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Metal magnetic memory (MMM) technique is a promising non-destructive technology 
for determining the state of material deformation and structural defect in carbon steel 
pipe by measuring the self-magnetic leakage field (SMLF). The relationship between 
SMLF and stress concentration of cracked specimens has been extensively researched, 
but little is known about corrosion defects in carbon steel pipes, such as circular holes.   
A static tensile test and MMM measurement were performed on the ASTM A106 Gr. B 
steel to investigate its applicability in predicting material deformation state and 
structural defect. The tensile load makes the distribution of self-magnetic leakage field, 
SMLF intensities in the elastic stage regular. In the defect zone of defective specimens, 
a peak-trough in the SMLF intensity in the tangential component, Hp(x), and a peak in 
the normal component, Hp(y), were observed. As yield approached, the SMLF 
intensities remained unchanged. During plastic deformation, dislocation slip and 
dislocation interaction rarely change the SMLF intensities and its gradient. The SMLF 
intensities and its gradient rise as the tensile load approach its ultimate strength. The 
distribution of SMLF intensities show a peak feature in the Hp(x), and a peak-trough in 
the Hp(y) as the specimen fractures. Variations in the magnetic and stress fields of 
carbon steel pipe are caused by structural defect. As a result, the SMLF intensity varies. 
The method described in this study can be applied to MMM technique to detect 
material deformation states and defect formation in ASTM A106 Gr. B steel at low cost 
and with minimal equipment. 
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1. Introduction 
 

Carbon steel pipeline is an important infrastructure used worldwide to transport crude oil or 
natural gas over long distances to meet the increasing demands of energy. It has been showed that 
the carbon steel pipeline is an effective and safe vehicle for the oil and gas transportation [1-3]. The 
integrity of these carbon steel pipelines is of importance due to the explosive characteristic of gas 
and oil [4]. Corrosion is one of many common factors that could threaten the integrity of carbon steel 
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pipelines, resulting in a significant stress concentration [5]. Several indirect physical methods, 
including ultrasonic testing, permeation testing, and eddy current testing, are only sensitive to 
structural defects in ferromagnetic components and not to stress concentration or early damage [6]. 

The Metal Magnetic Memory (MMM) test method, first introduced by Dubov in 1994, is a new, 
robust, and rapidly expanding non-destructive testing (NDT) technique. Metal magnetic memory 
(MMM) approaches have demonstrated to be successful in assessing stress concentration and 
defects in ferromagnetic materials as a unique magnetic testing method [7-9]. The failure condition 
of a structure can be assessed by detecting metal magnetic signal on the failure area and stress 
concentration zone [10, 11]. Due to its low cost and ease of implementation, this strategy has 
received considerable attention in engineering [12]. 

Many researchers contributed to the establishment of the correlation of self-magnetic leakage 
field, SMLF responses with ferromagnetic material deformation states in experimental fields. 
According to previous research, the SMLF intensities of ferromagnetic materials are random in the 
absence of stress [13], but they change to linear pattern as the stress increases in elastic state [14-
16]. The SMLF intensities vary on a small scale once the applied stress reaches the yield point and 
plastic deformation state [17, 18]. A sharp change of Hp(y) signal from negative to positive values and 
a zero-crossing point at the fracture location [12-19]. The findings of previous research have focused 
on the influence of material deformation states on SMLF intensities in the normal component, as 
compared to both the normal and tangential components. 

Bao et al., [18] stated that the characteristics of the abnormal distribution of SMLF intensities of 
30CrNiMo8 steel can be used to find the exact location and shape of a defect. Xu et al., [20], who 
investigated the response of SMLF intensities on a cracked Q345 steel specimen subjected to tensile 
load, the authors found that the peak and peak trough appears in the tangential and normal 
components, respectively. Liu et al., [21] were among a few researchers who investigated the SMLF 
responses on pipeline material of API 5L X80 with a crack when subjected to internal pressure. 
According to the authors, the SMLF intensities of API 5L X80 steel in the stress concentration at the 
defective location is reasonably larger than the no-stress concentration area. While many researchers 
have studied the relationship between SMLF and stress concentration of cracked specimen, research 
into carbon steel pipe with corrosion defect such as circular hole is still limited. 

For these interests, the work presented here focuses on the effect of deformation states on SMLF 
intensities in non-defective and defective ASTM A106 Gr. B steel specimen with crack and circular 
hole. The variations of SMLF intensities in normal and tangential component and its gradient 
throughout the entire tensile process for non-defective and defective specimens were presented and 
analyzed. The relationship between the SMLF measured by MMM technique and material 
deformation states and structural defect in ASTM A106 Gr. B steel will be important in analyzing the 
integrity of carbon steel pipes at a low cost and with minimal equipment. 
 
2. Methodology  
2.1 Specimen 

 
The experiment in this study used ASTM A106 Gr. B steel, which is widely used as pipeline 

material. Table 1 and 2 indicate its chemical composition and mechanical properties, respectively. 
The specimens were cut from a pipe and machined into a dog-bone shape as illustrated in Figure 1. 
There are two types of specimens: non-defective and defective with circular hole in the middle. All 
specimens were demagnetized using a VERTEX VDM-8 demagnetizer model to randomize the initial 
magnetic state. 
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Table 1 
Chemical composition of ASTM A106 Grade B steel (weight %) [22] 

C Mn P S Si Cr Fe Cu Mo Ni V 
0.3 0.29 0.04 0.04 0.1 0.4 97 0.4 0.15 0.4 0.08 

 
Table 2 
Mechanical properties of ASTM A106 Grade B steel 
Yield strength (MPa) Ultimate strength (MPa) 
240 415 

 

 
Fig. 1. Non-defective and defective tensile specimen dimensions 

 
2.2 Experimental Procedure 
 

The specimen was placed vertically between the grips as shown in Figure 2, and the static tensile 
test was carried out at room temperature on a ZwickRoell Z400E Standard Universal Testing Machine 
with a maximum static load of 400kN. The specimen was first loaded at a tensile rate of 0.2mm/min 
to a preset value and held for a period of time throughout the tensile testing. The Hp(x) and Hp(y) 
were then measured immediately along the 100mm scanning line with a 1mm scanning interval using 
a TSC-7M-16 type magnetometer developed by Energodiagnostika Co. Ltd. The gradient of SMLF 
intensities in tangential and normal component, dHp(x)/dX and dHp(y)/dX will be calculated 
accordingly. The specimen was then loaded to a higher predetermined value and the process 
continued until it fractured. The specimens went through the entire failure process, including elastic 
deformation, plastic deformation and fracture as shown in Figure 3. 
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Fig. 2. Experimental set-up for static tensile test with 
MMM measurement 

 

 
Fig. 3. Fractured photo of (a) non-defective and (b) defective specimen 

 
3. Results and Discussion  
3.1 Elastic State 
 

Hp(x) distribution has a negative slope before applying tensile loading corresponding to 0kN as 
depicted in Figure 4(a), whereas Hp(y) has a parabola trend with the minimum value in the centre as 
shown in Figure 4(b) for all specimens, which is similar to the previous work's findings [23]. The initial 
SMLF intensities could be linked to the history of specimen machining [13] and specimen micro-
inhomogeneity [24, 25]. 
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Fig. 4. SMLF intensity distributions at the elastic state of (a) Hp(x) of non-defective specimen (b) Hp(y) of 
non-defective specimen, (c) Hp(x) of defective specimen and (d) Hp(y) of defective specimen 

 
The Hp(x) and Hp(y) of the defective specimen with a circular hole change to a peak-trough and 

peak feature as the tensile test progresses, as shown in Figure 4(c) and 4(d), respectively, which is 
similar to previous work [26]. Both Hp(x) and Hp(y) are sensitive to the abnormal magnetic changes 
caused by the local stress concentration in the defect area [27]. The self-magnetic leakage field in a 
specimen under tensile stress varies depending on whether it is non-defective or defective. As a 
result, the Hp(x) and Hp(y) are distinct [28]. According to Fu et al., [27], the abnormal magnetic change 
in the defect zone can be explained by magnetic-charge theory. The defective specimens cause a 
significant change in magnetic behaviour due the magnetization effect of the applied load and the 
Earth's magnetic field. 

The defect zone can also be correlated to the dHp(x)/dX and dHp(y)/dX distributions where it 
shows peak feature as depicted in Figure 5 due to the variation in the SMLF intensities. The length of 
the abnormal feature in dHp(x)/dX and dHp(y)/dX is comparable to the diameter of the circular hole. 
As the tensile load increases, the amplitude of dHp(x)/dX and dHp(y)/dX peaks also increases. The 
piezomagnetic effect causes the magnetic properties of the material to become stronger as the stress 
level rises [15, 29, 30], as the magnetic domain walls within the specimen are able to rotate freely 
and easily [17-19]. 
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Fig. 5. Gradient of SMLF intensity distribution at the elastic state of (a) dHp(x)/dX of non-defective specimen 
(b) dHp(y)/dX of non-defective specimen (c) dHp(x)/dX of defective specimen and (d) dHp(y)/dX of defective 
specimen 

 
As shown in Figure 4, there were no significant changes in Hp(x) and Hp(y) as the tensile stress 

reached the yield point. As the applied force approaches the yield point, the Hp(x) and Hp(y) features 
appear to reach their maximum value, and they rarely change as the applied load increases [14, 31, 
32]. According to Liu et al., [30], as stress exceeds yield strength, dislocation pinning occurs on the 
magnetic domain, constraining magnetic domain orientation change. Su et al., [15] reached the 
conclusion that SMLF intensities can indicate whether a ferromagnetic material is yielding. 

 
3.2 Plastic Deformation State 
 

With increasing tensile stress during plastic deformation, the SMLF intensities and gradient 
fluctuations in Hp(x) and Hp(y) are barely changed especially between 103035N to 131528N for non-
defective specimen and 61663N to  77972N for defective specimen as demonstrated in Figure 6. Ren 
and Ren [16] claimed if the maximum tensile stress exceeds the yield point, the magnetic induction 
intensity fluctuates relatively slightly. The metal crystal hardens due to dislocation slip and dislocation 
interactions. The dislocation's interaction reduces its range of motion and movement [19, 26]. 

The SMLF intensities in the tangential and normal components, as well as its gradients, increases 
as the tensile load approaches ultimate tensile strength (UTS) as depicted in Figure 6 and 7. Jian et 
al., [33] and Kumar and Misra [34], who observed that raising the necking degree enhanced the 
gradient of SMLF intensities at the necking site, confirm this result. As the stress weakens the pinning 
impact of dislocation on the magnetic domain at the necking point, raising the stress concentration 
degree aided in increasing the gradient of SMLF intensities, indicating that the process of pinning the 
magnetic domain was not entirely stopped. 
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Fig. 6. SMLF intensity distributions at the plastic deformation state of (a) Hp(x) of non-defective specimen (b) 
Hp(y) of non-defective specimen (c) Hp(x) of defective specimen and (d) Hp(y) of defective specimen 
 

 
Fig. 7. Gradient of SMLF intensity distribution at the plastic deformation state of (a) dHp(x)/dX of non-
defective specimen (b) dHp(x)/dX of defective specimen (c) dHp(y)/dX of non-defective specimen and (d) 
dHp(y)/dX of defective specimen 
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3.3 Fracture State 
 

The Hp(x) as the specimen fractures exhibits a peak, as shown in Figure 8(a) and 8(c), similar to 
the findings of Huang et al., [35] and Hu et al., [36]. Meanwhile, a peak-trough feature is seen in Hp(y) 
as depicted Figure 8(b) and 8(d), which is comparable to the previous studies [26, 37] where the 
fractured ends had distinct and opposite poles (positive at the left fractured end and negative at the 
right fractured end).  
 

 
Fig. 8. SMLF intensity distributions at the fracture state of (a) Hp(x) of non-defective specimen, (b) Hp(y) of 
non-defective specimen, (c) Hp(x) of defective specimen and (d) Hp(y) of defective specimen 

 
Figure 9(a) and 9(c) demonstrates that the dHp(x)/dX has pronounced two peaks, while the 

dHp(y)/dX has a peak, as shown in Figure 9(b) and 9(d). After the fracture, the peak in dHp(x)/dX and 
dHp(y)/dX increased significantly, corresponding to the high variance in the SMLF intensities [12, 19, 
26]. 
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Fig. 9. Gradient of SMLF intensity distribution at the fracture state of (a) dHp(x)/dX of non-defective specimen, 
(b) dHp(y)/dX of non-defective specimen, (c) dHp(x)/dX of defective specimen and (d) dHp(y)/dX of defective 
specimen 
 
4. Conclusions 
 

Under different tensile loads, the variations of SMLF intensities and gradients on the surface of 
non-defective and defective ASTM A106 Gr. B specimens were studied. The following conclusions 
were derived from this study: 

 
i. In the elastic stage, the distribution of SMLF intensity changes from random to regular 

pattern when subjected to a tensile load. The peak amplitude of gradient of SMLF 
intensity increases with tensile stress. This is due to the piezomagnetic effect, which 
strengthens the magnetic properties of a material when it is under stress. Tensile load 
reached yield strength with no noticeable changes in SMLF intensities because 
dislocation pinning restrains magnetic domain orientation shift.  

ii. In the stage of plastic deformation, dislocation slip and dislocation interaction in the 
metal crystal affect the metal magnetic signals and its gradient. The interaction of the 
dislocation restricts its movement. As the tensile load approaches the ultimate tensile 
strength (UTS), raising the stress concentration reduced the pinning effect of dislocation 
on the magnetic domain, increasing the gradient of SMLF intensities. As the specimen 
fractures, the Hp(x) exhibits a peak feature, whereas the Hp(y) demonstrates a peak-
trough. Due to the large variance in SMLF intensities, the peak amplitude of gradients 
increases. 

iii. The stress distribution of non-defective and defective specimen with a circular hole are 
different under tensile loading. As a result, the SMLF intensities and its gradient are 
different. The abnormal features in the SMLF intensities and gradients indicate not only 
the location of the defect, but also the defect's length based on the length of the 
abnormal feature. 
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iv. The investigation of the SMLF responses to tensile stress in the ASTM A106 Gr. B steel 
has made a substantial contribution to the oil and gas industry, as the investigated 
material has been studied very little by other researchers despite its extensive use as 
pipe material in the pipeline systems. The findings of this study on material deformation 
can be utilized to determine material deformation states in carbon steel pipe, which is 
crucial for ensuring that pipeline systems are operated in an elastic state. Moreover, the 
abnormal feature in SMLF intensities and gradients of the circular hole can be used to 
detect the formation of corrosion defects on carbon steel pipe, such as pitting, pinholes, 
etc., which are commonly observed in pipeline systems. 
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