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This paper aims to publish an experimental finding addressing ultrafilter membranes' 
higher energy consumption rate (UFM) in producing clean water. The novelty of the 
research published in this paper is to establish the contribution capability of process 
control devices (PCD) in reducing the energy consumption rate of UFM and the effect 
of PCD on the overall performance of UFM in producing clean water (SDG6). The 
novelty of the research published in this paper is to establish the contribution 
capability of PCD in reducing the energy consumption rate of UFM and the effect of 
PCD on the overall performance of UFM in producing clean water (SDG6). An 
experiment has been conducted with a UFM to answer the question. The UFM plant 
operated with and without process control devices to evaluate the impact of the 
process control devices on energy consumption rate [kW/m3] in producing clean water. 
Experiments revealed that process control devices are positively associated with 
energy consumption rate and contributed to reducing 44% of energy consumption in 
clean water production. This research disclosed that process control devices have 
contributed to an increase of 38% in the efficiency of the UFM in clean water 
production. Research outcomes have several implications in the water industry, 
engineering, and policy implementation domains relating to process control devices in 
water treatment. From our findings, further research should continue using process 
control devices for the water treatment plants to increase overall performance and 
contribute to achieving sustainable development goals (SDG). 
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1. Introduction 
 

This paper presents experimental research outcomes that unlock the effect of a few plant 
operating factors on the overall performance of Ultra-filtration membrane (UFM) in producing clean 
water [1,2]. Membrane filtration is an advanced water treatment process that attracted attention 
because of its economic benefits [2,3]. Among the membrane family, the UFM has potential due to 
its simple design, less energy consumption, and minimum capital investment. A myriad of research 
studies in this field have disclosed the factors responsible for the performance of UFM [4-6]. The 
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mode of UFM plant operations has also appeared as a factor in achieving performance. The potential 
factors are the quality of feed water, plant operating time, and plant cleaning efficiency. All these 
factors are associated with energy consumption, plant maintenance frequency, the life cycle of UFM 
modules, and water production cost. Indeed, optimizing factors could be vital in achieving the 
required performance [3,7]. With this background, this study revealed the optimum operating 
conditions of UFM to achieve sustainable performance by reducing energy consumption and the cost 
of plant operation for producing clean water at an affordable price. 
 
1.1 Problem Statement and Research Objectives 
 

Climate change and geopolitical instabilities present a formidable challenge to the fulfillment of 
clean water demand across the globe. This reality forces researchers and engineers to scale the 
problem from various perspectives across many disciplines. Some groups look towards diversifying 
the source of raw water for treatment. An example of this is the work done by Mirmanto et al., [8], 
which attempts to improve the quantity of water produced by the evaporation coil of a device 
operating on a refrigeration cycle. Some, on the other hand, are working on improving desalination 
technology within the context of reducing its reliance on fossil fuels to power the boilers [9]. Others 
focus their efforts on improving individual subprocesses of the water treatment system, such as 
evaluating the feasibility of banana peels as a flocculating agent [10]. 

Studies on clean water production using UFM have established a relationship between energy 
consumption rate and productivity in water production. Research findings demonstrate that the 
energy consumption rate in clean water production by UFM has played a vital role in managing the 
water crisis. Various studies reveal that the clean water crisis partially relates to the poor productivity 
of plant machinery due to the lack of process control devices in the production process. A few 
researchers have confirmed that UFM plants operate continuously, and a certain amount of product 
water is discharged through the overflow pipe due to a lack of water level sensors in the water tank 
and speed controller for the pump. This statement has raised the question of ‘What is the effect of 
water level sensors on the energy consumption rate [kW/m3] of a UFM system when operating to 
produce clean water?’ This research project has been undertaken to answer the question stated. 

The broad objective of this research is to determine the optimum operating conduction of the 
UFM system. The experiment is divided into two specific objectives to achieve the research goal. 
First, to determine the energy consumption rate of UFM’s feedwater pump when the plant operates 
without process control devices. Second, to estimate the energy consumption rate of UFM’s 
feedwater pump when the plant works with process control devices. Third, to evaluate the impact of 
process control devices on the UFM’s energy consumption rate and overall performance. 
 
1.2 Novelty of Research 
 

The novelty of the research published in this paper is to establish the contribution capability of 
process control devices (PCD) in reducing the energy consumption rate of UFM and the effect of PCD 
on the overall performance of UFM in producing clean water (SDG). 
 
2. Literature Review on Performance of Ultrafilter Membrane 

 
The UFM is a low-pressure driven system widely used in water treatment for producing potable 

water, cooling water for power plants, and processing water for food and chemical industries. UFM 
membrane has been installed at the secondary and tertiary levels in the water treatment system 
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[11,12]. A few indicators have been used for measuring the UFM's performance in producing clean 
water; the indicators are permeate flux rate, efficiency in separating TSS and pollutants from feed 
water, energy consumption rate [kW/m3], and productivity in clean water production [13,14]. 
Chemical oxygen demand (COD), Biological oxygen demand (BOD), and water-born bacteria 
separation capability have also been used to measure the performance of UFM [15-17]. 
 
2.1 Measuring the UFM’s Performance in Permeate Flux Yield 
 

A few researchers have used the input-output water production model to measure UFM’s 
performance. The standard model is present in Eq. (1) [15,16,18,19]. 
 
𝐽𝐽 = 𝐾𝐾 ∆𝑃𝑃

𝑡𝑡
 (1) 

 
Here, J is the permeate flux, ∆P is the feed pressure difference across the membrane, t is the 

membrane thicknesses and K is the efficiency factor of UFM. Singh & Hankins [18], and Ghidossi & 
Daorelle [20] also used a similar model for measuring the UFM’s performance. The performance of 
the UFM membrane in clean water production also depends on the cake layer formation on the 
membrane. The cake layer increases transmembrane pressure (TMP) and contributes to a decrease 
in the permeate flux [1,21]. 

Anis et al., [22], Giakoumis et al., [23], Weber et al., [24], Singh & Hankins [18], and Ramli & Bolong 
[16] demonstrate that pore size, the thickness of the membrane, and transmembrane pressure (TMP) 
have a significant role that affects the performance of UFM. A similar argument has been made by 
Karabelas & Sioutopoulos [25]. The permeate flux for the transmembrane pressure is present in Eq. 
(2). 
 

𝐽𝐽𝑤𝑤 = 1 𝑑𝑑𝑑𝑑
𝐴𝐴 𝑑𝑑𝑑𝑑

= [∆𝑃𝑃]
𝜇𝜇[𝑅𝑅𝑚𝑚+𝑅𝑅𝑐𝑐]

 (2) 
 

Here, 𝐽𝐽𝑤𝑤 is the permeate flux (𝐿𝐿 𝑚𝑚−2ℎ−1 ) or m/s. 𝑅𝑅𝑚𝑚 is the membrane resistance and 𝑅𝑅𝑐𝑐 the 
cake resistance. ∆p presents effective transmembrane pressure (TMP) (𝑃𝑃𝑃𝑃). 𝜇𝜇 is the viscosity 
(𝑃𝑃𝑃𝑃 ∙ 𝑠𝑠) of the feed stream. In this regard, Zirehpour & Rahimpour [15], Ramli & Bolong [16], and 
Yangang et al., [26] suggested that lower cake layer resistance can be achieved by keeping a high 
crossflow rate of backwash water through the membrane, which would shear the cake layer formed 
on the membrane surface. Hong Tek [27] disclosed that the filtration efficiency increases with the 
operating pressure up to the optimum pressure level, and when the operating pressure goes higher 
than that level, the performance could start to decrease [28]. In this regard, Zirehpour & Rahimpour 
[15], Ramli & Bolong [16], and Yangang et al., [26] suggested that lower cake layer resistance can be 
achieved by keeping a high crossflow rate of backwash water through the membrane, which shears 
the cake layers formed on the membrane surface. 
 
2.2 Measuring the UFM’s Performance by Efficiency in Permeate Flux Production 
 

Zirehpour & Rahimpour [15], Ramli & Bolong [16], and Yangang et al., [26] have used efficiency 
(η-water recovery in percentage) to measure the performance of UFM as expressed in Eq. (3). 
 
Efficiency, 𝜂𝜂 (%) = Permeate flow (𝑄𝑄𝑃𝑃)

Feed flow (𝑄𝑄𝑓𝑓)
𝑥𝑥 100% (3) 
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2.3 Measuring the UFM’s Performance by Productivity in Permeate Flux Production 
 

Yangang et al., [26] and Wang et al., [17] have used productivity to measure the performance of 
the membrane. The productivity is present in Eq. (4) [29]. 
 

Productivity � 𝐽𝐽𝑝𝑝� =  
𝑄𝑄�𝐿𝐿ℎ�

𝐴𝐴𝑚𝑚 
 (4) 

 
Here, Jp is a productivity indicator. Qp stands for clean water output (litre per hour). Am - the 

surface area of the membrane in square meters (A2). Productivity is the rate of mass flow concerning 
the permeate flux through the cross-sectional area of UFM [17,26]. Lawrence et al., [30], and Ramli 
& Bolong [16] have also used productivity to evaluate the performance of the membrane. 
 
2.4 Measuring the UFM’s Performance by Energy Consumption Rate 
 

Energy consumption rate in clean water [kW/m3] production was used for measuring the 
performance of UFM. Li et al., [31] and Ana et al., [32] also undertook a pilot study to evaluate the 
performance of UFM with energy consumption concerning the permeate flux [kW/m3]. Eq. (5) 
presents a model for measuring the energy consumption of a membrane in water production. 
 
𝑃𝑃 �kW

m3� = 𝑄𝑄𝑄𝑄
𝜂𝜂pump

 (5) 

 
Here P is the power consumed by pumps. Q (m3h-1) is the feed water flow passing through the 

membrane at a pressure P. A series of R&D was performed to optimize the energy consumption 
[kW/m3] by reducing TMP. The findings of this R&D demonstrate that the energy consumption rate 
in UFM could decrease by installing efficient pre-treatment [33-36]. Also, it has been discovered that 
the UFM system is an economical, sustainable, and environmentally friendly water treatment process 
due to a lower energy consumption rate [20,31,37,38]. The conclusion is that efficiency, productivity, 
and energy consumption rate per unit of water production are the indicators used to measure the 
performance of UFM. 

 
2.5 Measuring the UFM’s Performance by the Effect of Feed Water Pressure on Permeate Flux 
Production Yield 
 

A few reports demonstrated that feed pressure is a factor that affects the performance of UFM. 
Vishali & Kavitha [39] observed that feed water pressure has a positive impact on the water 
production performance of UFM [39,40]. Figure 1 presents the effect of feed pressure on the 
permeate flux of this membrane. 
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Fig. 1. The effect of feed pressure on permeate flux of UFM [19] 

 
According to Figure 1, permeate flux increases with feed water pressure, and after attaining 

optimum value, flux starts to reduce. In similar studies, Lise et al., [41]; Azmi et al., [42] and Tansel et 
al., [43] it was revealed that permeate flux increases with feed pressure up to the optimum level. 
Furthermore, it also discovered that the effect of feed water pressure on TDS separation by UFM is 
insignificant (p-value > 0.05). On the other hand, the TSS separation appeared to be significantly 
higher (p-value ≤ 0.05) [44,45]. Moreover, Yunos et al., [46] and Wu et al., [47] disclosed that the 
permeate flux of UFM increased to an optimum level with an identified feed pressure [46,47]. These 
findings suggested that feed pressure affects the performance of UFM. 

 
2.6 Measuring the UFM’s Performance by the Effect of Using Process Control Device on Permeate Flux 
Yield 

 
Paulen & Fikar [48], Bernhard & Uwe [49], and Huang et al., [50] discovered the impact of the 

process control device on the performance of UFM. Appels et al., [51] installed a process control 
device in the UFM plant to optimize permeate flux and energy consumption rate by controlling the 
factors that affect performance. 

A few researchers also used process control devices to optimize the permeate flux, energy 
consumption, and operating cost [32,52,53]. Research findings concluded that a real-time monitoring 
technology with a process control device could effectively contribute to removing colloidal and 
nanoparticles from the feed water. Thus, a real-time monitoring-based process control device 
contributes to optimizing permeate flux, energy consumption, and operating cost. 

Ghidossi et al., [20] experimented with the UFM plant to develop a model for measuring energy 
consumption. Findings revealed that pumps installed for feed water and membrane backwash were 
potential energy-consuming components. Li et al., [31] revealed that pumps installed for membrane 
cleaning consumed a significant part of total energy. Optimizing energy consumption, Aditya et al., 
[54], Chang et al., [55], and Chon et al., [2] installed an efficient pre-treatment system for UFM and 
discovered that macro and microfiltration was effective in removing foul elements from feed water, 
which contributed to reducing energy consumption. 

Zambujo conducted a similar experiment and discovered that pumps used for feed water and 
backwash consumed the maximum energy, which could be 1 kW/m3, due to an inefficient pre-
treatment [56]. 
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2.7 Measuring the UFM’s Performance by Operating Cost in Clean Water Production 
 
Samaco [1] and Nguyen et al., [57] revealed that the operating cost of UFM in producing clean 

water potentially depends on energy costs. According to their research findings, the operating cost 
for UFM depends on a few primary factors. Energy expenditure, chemicals used for membrane 
cleaning, and plant maintenance are the main costs. Nguyen et al., [57], Yoo et al., [3], and 
Jamalinezhad et al., [14] concluded that at an optimum plant operating condition, operating costs 
would be within 11.2% of the total water production cost. 

The literature review findings conclude that permeate flux rate [m3/hour], energy consumption 
rate [kW/m3], efficiency, and productivity in permeate flux production are the indicators of 
measuring the performance of the UFM plant. This study also revealed that efficient pre-treatment 
for feedwater would improve the performance of UFM to achieve a sustainable clean water supply 
(SDG6). 
       
3. Methodology  
3.1 Research Methodology and Experimental Setup 
  

The experiment setup aims to measure the effect of process control devices on the energy rate 
in clean water production. The experiment was conducted in two phases. The first phase of the 
experimental setup is present in Figure 2.  

 

 
Fig. 2. Experiment with level sensors in the water tank 

 
The equipment used in the first phase experiment was a feed water pump, UFM, product water 

storage tank, and pressure indicators. The second phase experimental setup is present in Figure 3.  
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Fig. 3. Experiment with level sensors in the water tank 

 
The equipment used in the second phase experiment was a feed water pump, UFM, product 

water storage tank, level sensor, level controller with feedback system, variable-frequency drive 
(VFD), and pressure indicators. The experimental runs were 14.  

The data collection sequence for each run was 1/2 hour for 14 experimental runs. The total time 
for 14 experimental runs was 7 hours. Every experiment was repeated 8 times. In data analysis, 
statistical techniques SPSS and Excel software were used to eliminate the outlier data. 

 
3.2 Theoretical Framework 

 
The energy consumption rate [kW/m3] of UFM depends on the volume of water produced (m3) 

and the duration (time) of water production. The average energy consumption rate (Eavr) over time 
can be estimated from Eq. (6). 
 

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 =   
∑ 𝐸𝐸𝑗𝑗𝑛𝑛
𝑗𝑗

𝑛𝑛
 (kW/m3) (6) 

 
Here, Ej -energy consumption rate of UFM’s feed water pump.  ‘n’ is the number of repeats of the 

same amount of water production from a UFM plant (n>1). Variable j= 1, 2, 3,…, n. Average energy 
consumption (Eave) over the entire production period or experimental runs (Ø) can be estimated from 
Eq. (7). 
 

𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 =    ∑ EaveØ
i

Ø
 (kW/m3) (7) 

 
Here, Ø is the number of the total experimental runs, and its value is more than one (Ø > 1). The 

range of variable i is, i = 1, 2, 3,…, Ø. The total water outputs (Qt) of UFM’s pump can be estimated 
from Eq. (8). 
 
𝑄𝑄𝑡𝑡 =  𝑄𝑄out × Ø (m3) (8) 
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Total energy consumption (Et) during an identified quantity of water production (Qm3) can be 
estimated from Eq. (9). 
𝐸𝐸𝑡𝑡 = 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 (kW/m3) × 𝑄𝑄𝑡𝑡1 (m3) = 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 × 𝑄𝑄𝑡𝑡1 (kW) (9) 

 
Here, 𝑄𝑄𝑡𝑡1 is the total water output from an identified experimental run during UFM’s plant 

operation. The required water production and supply rate 𝑄𝑄𝑡𝑡2 (m3/hour), can be estimated from Eq. 
(10). 
 
𝑄𝑄𝑡𝑡2 = 𝛽𝛽×Water demand

No of the experiment runs 
 (10) 

 
Here, β is the safety factor of water demand (β = 1.1). Pump speed (RPM) and pump output (𝑄𝑄𝑡𝑡2) 

can be estimated from Eq. (11) [52]. 
 
 
𝑄𝑄𝑡𝑡2
𝑄𝑄𝑡𝑡1

= 𝑁𝑁2

𝑁𝑁1
 (11) 

 
The impact of process control devices on energy consumption (ΔE) can be estimated from Eq. 

(12). 
 
Δ𝐸𝐸 = 𝐸𝐸𝑡𝑡(oc) − 𝐸𝐸𝑡𝑡(wc) (12) 
 

Here, 𝐸𝐸𝑡𝑡(wc) – energy consumption of UFM’s pump when operating with the process control 
devices, while 𝐸𝐸𝑡𝑡(oc) – energy consumption of UFM’s pump when operating without the process 
control devices. The impact, in percentage, can be computed using Eq. (13). 
 
Δ𝐸𝐸 (%) = 𝐸𝐸𝑡𝑡(oc)−𝐸𝐸𝑡𝑡(wc)

𝐸𝐸𝑡𝑡(oc)
× 100%  (13) 

 
The efficiency of UFM can be estimated from Eq. (14), 

 
η = Water used by end users

Clean water produced by UFM
× 100% (14) 

 
Here, 𝜂𝜂 is the efficiency of UFM in producing clean water. The impact can be measured by 

estimating Eq. (15). 
 
Δ𝜂𝜂 = 𝜂𝜂oc − 𝜂𝜂wc (15) 
 

Here, 𝜂𝜂oc – efficiency of UFM in producing clean water when operating without process control 
devices.  𝜂𝜂wc – efficiency of UFM in producing clean water when operating with the process control 
devices. Eq. (6) - (15) can be used to analyse the experimental data to achieve the research objective. 
 
4. Results and Discussion 
4.1 Measuring Energy Consumption of UFM when Operate without Process Control Devices 
 

This is conducted to characterize the energy consumption pattern of UFM’s feedwater pump 
when operating without process control devices. The experimental set-up of phase 1 is presented in 
Figure 1. UFM, a feed water pump, and a product water storage tank are the equipment used for 



Journal of Advanced Research in Applied Mechanics 
Volume 120, Issue 1 (2024) 142-157 

150 
 

experiments. The water storage tank size was 2.0 m3 and connected with water end users. The pump 
capacity was 2.0 m3 at 1500 RPM. The water consumption rate by the end users was 10.0 m3 for 7 
hours from 8:00 am to 3:00 pm. The experimental run was 14, and the data collection rate was 0.5 
hours per experimental run. Experimental runs (Ø) and time spent to experiment are presented in 
Table 1. 

 
Table 1 
Distribution of experimental runs and duration of the experiment 
φ Duration of experiment No. of experimental repeats (n) The total duration of the experiment 

1 08:00-08:30 8 

7 hours daily 

2 08:30-09:00 8 
3 09:00-09:30 8 
4 09:30-10:00 8 
5 10:00-10:30 8 
6 10:30-11:00 8 
7 11:00-11:30 8 
8 11:30-12:00 8 
9 12:00-12:30 8 

10 12:30-13:00 8 
11 13:00-13:30 8 
12 13:30-14:00 8 
13 14:00-14:30 8 
14 14:30-15:00 8 

 
In data analysis, statistical techniques SPSS and Excel software were used to eliminate the outlier 

data. The experimental data were used to estimate Eq. (6) and (7), which are listed in Table 2. Table 
2 shows that the average water production 𝑄𝑄out is 1 m3. The total permeate flux over 14 experimental 
runs is 14 m3, according to Eq. (8). 
 

Table 2 
Data when the plant operates without process control devices 
φ 𝑄𝑄in (m3) 𝑄𝑄out (m3) 𝐸𝐸avr(oc) (kW/m3) 𝐸𝐸ave(oc) (kW/m3) 
1 

1 1 

0.54 

0.55 

2 0.56 
3 0.55 
4 0.56 
5 0.55 
6 0.56 
7 0.54 
8 0.55 
9 0.57 

10 0.54 
11 0.53 
12 0.56 
13 0.56 
14 0.55 

 
The experimental run and energy consumption rate are present in Figure 4. 
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Fig. 4. Energy consumption pattern of UFM’s pump when operating 
without process control devices 

 
Figure 4 and Table 3 demonstrate the average energy consumption pattern of UFM’s pump. The 

total energy consumption of the UFM is listed in Table 3. Using Eq. (9), the energy consumption is 
estimated to be 7.7 kW. 
 

Table 3 
Average energy consumption and efficiency by the UFM without PCD 
Equation Data source Result 
Required water output from UFM, i.e., Eq. (8) Table 2 𝑄𝑄𝑡𝑡 = 14 m3 
Total energy consumed by UFM, i.e., Eq. (9) Table 2, Table 3 𝐸𝐸𝑡𝑡 = 7.7 kW 
The efficiency of UFM, i.e., Eq. (14) Table 3 𝜂𝜂𝑜𝑜𝑜𝑜 = 71.4% 

 
This finding demonstrates that the UFM produces 14.0 m3 of water in 7.0 hours, and the end 

users consumed only 10.0 m3 at the 7.7 kW energy consumption. The wastewater amount is 4 m3 or 
40% of the total production at an efficiency of 71.4%. Water wastage was as the pump operated for 
7 hours at full capacity due to the lack of a pump speed (RPM) control device. 
 
4.2 Energy Consumption of UFM’s Pump when Operated with Process Control Devices 
 

The result of the experiment stated in section 4.1 demonstrates that the wastage of product 
water is about 40%. The experiment was designed with a variable frequency drive (VFD) for speed 
control of the pump and water level sensors in the water tank. Then, the required water production 
rate to meet the water demand (Qt2) at zero waste (only 10.0 m3 for 7 hours at 𝛽𝛽 = 1.1), Eq. (10) was 
estimated to be 0.78 m3. Next, solving Eq. (11) for 𝑁𝑁2 lets us know the required pump speed to 
produce the 0.78 m3 of water, which is 𝑁𝑁2 = 1170 RPM. 

The schematic diagram Figure 3 presents the experimental setup with process control devices. 
The experimental setup is equipped with one set UFM, feed water pump, product water storage tank, 
VFD, and water level sensors. The capacity of the tank was 2.0 m3 at a height of 1.8 m. A water 
overflow pipe was installed in the water storage at 1.8 m height. The level sensors were installed at 
1.8 m (HLS) and 0.2 m (LLS) of the water storage tank. The water tank was connected to the water 
end users. The experimental run, duration of the experiment, and experimental time are present in 
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Table 1. The experimental data were used to estimate Eq. (6) and (7), which are presented in Table 
4. Note that all quantities in Table 4 are given per number of total experimental runs, i.e., 𝜙𝜙−1. 

 
Table 4 
Data when the plant operates with a process control device at 1170 RPM 
φ 𝑄𝑄in [m3]  𝑄𝑄out [m3]  𝐸𝐸avr(wc) [kW/m3]  𝐸𝐸ave(wc) [kW/m3]  

1 0.78 0.4 0.42 

0.425 

2 0.78 0.5 0.43 
3 0.78 0.6 0.43 
4 0.78 0.8 0.42 
5 0.78 0.9 0.42 
6 0.78 1 0.43 
7 0 0.9 0 
8 0.78 0.8 0.42 
9 0.78 0.8 0.42 

10 0.78 0.8 0.43 
11 0.78 0.7 0.43 
12 0.78 0.6 0 
13 0.78 0.5 0.42 
14 0.78 0.4 0.43 

 
Here, 𝑄𝑄in [m3]  is the flow rate of water into the tank from UFM in an experimental run, 𝑄𝑄out [m3] 

is the water supplied to end users, 𝐸𝐸avr(wc) [kW/m3] is the average energy consumption by UFM’s 
pump for each experimental run, and 𝐸𝐸ave(wc) [kW/m3] is the average energy consumption by the 
UFM’s pump during the entire experiment. The energy consumption pattern is presented in Figure 
5. 
 

 
Fig. 5. Energy consumption pattern with the process control device 

 
Figure 5 demonstrates that the total pump operating time in a cycle was 6.5 hours. At the 

experimental run, the UFM’s pump did not operate as the tank at HLS was full of water. The total 
energy of the UFM is presented in Table 5. Using Eq. (9), the total energy consumption of UFM with 
PCD is computed as 5.52 kW. Then, using Eq. (14), the efficiency of water production with PCD is 
estimated to be 96%. 
 
 
 



Journal of Advanced Research in Applied Mechanics 
Volume 120, Issue 1 (2024) 142-157 

153 
 

Table 5 
Average energy consumption and efficiency by the UFM with PCD 
Equation Data source Result 
Required water output from UFM, i.e., Eq. (8) Table 4 𝑄𝑄𝑡𝑡 = 10.1 m3 
Total energy consumed by UFM, i.e., Eq. (9) Table 4, Table 5 𝐸𝐸𝑡𝑡 = 4.3 kW 
The efficiency of UFM, i.e., Eq. (14) Table 5 𝜂𝜂wc = 98.6% 

 
The average energy consumption rate was 0.425 kW/m3 - presented in Table 5 - over the 6.5 

pump operating hours. Eq. (3) - (4) are estimated to determine total energy consumption during 6.5 
hours of plant operation. Eq. (8) is estimated to determine the required water flow 𝑄𝑄𝑡𝑡(wc). 

Table 5 and Figure 5 are presenting the outcomes of research when conducted with process 
control devices. The research findings demonstrate that with the use of process control devices, the 
pump operating period was reduced by 0.5 hours in a set of experiments (14 experimental runs), 
which contributes to a decrease in energy consumption rate and water wastage. 
 
4.3 Impact Evaluation of Process Control Devices on UFM’s Energy Consumption and Overall 
Performance 
 

Evaluating the impact of process control devices on UFM’s energy consumption is estimated by 
Eq. (12). The findings are presented in Table 6. Importing the value of 𝐸𝐸𝑡𝑡(wc) and 𝐸𝐸𝑡𝑡(𝑜𝑜c) from Eq. (13) 
and then to Eq. (12), the impact 𝛥𝛥𝛥𝛥, is calculated to be 𝛥𝛥𝛥𝛥 = (7.7 − 4.3) kW = 3.40 kW. 
 

Table 6 
Impact analysis in energy consumption of the UFM 
Equation Data source Result 
Impact of the process control device on energy consumption Δ𝐸𝐸, i.e., Eq. (12) Table 3 Δ𝐸𝐸 = 4.3 kW 
Impact of the process control device on overall efficiency Δ𝜂𝜂, i.e., Eq. (14) Table 3, Table 5 Δ𝜂𝜂 = 27.2% 

 
Impact ΔE (3.40 kW) demonstrates that the process control devices have contributed to reducing 

3.40 kW of energy (44.15%) in producing 10.14 m3 water. These findings indicate that when UFM’s 
pump operates with process control devices, the system can reduce 44.15% of energy consumption, 
and 40% of water wastage by increasing 27.2% of overall efficiencies compared to the UFM plant 
operation without process control devices. This research concludes that process control devices have 
contributed to increasing UFM’s performance in clean water production by reducing energy 
consumption and water wastage. 
 
4.4 Scenario Analysis of Research Findings 
 

Several research findings reveal that the UFM’s performance in clean water production and 
energy consumption depends on feed water pressure and the effectiveness of the process control 
devices (ref). The overall performance of the UFM is also dependent on the process control devices. 
Research findings listed in this paper demonstrate that the energy consumption rate in clean water 
production is 0.56 kW/m3 and 0.425 kW/m3 respectively when the plant operates with and without 
process control devices. This scenario is presented in Figure 6. 
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Fig. 6. Energy consumption rate in conjunction with pump’s RPM 

 
Here, WCPCD represents a plant operated with PCD. On the other hand, OCPCD represents for a 

plant operated without PCD. Figure 6 demonstrates that the process control devices have allowed 
the UFM plant to operate within scopes that reduce the energy consumption rate (24.28 %) and 
water wastage in producing clean water. This study has also revealed that process control devices 
are positively associated with the UFM’s efficiency and productivity in clean water production. 
 
5. Conclusion 
 

This paper analysis experimental data that addressed a problem of higher energy consumption 
rate and poor performance of ultrafilter membrane (UFM) in producing the clean water. Research 
findings listed in this paper demonstrate that the energy consumption rate in clean water production 
is 0.56 kW (m3)-1 and 0.425 kW (m3)-1 respectively when the plant operates with and without process 
control devices. 

The outcomes of this experimental research are: 
 

i. A method has been developed to reduce energy consumption rates, which could decrease 
carbon emission rates in achieving environmental sustainability (SDG13); 

ii. Development of a method of reducing clean water wastage, which could contribute to 
achieving a sustainable clean water supply for all (SDG6); 

iii. A technique has been established to increase economic performance (SDG8) in water 
treatment by increasing productivity efficiency in clean water production (SDG 12) 
 

The research outcomes have several implications in the water industry, engineering, and policy 
implementation domains relating to the use of process control devices in water treatment, especially 
in UFM systems. Regarding the research outcomes listed in this paper, it could conclude that further 
research shall continue on the use of process control devices for the water treatment plants to 
increase overall performance and contribute to achieving the Sustainable Development Goal (SDG). 
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