely making of NIP 
(Non-Imprinted Polymer), MIP, templates, and MIP-based sensor bodies, as well as the process of 
placing MIP on the sensor surface, and measurements using MIP sensor through potentiometric 
method. The measurement stages using potentiometric method included preparing a standard 
endosulfan solution with the lowest to highest concentrations, from 0.1×10-3 ppm to 1.0×10-3 ppm. 
This was followed by measurements for each solution on the first day until potential changes 
occurred, including on days 20, 45, and 90. Moreover, the length of potential stability is required to 
determine the lifetime of the sensor. Table 1 shows the operating condition during the measurement 
process, while the equipment used for potential measurements is presented in Figure 2. 
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Table 1 
Operating conditions during measurement with assumptions 
Parameter Value 
Ambient Temperature 22-30oC 
Pressure 760 mmHg 
Relative Humidity 58-60% 
Current Range 20 mA/0,01 mA DC and Range ~500 mA/0,01 mA AC 

 

 
Fig. 2. Potential measurement equipment 

 
3. Results and Discussions 
3.1 Determination of Steady State Measurement Conditions with Endosulfan MIP Sensor 
 

Steady and non-steady state profiles were determined to evaluate the constant current value at 
the time of measurement, which was used as measurement area. This profile was determined by 
measuring several concentrations of standard endosulfan solutions at a fixed working potential of 
0.6V, using variations in endosulfan concentrations of 0.05×10-3 ppm, 0.2×10-3 ppm, 0.4×10-3 ppm, 
0.6×10-3 ppm, 0.8×10-3 ppm, and 1.0×10-3 ppm. The current measurement at each working potential 
value was carried out three times and the results were recorded at an interval of 2 seconds starting 
from 0 seconds until a stable current value (steady state). 

Based on the measurement profile curve, a working potential of 0.6 V produced steady and non-
steady state areas. This curve is shown in Figure 3, indicating that non-steady state condition ranges 
from 0 to 40 seconds. During the process, simazine degradation occurs rapidly as shown by the 
change in reduction current at 0 - 40 seconds with a current of 2.3 µA to 0.5 µA. This phenomenon 
suggests that in the initial state, only endosulfan equilibrium occurs in the electrode-electrolyte 
solution interface area. 
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Fig. 3. Steady and non-steady state profile curves for reduced current versus time with 
a working potential of 0.6V 

 
3.2 Adsorption Kinetics of Aluminum-Carbon (Al-C) Sensors with MIP Endosulfan 
 

This research aims to obtain endosulfan MIP for application as a layer in potentiometric sensors.  
 
3.2.1 Langmuir isotherm 
 

The Langmuir Isotherm absorption capacity presented in Figure 4 showed that decreasing the 
concentration at each time, using the Langmuir adsorption equation obtained straight line equation 
y = 13.559x + 4x 106, with R² = 0.8982. From this straight-line equation, the Langmuir constant can 
be calculated, as 2.95 × 105 (L/mg), with a maximum adsorption capacity of 2.5 × 10-7 (mg/g). 

 

 
Fig. 4. Langmuir Isotherm for Endosulfan 
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3.2.2 Freundlich isotherm 
 

The Freundlich isotherm for MIP endosulfan in Figure 5 showed that the R2 was obtained at 
0.9588. Based on these results, the Langmuir isotherm regression value tended to be better 
compared to the Freundlich isotherm. From the straight line equation y = 2.6458x – 3.3935, the 
Freundlich constant was calculated as Kf = 4.04×10-3 (mg/g), with n = 1.2338. This Freundlich isotherm 
model has the largest distribution coefficient value compared to other models. Consequently, the 
kinetic model that is suitable for MIP endosulfan is the Freundlich Isotherm. 

 

 
Fig. 5. Freundlich Isotherm for Endosulfan 

 
3.2.3 Temkin isotherm 
 

The Temkin isotherm shows the distribution of bond energy that occurs during the adsorption 
process. As shown in the equation, the derivation is characterized by a uniform binding energy 
distribution to certain maximum binding energy. This derivation is carried out by modifying the 
equation of the absorbed quantity (qe) regarding ln Ce, with constants determined from the slope 
and intercept. 

From Figure 6, the equation shows an AT value of 1.79×107 L/mg, with a B (Constant related to 
the heat of sorption) of 6×10-8 J/mol and b (Freundlich isotherm constant) of 4.13×1010. Furthermore, 
the distribution coefficient obtained (R2) at 0.9186 was greater compared to other models. 
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Fig. 6. Temkin Isotherm for Endosulfan 

 
3.2.4 Dubinin–Radushkevich isotherm 
 

The Dubinin-Radushkevich (DRK) isotherm is an adsorption mechanism with Gaussian energy 
distribution onto heterogeneous surfaces. By plotting the data ln qe versus (ln(1+1/Ce))2, a slope 
Kad/(R2T2) of 0.0298 was obtained, while sorption energy coefficient of 182,923,218 mol2/J2 was 
achieved by entering R of 8.314 J/mol.K and T of 298 K. The intercept obtained was qs = 1.76 × 10-5 
mg/g with E (free energy) 1.6533×10-6 kJ/mol, which was indicated as a physical adsorption process. 
Although the R2 was 0.8909 lower when compared to Temkin and Langmuir adsorption, the value 
was higher than Freundlich isotherm. (see Figure 7) 

 

 
Fig. 7. DRK Isotherm for Endosulfan 
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4. Conclusion 
 

In conclusion, this research showed that the most suitable adsorption kinetics model for 
endosulfan was the Freundlich Isotherm. This model had an AT value of 1.79 × 107 L/mg, with a B 
(Constant related to heat of sorption) of 6 × 10-8 J/mol and b (Freundlich Isotherm constant) 4.13 × 
1010. Furthermore, the distribution coefficient (R) obtained (R2) at 0.9768 was greater compared to 
other models. 
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