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Monitoring complex engineering systems is an important countermeasure in managing 
the risk of faulty events. Observing the response of each process flow will avoid further 
damages in the production cycle. Both fault-tolerant approach that bears with faulty 
events and scheduled maintenance that helps to reduce tool wearing are deeply 
involved in condition-based monitoring methods implemented in factories. Thus, 
identification of faulty equipment is need to avoid major breakdown in the production 
system. A classification framework shows good performance in classifying faulty 
events, but a labelled dataset is usually financially consuming. Machine learning (ML) 
techniques have become a prospective tool in the unsupervised fault detection (UFD) 
approach to prevent total failures in complex engineering system. However, the 
efficiency of UFD applications, on the other hand, is determined by the selected ML 
method. This paper presents a systematic literature review of ML methods applied for 
UFD, highlighting the methods explored in this field and the success of today's state-
of-the-art machine learning techniques. This review focuses on the Scopus scientific 
database and provides a useful information on ML techniques, challenges and 
opportunities, and new research works in the UFD field. 
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1. Introduction 
 

Nowadays, digitalization has been greatly influenced business operations and decision making. 
The main motivation is to further enhance production flow as well as better service quality within 
manufacturing sector [1]. The relation between factory operation, materials, transportation, 
communication and financial consumption were monitored in ensuring optimum production quality. 
In engineering system perspective, monitoring process operational conditions within the nominal 
values is important. This to ensure the signal consistency within ‘in control’ condition and reciprocally 
the ‘out of control’ condition jeopardies entire factory operations.    

 
* Corresponding author. 
E-mail address: zool@utm.my 
 
https://doi.org/10.37934/aram.103.1.4360 



Journal of Advanced Research in Applied Mechanics 

Volume 103, Issue 1 (2023) 43-60 

44 
 

At early study of fault detection (FD), focus will be on mathematical aspect of faulty system, but 
lately the paradigm changes to a data-driven approach. The reason is data availability is no longer an 
issue due to the digitalization of the monitoring system. However, the challenge remains against the 
existence of unlabelled data. Other than that, complex engineering characteristics influence the 
choice of FD approach. The interconnected components indicate multivariate and high-volume data. 
Different subsystems mean different signal types and conditions. Signal will contain dynamicity, 
nonlinearity, and noises. The combination of unlabelled data and complex engineering characteristics 
motivate the study of unsupervised approach in FD. Thus, the main goal of this review is to provide 
a general machine learning (ML) framework for the unsupervised fault detection (UFD) approach and 
summarize the latest research in this area. The two main data-driven frameworks of unsupervised 
approach i.e: clustering-based and novelty detection approach, are discussed and their relationships 
with complex engineering characteristics are explained.  

Several review papers focusing on FD has been explored by researchers. Before, 
Venkatasubramanian et al., provide a lengthy discussion on fault detection and diagnosis through 
three parts of discussion; model-based FD, historical based FD and search strategies of FD [2–4]. 
Further study done by Dai et al which divide the concept based on type of data from industrial system; 
model-based online data driven method, signal-based method and knowledge-based historical 
method [5]. Moving towards IR 4.0, Angelopoulos et al discussed the overall framework in tackling 
faulty issue in IR 4.0 perspective [6]. Other than that, Zhao et al elaborate the artificial intelligent as 
FD approach in building energy system whereas Bayer et al review artificial immune system as FD 
approach [7, 8]. Even though some of the review did provide a sub section on unsupervised FD study, 
but none to this date, based on author knowledge, a review that only focus on unsupervised fault 
detection approach has been done. Thus, this paper will fill this gap. The main goal of this study as 
follow 

 
i. Provide an overview of general artificial intelligence and machine learning (ML) 

framework for the unsupervised fault detection (UFD) approach. 
ii. Analyze and summarized the latest data driven UFD approach and the involved 

engineering field.  
 
The remainder of this paper is organized as follows. Section 2 presents the methodology in 

conducting the systematic literature review process, Section 3 discusses the findings from literature 
review. Section 4 explains two basic frameworks for UFD approach, and Section 5 analyses the 
existing method based on collected literature review. Finally, Section 6 concludes the literature study.   
 
2. Methodology 
2.1 How Is the Literature Review Being Conducted? 
 

The review was conducted to answer the following research questions 
 

Q1. What are the conceptual frameworks of UFD? 
Q2. What method relates to the framework? 
Q3. How the UFD methods are employed in engineering system applications? 
 
Scopus literature database, including relevant journals using specific keywords, was examined. 

The following works were excluded 
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E1. Unrelated to UFD. 
E2. Works that do not include the technicality of the method or experiments.  
E3. Any application unrelated to engineering systems. 
E4. Works before the year 2010.  

 
2.2 Execution 
         

Several common keywords were used for searching related publications in this review. The 
specific keywords used while reviewing the Scopus database are described below 

Scopus: (TITLE-ABS-KEY(unsupervised AND fault AND detection )) AND ( monitoring ) AND ( LIMIT-
TO( SUBJAREA , "ENGI" )) AND ( LIMIT-TO ( DOCTYPE , "ar" )) 

The survey was performed on 25th February 2021. The total searched papers were 205, with 86 
papers were selected for this review and 122 articles were rejected using the exclusion criteria E1 
and E2. 
         
3. Results of the Systematic Literature Review 
 

This section discusses the findings of the systematic literature review after considering the 
research questions and exclusion criteria in Section 1. Meanwhile, the boundary of the study follows 
the definition in Section 2. The collected literature review was analyzed using two main components: 
distribution throughout one decade of the ML FD approach and state-of-the-art ML technique for the 
UFD approach. 
 
3.1 Publication Distribution Along the Years  
 

Figure 1 shows the number of publications for UFD studies from 2010 until 2021. The bar chart 
shows an increment of UFD studies with the highest value in 2020. As for 2021, the chart indicates a 
continuity of UFD studies, but a more concrete conclusion could not be made because the date of 
this review is only until February 2021. 
 

 
Fig. 1. Number of publications for unsupervised fault detection from 2010 until 2021 

 
Figure 2 shows the number of publications for each method. This review identified seven 

methods that usually appear under UFD studies. The first one is the Prob, Stat, and Dist method that 
includes probability approaches (e.g., Gaussian mixture model (GMM), Dirichlet process (DP)) or 
statistical-based techniques, as well as the distance-based approach (e.g., K-means). The fuzzy logic 
approach is mainly related to the fuzzy c-means clustering. Principal component analysis (PCA) and 
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independent component analysis (ICA) variants include KPCA and MICA. The support vector machine 
(SVM) method includes SVDD and shallow NN, which are basically only SOM and adaptive resonance 
theory (ART). The deep learning (DL) approach covers many variants (e.g., variants of deep 
autoencoder, long-short term memory (LSTM), restricted Boltzmann machine (RBM), and extreme 
learning machine (ELM)). Lastly, the final category (others) includes artificial immune system (AIS) 
and artificial ant colony. In 2010, only shallow NN and Prob, Stat, and Dist were used as the UFD 
methods and throughout the year, there were only two published studies for shallow NN. The same 
observation was reported for the categories of fuzzy logic, PCA and ICA variants, SVM, and others. 
The Prob, Stat, and Dist method showed a significant increment until 2020, whereas the DL approach 
showed a sudden increment from 2017 until 2020, with no study before this date. In early 2021 (until 
February 2021), the DL approach has already overtaken the Prob, Stat, and Dist approach in the UFD 
approach with four and two publications, respectively. 
 

 
Fig. 2. Number of publications for unsupervised fault detection from 2010 until 2021 based 
on different methods 

 
3.2 Complex Engineering System 
 

This section focusses on the engineering areas that have adopted ML-based UFD. The sector 
covers eleven categories, such as process control system, transportation, space shuttle and satellite, 
power plant, manufacturing process, bearing and electrical motor, mechanical and building 
structure, medical engineering, and simulated numerical analysis that imitates the behaviour of a 
faulty dataset. The majority of the datasets are signal-based dataset and only three studies 
considered video-based dataset, which are [9–11]. The perspective of complex engineering 
characteristics has influenced the selection of ML approach for UFD. The nonlinearity of complex 
engineering systems is one of the most well-known engineering characteristics that has been given 
attention recently in choosing ML approaches [12]. The reason is linear-based UFD approach, such as 
PCA, is unsuitable to cater for the existing nonlinearity characteristic in engineering systems. Other 
than that, univariate data analysis is impractical in complex engineering systems, and many studies 
developed algorithms to cope with multivariable or multiparameter [13]. Besides, when considering 
massive variables in complex engineering systems, the number of variables or features selected will 
also affect the performance of FD [14,15]. Furthermore, the correlation between the variables also 
determines the UFD approach as simultaneous signal changes occur within an interconnected 
sensory system when a faulty condition occurs [16].  
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Another perspective related to complex engineering systems is continuous normal and faulty 
signal conditions. Extracting information from a time-series signal involves trend recognition 
capability. The challenge appears in recognizing signals with hidden noise and environmental effect 
that will affect the FD accuracy [17]. The same perspective for frequency-based signals also provides 
some challenges in extracting information [18]. For example, Soualhi et al., [19] argued the difficulty 
in extracting information from a frequency-based current spectrum signal of an induction motor and 
solved it using artificial ant technique. Autocorrelation analysis is another point to be considered in 
UFD. Linear autocorrelation analysis captures the linear relationship between the time sequence of 
variables but not the nonlinear autocorrelation condition. Therefore, some studies considered the 
nonlinear autocorrelation method as the UFD approach, such as dynamic PCA (DPCA) [20]. The final 
perspective is the computational efficacy of the engineering system. Although ML ensures the 
accuracy of UFD, the computational processing time will affect the real-time decision-making 
process. For example, ideally, FD should provide ample time for corrective maintenance or repair. 
However, in the actual operational, if not consider the computational aspect, fault already occurred 
even before the ML determination of faults is completed [12,21]. 
 
4. Unsupervised Fault Detection Framework 
4.1 Cluster-Based Fault Detection  
 

In the clustering-based fault detection, the main aim is to group the normal data and faulty data 
accordingly. With this, given N patterns of data with distinguished features, the clustering method 
will group the data in M classes so that similar data are grouped together while accurately separating 
dissimilar data to other classes. Considering the unlabelled dataset, the value of M is unknown and 
requires iterative learning to ensure the accuracy of the clustering method. Figure 3 shows the 
general overview of the clustering framework [19,21,22] During offline learning, the massive 
collected data are pre-processed using normalization or standardization before entering the feature 
extraction and selection phase. After that, clustering method were used to determine the existing 
group iteratively until reach clustering performance index and accurate M value. To recognize which 
group, consider as faulty, expert knowledge were needed [23]. In addition, some of the study add 
another step of group-based modelling as reference model for online phase later [52].  
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Fig. 3. Cluster-based fault detection 

 
4.2 Reconstruction-Based Fault Detection/ Novelty Detection/ One-Class 
 

The reconstruction-based fault detection framework usually relies on the accuracy of the 
benchmark model (see Figure 4). The benchmark model usually only depends on normal condition 
dataset. From this, a threshold value is calculated and any deviation from the threshold value, are 
considered faulty events. Thus, this approach will only produce either ‘faulty’ or ‘non-faulty’ 
condition or can be called one-class problem. Other than that, since this framework learn the nominal 
signal condition, any rare occurrence can be also considered as novelty detection problem. The 
general framework can be seen at Figure 4 [24–27]. With this, there are two main components in 
seeing a reconstruction based unsupervised fault detection; choices of benchmark model and 
determination of threshold value. 
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Fig. 4. Novelty detection/ One-class/ Reconstruction-based fault 
detection 

 
5. Unsupervised Fault Detection Techniques 
5.1 Probabilistic, Statistical, and Distance-Based Approach  
 

The UFD framework under this approach will usually emphasize on two main parts which the 
description of nominal data condition, statistically or based on distances and utilizing probability 
inference to distinguish between the faulty cases. Tong et al., [14] used the Mahalanobis distance to 
calculate the distance for each subspace and combined it with the unique probability index for fusion-
based Bayesian decision-making. Jialin et al., [20] also used Bayesian decision-making with 
reconstruction-based contribution (RBC) information from previous faulty events in determining the 
fault variables in a process plan system. Zheng et al., [28] (proposed normalized relative RBC (rRBC) 
with minimum risk Bayesian (MRB) decision-making to reduce the misdetection rate. Moghaddass 
and Sheng [29] applied a Bayesian hierarchical structure to develop the mapping between the input 
and output with minimum dependence on data distribution or parametric assumption. The result 
showed a strong modeling capability for FD, but the usage was limited with fewer data points and 
low dimension. Yamada et al., [30] considered a huge amount of data in their study. The study 
proposed a combination of information from exact tests and statistical chi-test to determine the 
faulty condition. The most familiar statistical approach for UFD is the statistical process control (SPC) 
chart, which is still relevant to this date. However, Liu et al., [31] argued that the SPC data analysis is 
unsuitable for nonparametric conditions. The study improved SPC with DP to overcome SPC 
weakness. Meneghetti et al., [32] evaluated the feature selection approach for UFD of an insulin 
pump, and the histogram-based outlier scored the highest accuracy for FD.  

Leveraging the dynamicity in complex engineering systems, recursive density estimation (RDE) is 
one of the choices for anomaly detection [23,33]. RDE utilizes real-time data and calculates the 
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deviation between the present and previous data continuously. In other words, the method 
measures the closeness of the data sample at a given instantaneous time. Any far deviation from the 
density distance can be consider as faulty condition. In distance-based approach, An et al., [34] 
utilized Mahalanobis and Euclidean distances in determining the weight for minimum spinning tree. 
Similarly, McLeay et al., [35] used the Mahalanobis distance to measure the difference between a 
new sample and a threshold value. Lu et al., [36] adopted dynamic time warping (DTW) to measure 
the dissimilarity between points to find the optimal minimal distance in feature space. A special case 
using video as an input for FD, Anthony and Chua [9] utilized dynamic time and space warping (DTSW) 
to measure the similarity of video alignment path for FD decision-making. Other than that, rather 
than focusing on point-based data, Mack et al., [37] produced two-dimensional pairwise distance 
matrix between objects as the feature extraction approach prior to clustering for FD. Meanwhile, 
Christensen et al., [38] applied a moment matrix for FD in a refrigeration system. The most common 
problem when including the dynamicity of engineering systems is the information loss throughout 
the time period. Song et al., [39] considered both time and frequency domains in the acoustic 
emission signal in retaining the characteristics of the signal. Linear discriminant analysis (LDA) was 
proposed, where dimension reduction could increase the sensitivity of feature detection and also 
clustering by fast search and find of density peaks (CFSFDP). Moreover, by considering the timely 
batch process condition, finding both local and global discriminant structures of data provide a 
challenge in FD study. Thus, Zhang et al., [40] used discriminant global preserving kernel slow feature 
analysis (DGKSFA) to overcome this problem by combining discriminant analysis and the GKSFA 
model. Some of the ML approaches did not consider the temporal effect on UFD; hence, 
modifications were made to solve this concern. Meneghetti et al., [41] placed a section for time series 
data modification of the local outlier factor (LOF) and connectivity-based outlier factor (COF). Wang 
et al., [42] discussed the importance of temporal analysis as a part of FD when the goal of the study 
is to detect an early fault. The statistical approach of periodogram was utilized to analyze time-
frequency vibration signals and graph analysis was used to determine faulty and nonfaulty events. 

In the clustering approach for UFD, K-means, GMM, density-based clustering (DBSCAN), and 
isolation forest are among the frequently chosen ML approaches for UFD [32,43–46]. Among them, 
the accuracy of K-means and DBSCAN depends on the initial center or number of clusters, k. 
Therefore, [21] proposed a frequency domain-based correlation distance measure to improve the 
selection of K-means clustering approach, whereas [44] plotted a graph of k versus distance in 
neighbourhood to find k. Instead of using distance, [31] developed a graph of cluster k versus 
neighbor radius to determine the optimum k. Another aspect in the UFD clustering approach is when 
considering nonlinear engineering systems. Gao et al., [47] mentioned the difficulty in finding an 
implicit discrimination structure under a nonlinear system and proposed locality-preserving robust 
latent low-rank recovery (L2PLRR) that covered a high-dimensional nonlinear system by preserving 
the local characteristics. In addition, with a similar operating magnitude, the control limit for a 
nonlinear system will remain the same in the presence of a new operating mode. Hence, this brings 
another challenge in UFD systems with multivariate multimode systems. Tan et al., [24] described 
the condition of a multimode system in detail and incorporated Dirichlet process, nonstationary 
discrete convolution, and kernel principal component analysis (DP-NSDC-KPCA), whereas Chen et al., 
[48] used the probabilistic Dirichlet process Gaussian mixed model (DPGMM) to identify the 
operating region. 
 
 
 
 



Journal of Advanced Research in Applied Mechanics 

Volume 103, Issue 1 (2023) 43-60 

51 
 

5.2 Fuzzy Logic 
 

The main attraction of the fuzzy logic approach in UFD is the capability of providing values in 
imprecise linguistic terms, such as ‘very’ and ‘less’ in terms of membership function. Due to this 
reason, Baraldi et al., [49] used fuzzy logic approach to extract transient features in a nuclear steam 
turbine system and cluster faulty events using fuzzy c-means (FCM). Similarly, Wang et al., [15] using 
the FCM method to learn prior conditions in a gas turbine exhaust; however, rather than only 
clustering, the study used FCM as a reference for multiclass FD approach in online state recognition 
using SVM. Ftoutou and Chouchane [50] improved the FD rate in FCM clustering FD with modified S-
transform and two-dimensional non-negative matrix factorization for the time-frequency analysis of 
vibration signals. Seri et al., [51] defined the health index status of a monitoring system using the 
fuzzy approach of ‘important attention’, ‘medium attention’, and ‘no attention’ in defining the 
maintenance requirement inside a rotating machine. Lughofer et al., [52] chose fuzzy logic to build 
the causal relation network between sensor channels to lower the misdetection rate. Regarding the 
high volume unlabeled data, Zhao et al., [53] utilized the ability of deep belief network (DBN) for 
extracting features with an improved adaptive nonparametric weighted-feature Gath-Geva 
(ANWGG) fuzzy clustering algorithm in the UFD approach for a rolling bearing. 
 
5.3 Principal Component Analysis and Independent Component Analysis 
 

One of the main approaches in monitoring process control is PCA and partial least squares (PLS). 
The main advantage is the ability of the model in finding a strong correlation between variables in 
the collected data log. Liu et al., [20] utilized the advantage of PCA by implementing PCA in 
developing a contribution plot for a complex engineering system. However, due to the high number 
of variables in the system, the smearing effect influenced the nonfaulty variable, where the issue was 
solved by improving the reduction of combined index (RCI). Although PCA and PLS are efficient 
solutions for monitoring multivariate process control, these approaches are prone to the assumption 
of multivariate Gaussian distribution or limited to the linear response of engineering systems. Thus, 
improvements have been made to overcome this constraint. Tong et al., [54] mentioned that the ICA 
method is more suitable in handling a non-Gaussian process monitoring system. The study presented 
modified ICA (MICA) that solved the conventional ICA approach prone to the randomness 
initialization step and conducted a proper way to choose an appropriate independent component 
(IC) to ensure the relevance toward an FD system. Furthermore, the authors ensembled multiple 
MICA with different nonquadratic functions and used Bayesian inference to further improve the 
online UFD framework. The team further enhanced the framework with double layer MICA in [55]. Li 
et al., [56] proposed ensemble kernel principal component analysis-Bayes (EKPCA-Bayes) to improve 
the detection accuracy for nonlinear engineering systems. Pacella [57] studied FD under the 
conditions of multichannel profile data with two multilinear extensions of PCA. Elshenawy et al., [58] 
combined adaptive PCA and multivariate contribution analysis to cater for the time-varying 
characteristic in industrial-based fault monitoring.  
 
5.4 Support Vector Machine  
 

The main goal of SVM in FD is to determine the best hyperplane decision boundary for accurate 
classification of FD conditions. The method utilizes the kernel trick to the nonlinear dataset to further 
enhance data condition so that a clear hyperplane boundary appears in the distribution. In the 
framework of UFD, one of the strengths of SVM is to become the learning model for online 
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monitoring. For example, Langone et al., [59] used kernel spectral clustering (KSC) for the first 
learning of historical data to distinguish between faulty and nonfaulty conditions. Based on the 
information from KCL, least square SVM (LSSVM) was applied as a model learner for online detection. 
Moreover, one-class SVM approach was formulated based on novelty detection, which can be 
directly considered as UFD. Fang et al., [10] chose one-class SVM as the unsupervised anomaly 
detection approach for sewer pipelines. Borges et al., [60] evaluated the performance of the higher 
order statistic approach for feature extraction and one-class SVM for FD, whereas Dias et al., [61] 
achieved 95.7% reduction in computational time when using one-class SVM with adaptive 
correlation-based feature selection. Further exploration in the field of SVM was carried out by Wang 
et al., who studied another variant of SVM in FD (i.e., support vector data description (SVDD)) to cater 
the imbalanced dataset in UFD learning. Wang et al., [62] analysed the sequence of batch process 
using two multiple SVDD for monitoring and segmenting linear discriminant to detect faulty 
conditions. Interestingly, Wu et al., [11] utilized a video surveillance dataset to detect faults in an 
industrial system rather than normal data logs and proposed the appearance and motion SVM 
(AMSVM), which incorporated multimodal information with one-class SVM approach. 
 
5.5 Shallow Neural Network  
 

The term shallow NN is used to avoid misunderstanding with the DL approach, which is also build 
based on neural network architecture. The term ‘shallow’ significantly relates to the neural network 
structure that usually consists of only one hidden layer at most [63], whereas the DL approach has 
multiple hidden layers of neural networks. One of the most used shallow NN methods for UFD is self-
organizing map (SOM). The main reason behind the choice of SOM is due to its non-linear modelling 
capability and suitability for online monitoring [64, 65]. Cao et al., [13] analysed the impact of SOM 
map size and topological structure in learning the relationship between variables in a nonlinear 
system. The study also agreed with the computational efficiency of SOM, which is suitable for a real-
time industrial monitoring system. The neural network structure of SOM mapping consists of input 
and output neurons that are related by weight. The same neuron structure is also seen between 
neighbouring neurons. Meng et al., [66] utilized this structure to learn health signal conditions. 
Training the signal through SOM brings the weight vector near or far from the input and continuous 
learning makes the weight as representative for the input space, which eventually clusters the signals 
between faulty and nonfaulty conditions. Chalouli et al., [67] introduced a two-stage clustering 
framework for vibration signal FD. The first stage is considered as feature extraction and selection, 
which focused on a statistical-based feature extractor for time-frequency domain signals and 
modified K-means as feature selection. In the second stage, SOM was used to determine normal and 
faulty conditions. Fadda and Moussaoui [68] combined PCA and SOM for frequency-based FD of 
bearing machines. Calvo-Bascones et al., [69] proposed a framework for FD considering the 
dynamicity of the system. At first, the operating mode was clustered using K-means and later, each 
mode was inputted individually to SOM to learn the signal health behaviours. After that, similarity 
and distance indicators were determined to calculate the deviation of signals compared to normal 
conditions. Another type of shallow NN used as UFD is ART. Fernando and Surgenor [70] analysed 
the performance of ART compared to the rule-based method for an automated assembly machine. 
From the study, the researcher concluded that the rule-based approach is better than ART under the 
circumstance that the inaccurate parameter tuning would eventually create a new unknown fault 
and the operator needs to identify the fault type. Although the rule-based method requires more 
parameters, the method could generate the faulty symptom when an unknown fault occurs. 
However, the study mentioned that further investigation is needed before making generalization as 
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ART may give better performance in complex systems compared to the rule-based approach, where 
the rule would become difficult to model.  
 
5.6 Deep Learning  
 

The DL approach has gained popularity in the FD approach due to achievements in image 
recognition, text classification, and audio processing [71]. The deep architecture of a neural network 
is advantageous for extracting the signal of a complex engineering system. Hand-crafted feature 
extraction limits the FD approach to certain engineering conditions [72]. This is where most of the DL 
approach covers the gap in the ML approach for UFD. Tao et al., [73] proposed the ST-CatGAN 
method to solve FD and diagnosis involving vibration signals from a rolling bearing. The short-time 
Fourier transform (STFT) technique was used to remove redundant information, which was then 
inputted directly to categorical generative adversarial networks (CatGAN) to reduce the dependency 
on human expert and manual intervention. Michau et al., [74] evaluated the performance of 
hierarchical extreme learning machine (HELM) for high-dimensional UFD. Initially, the autoencoder-
extreme learning machine (AE-ELM) was used to extract the features of the signal to minimize the 
reconstruction error. Then, one-class ELM would take the AE-ELM output to learn the health indicator 
to identify any faults in the system. Qu et al., 2017 [72] utilized sparse coding with dictionary learning 
and further enhanced the dictionary learning using an AE. Amarbayasgalan et al., [75] investigated a 
UFD framework for a high-dimensional nonlinear system with noise. The team proposed deep 
autoencoders with density-based clustering (DAE-DBC) in solving the issue. DAE was used to extract 
low-dimensional representation and apply the model as a benchmark model for reconstruction 
errors in determining the threshold value. Later, the low-dimensional data were classified using 
density-based spatial clustering of applications with noise (DBSCAN). Hallgrímsson et al., [76] using 
an AE as a dimension reduction method and correlation analysis for a nonlinear triple tank system. 
Another characteristic of complex engineering system is that the data are collected through 
multichannel and multimodal signal data with multi-subsystems. Liu et al., [22] proposed a 
framework of variational autoencoder with multi-branch residual module with dilated convolution 
modules (MRD-CluVAE) for 50 channel data collected, whereas Li et al., [77] proposed fusing 
convolutional generative adversarial encoders (fCGAE) for 12 different joint bearings in three 
synchronous bands.  

Accurate learning of feature representation among the collected signals is essential when 
considering UFD. The accurate representation of normal signals against faulty signals and clear 
boundaries between several types of faults will reduce the misdetection rate in UFD. Yu and Zhang 
[27] stated the same on concern in their study of an industrial process. In order to extract the intrinsic 
geometrical information from the signals, the team proposed manifold regularized stacked 
autoencoders (MRSAE) that preserve the local and global structures of the signal representation. 
Zhang et al., [78] used unsupervised extreme learning machine (UELM) could only hold the local 
structure of feature information and upgraded the method with global preserving unsupervised 
kernel extreme learning machine (GUKELM) to identify the global feature information and optimize 
the number of hidden layers in UELM. A similar concept was proposed by Zhao et al., [53] using ELM 
as the learning base for FD and enhanced the method with Cauchy graph to extract the local and 
global structural information with the name of multiple-order graphical deep extreme learning 
machine (MGDELM) approach. Besides, signals are affected by changing the engineering 
environment. Furthermore, the operating modes change for a new production. These characteristics 
could affect the learned DL method. Xiao et al., [79] discovered useful information in changing 
working condition signals by maximizing the mutual information (MI) between the input and output 
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of DL and implementing a variational AE for feature learning. Guo et al., [80] combined multiple 
stages of clustering, deep autoencoder (DAE), and one-class transfer learning (OC-TL) to improve the 
false alarm rate for multimode working condition.  

In UFD approach, the application of DL does not only focus on feature extraction, but some study 
utilized DL as an alternative approach for one-class classification or novelty detection. Santana et al., 
[81] explored an AE as one-class FD approach with only normal data and verified the approach 
robustness even without a pre-processing method. A different approach by Sun and Sun [82] only 
used a DL method, namely stacked denoising autoencoder (SDAE) for feature extraction and 
combined with density grid-based clustering for grouping the features to relevant groups. The 
threshold value is vital in one-class detection. Li et al., [83] argued that a fixed threshold value is 
impractical in a complex engineering system; thus, the authors proposed deep small-world neural 
network (DSWNN) with the adaptive threshold method. The threshold value is usually determined 
based on the reconstruction value of a benchmark model. Ellefsen et al., [84] tested five types of DL 
for the reconstruction-based FD approach, traditional feedforward neural network with one hidden 
layer (1FNN), AE, variational autoencoder (VAE), and LSTM, and summarized that the accuracy of DL 
was between 99.393% and 99.531%. Principi et al., [85] obtained 99.11% accuracy for multilayer 
perceptron with the autoencoder approach for UFD with log-Mel coefficient as features, whereas 
[86] applied RBM as the FD benchmark model and achieved 99% accuracy.  

The temporal dependence in the time series of a complex engineering system will influence the 
fault prediction in the system. This study relies heavily on sequence learning in a period of time while 
retaining the spatial structure of the signal. Sliding window is one of the chosen methods for 
sequence learning in FD. Chen et al., [48] combined sliding window with a convolutional variational 
AE to detect real-time incipient faults in a robotic system. Jiang et al., [16] combined sliding window 
with a denoising autoencoder (DAE) for nonlinear multivariate FD of a wind turbine system to capture 
the temporal relation. Recurrent neural network variants are also among the selected approaches 
for temporal learning, such as LSTM [87,88] and gated recurrent unit (GRU) cells [89]. 
 
5.7 Others  
 

There are only two methods in this section, which are ant colony clustering and artificial immune 
system (AIS). Abid et al., [90] proposed AIS as the basis of UFD framework for multidomain FD. The 
framework consists of three parts. The first part involves a multidomain feature extraction approach 
using real-valued NSA (RNSA). Later, the dimension reduction process uses k-NN clustering and 
autoencoders. The framework is completed by genetic algorithm (GA) as the optimization approach. 
Soualhi et al., [19] studied a signal with harmonics from an induction motor. The team extracted 
features using Park's vector approach and cluster using artificial ant colony approach (AAC). 

 
6. Conclusions  
 

Monitoring activities in engineering systems produce a huge amount of data collected in a timely 
basis and stored in the company data logging. Massive data collection could be used to extract 
important information of the past, current, and future of the system's condition. Recognizing faulty 
components could help in preventing damages to the overall system. These benefits have motivated 
research of FD activity. However, among the collected datasets, very few are appropriately labelled 
for supervised fault classification activities. This study chose to embark on the UFD approach with 
the motivation of direct application on complex systems using existing data without intervening in 
the daily activities of the system. An extra experimental study will be conducted to determine if the 
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approach is only suitable for labelled data, hence limiting the current approach. The scope of this 
study and the database used to answer all questions related to this topic are explained at the early 
stage. Two types of frameworks under UFD are discussed to give an overview of the study. The 
number of references used and the increasing trend throughout the years are described, where the 
methods are divided into seven groups. Each group is described with the state-of-the-art approach 
and how the method solves problems in complex engineering systems.  
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