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Thermoelectric Bonded Materials (TEBM) weakened by an Inclined Crack Problems 
(ICP) subjected to remote stress was presented in this study. The problems are 
addressed by employing the Modified Complex Variable Function (MCVF) method, 
which incorporates the Continuity Conditions (CC) for the Resultant Electric Force 
(REF) and Displacement Electric Function (DEF) to formulate the Hypersingular Integral 
Equations (HSIEs) associated with these problems. By applying the curved length 
coordinate method, the unknown functions of Crack Opening Displacement (COD), 
Electric Current Density (ECD), and Energy Flux Load (EFL) are mapped onto the square 
root singularity function. The resulting equations are then numerically solved using 
appropriate quadrature formulas, with the traction along the crack utilized as the 
right-hand term. The obtained COD, ECD and EFL functions is then used to compute 
the dimensionless Stress Intensity Factors (SIFs) in order to determine the stability 
behavior of TEBM weakened by an ICP. The numerical results provided demonstrate 
the dimensionless SIFs at the crack tips. These results exhibit excellent agreement with 
previous studies conducted on the subject. Additionally, it is observed that the 
dimensionless SIFs at the crack tips are influenced by factors such as the ratio of Elastic 
Constants (ECR), the geometry of the cracks, and the coefficients associated with the 
Electric Current Density (ECD).  
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1. Introduction 
 

Materials stability and safety are critical issues in engineering structures, and the presence of 
cracks may jeopardize the material’s strength. If the materials exposed to a temperature difference, 
then this material generates an electrical voltage. Cracks in thermoelectric (TE) materials can have a 
significant impact on their performance and durability, so it is critical to carefully control the 

 
* Corresponding author. 
E-mail address: khairum@utem.edu.my 
 
https://doi.org/10.37934/aram.113.1.5262 



Journal of Advanced Research in Applied Mechanics 
Volume 113, Issue 1 (2024) 52-62 

53 
 

manufacturing process and minimize crack formation in order to optimize their TE properties. 
Previous works utilized a variety of methods to investigate crack problems in TE materials subjected 
to remote-stress [1-5].  

Investigating the transient response of an inner finite-size crack located arbitrarily within TE 
materials, the study employed singularity integral equations based on the Fourier and Laplace 
transforms [1]. The analysis revealed that when the crack is positioned centrally in the vertical-
direction, the field concentrations at the crack tip become more prominent. Additionally, the study 
found that the electrical permeability of the crack has a negligible impact on the efficiency of energy 
conversion. The Complex Variable Function (CVF) method and conformal mapping theory were 
applied to investigate a two-dimensional problem involving a circular hole with two unequal cracks 
in infinite TE materials under uniform Electric Current Density (ECD) and Energy Flux Load (EFL) [2]. 
The study revealed that the behavior of the TE field and Stress Intensity Factors (SIFs) is dependent 
on the radius of the circular-hole and the lengths of the cracks. The CVF method was use to 
investigate the dimensionless SIFs for the two-dimensional problem of a crack in TE materials [3]. At 
the crack tip, the ECD, EFL, and stress display the conventional square-root singularity behavior.  

Moreover, the SIFs exhibit a linear correlation with the heat flux but a non-linear relationship 
with the electric current. By employing the CVF method and conformal mapping technique, the 
generalized analysis of a two-dimensional scenario involving an elliptic hole or crack in a TE material 
subjected to uniform ECD and EFL at infinity was conducted [6]. The findings indicated that the 
concentration factors of ECD and stress at the rim of the elliptic hole escalate as the major-to-minor 
axis ratio of the hole increases. The utilization of the CVF and Cauchy integrals enabled the resolution 
of the problem involving a circular in homogeneity embedded in TE materials exposed to uniform 
ECD and EFL [7]. The investigation revealed that the induced stress, resulting from both electrical and 
thermal effects, displayed a linear dependence on the energy flux applied at infinity. However, the 
relationship between the stress and the remote ECD was found to be nonlinear. An analytical model 
to assess fatigue cracking and its impact on the power of a hybrid photovoltaic TE device was 
proposed [8]. It was found that combining a TE module and a photovoltaic cell with a low 
temperature coefficient can increase total electric power.  

The dimensionless SIFs are affected by crack length, crack spacing, and the bi-elastic constant 
ratio for dual collinear interface cracks on the electric potential and temperature of Thermoelectric 
Bonded Materials (TEBM) subjected to electric and thermal loads [9]. They solved SIFs using Laplace 
equations and the driving forces of ECD and EFL. The effect of fluid temperature and crack size toward 
stress intensity factor on geothermal pipe installations discussed the two key parameters which is 
fluid temperature and crack size. Specifically, the variations tested are fluid temperatures of 80°C, 
115°C, and 150°C and crack sizes of 1 mm, 3 mm, and 5 mm. The material used for the geothermal 
pipe is ASTM A106-B steel, which is a standard material for such applications [10].  

The investigation on numerical simulation of electromechanical impedance-based crack 
detection of heated metallic structures that investigate the influence of temperature on the 
detection of cracks using EMI. The results of the numerical simulations were compared to 
experimental impedance responses reported in the literature. These experiments involved the use 
of EMI to monitor various structures, both undamaged and damaged, constructed from steel and 
aluminium. The comparison showed that the Finite Element Models (FEM) developed in this study 
produced similar results with good agreement when compared to the experimental data. This 
suggests that numerical simulations using FEM could be a viable alternative to conducting physical 
experiments for studying the EMI approach in structural health monitoring [11]. Complex potential 
functions and Cauchy integrals were employed to address the challenge of analysing a circular 
inhomogeneity within thermoelectric materials under the influence of a uniform electric current 
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density and energy flux. The study uncovered that the stress induced by electrical and thermal factors 
exhibited a linear correlation with the energy flux imposed at an infinite distance, while displaying a 
nonlinear connection with the distant electric current density [12].  

The finite element method, coupled with a collocation technique for enforcing kinematic 
constraints between strains and displacements, was employed to investigate issues related to nano-
sized cracks in thermoelectric materials. The study aimed to assess the impact of size effects on the 
changes in crack opening displacements in relation to stress intensity factors (SIFs) at the tips of the 
cracks [13]. They effectively tackled a two-dimensional issue in their research, concentrating on the 
behavior of limitless thermoelectric materials. More specifically, they examined a scenario involving 
a circular aperture containing two unequal cracks. Their investigation encompassed the examination 
of how the system responded to both uniform electric current and thermal flux. Their findings 
indicated that the thermoelectric and stress intensity factors (SIFs) were influenced by factors such 
as the radius of the circular hole and the lengths of the cracks [14]. 

To the best of the authors’ knowledge, there is a scarcity of information regarding the formulation 
of inclined crack problems in TEBM subjected to remote stress using Hypersingular Integral Equations 
(HSIEs). In this study, the problem is specifically addressed by formulating it into HSIEs through the 
utilization of the Modified Complex Variable Function (MCVF) method. The Continuity Conditions 
(CC) of the Resultant Electric Force (REF) and Displacement Electric Function (DEF) are taken into 
account, ensuring the smooth transition of temperature and resultant heat flux across the TEBM 
interface. 
 
2. Methodology  
2.1 Mathematical Formulation 
 
The stresses, REF and DEF functions induced by the TE function can be obtained as follows [15]: 
 

( ) ( ) ( ) ( )2x y
Ez z f z f zαλσ σ φ ψ
κ

 ′ ′+ = + +                                                                              (1) 

 

( ) ( ) ( )2 2y x xy
Ei z z f z F zαλσ σ σ φ
κ

 ′′ ′− + = +                                                                                 (2) 

 

( ) ( ) ( ) ( ) ( )EY iX z z z z F z f zαλφ φ ψ
κ

′− + = + + +                                                                      (3) 

 

( ) ( ) ( ) ( ) ( ) ( )1
2 4

Eu iv K z z z z z dz F z f z
G G

αλφ φ ψ α
κ

 ′+ = − − + Ω −  ∫                                          (4) 

 
where ( )zφ and  ( )zψ are CVF, G is shear modulus, ( ) ( )3 / 1K µ µ= − + , µ is Poisson’s ratio, E is 

Young’s modulus,α is the coefficient of thermal expansion, ( ) ( ) ( ) ( ) ( )2/ 2 /z f z g zλ κ κΩ = − + , 

and ( ) ( )F z f z dz= ∫ . 

       The derivative in a specified direction of REF (3) with respect to z  yields the normal (N) and 
tangential (T) components of traction along the segment z , z dz+ , where 2/ idz dz e θ−= −  and θ  is 
tangential angle to the crack as follows 
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{ } ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )
4

d d z E d zY iX z z z z z f z f z F z f z N iT
dz dz G dz

αλφ φ φ ψ
κ
 

′ ′ ′′ ′ ′− + = + + + + + = + 
 

                 (5) 

 
Note that the traction N iT+ depends on the position of point z and the direction of the 

segment /d z dz . 
       The CVF, and unknown analytic function for electric and thermal fields for the case of an ICP in 
an infinite material can be expressed by [16-18]: 
 

( ) ( )1
2 L

g t dt
z

t z
φ

π
=

−∫                                                                                    f 

 

( ) ( ) ( )
( )2

1 1
2 2L L

g t dt tdtz g t
t z t z t z

ψ
π π

 
= + − 

 − − − 
∫ ∫                               f 

 

( ) 2 2J
2
if z z a
λ

= −                                                                                                                   (6) 

 

( ) ( )( )2 2 2 2 2J ln
4
iF z z z a a z z a
λ

= − − + −                                     c 

 

( ) 2 2U
2

ig z z a= −                                                                                    v 

 

( ) ( )
2

2 2 2 2J U
4

iz z a z a
λκ κ

Ω = − + −                                

                       l 
where 2a is length of the crack and ( )g t is the COD function defined as 
 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )2 ,
1

Gg t u t iv t u t iv t t L
i K

+ − = + − + ∈
 +

                                                        (7) 

 

( ) ( )( )u t iv t
+

+ and ( ) ( )( )u t iv t
−

+ denotes the displacement at a point t of the upper and lower crack 
faces, respectively. 
       Consider an ICP lies in both upper parts of TEBM subjected to remote stress as shown in Figure 
1. The MCVF for an ICP lies in the upper parts of TEBM can be expressed by [15]: 
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Fig. 1. An ICP lies in both upper parts of TEBM 
subjected to remote stress 

 
( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1,p c p cz z z z z zφ φ φ ψ ψ ψ= + = +                                                                    (8) 

 
where ( )1p zφ and ( )1p zψ are the principal part of the CVF and the elementary solution for isotropic 

medium (infinite materials), whereas ( )1c zφ  and ( )1c zψ are the complementary part of the CVF. The 

CVF for a crack lies in the lower part of the TEBM are represented by ( )2 zφ and ( )2 zψ . The CC of REF 
(3) by applying MCVF (8) yields 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

1 1 1
1 1 1 1 1 1 1 1 1 1

1 1

2 2 2
2 2 2 2 2

2 2

4

4

p c p p c c p p c c
Et t t t t t t t F t f t F t f t

G

Et t t t F t f t
G

α λφ φ φ ψ φ ψ
κ

α λφ φ ψ
κ

+
 

′ ′+ + + + + + + 
 

 
′= + + 

 

    (9) 

 
whereas the CC of DEF (4) by applying MCVF (8) yields: 
 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )

1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

2 2 2
1 2 2 2 2 2 2 2 2 2

2

2
2

2
2

p c p p c c p c p p c c
EG K t K t t t t t t t G t dt t dt F t f t F t f t

EG K t t t t G t dt F t f t

α λφ φ φ ψ φ ψ α
κ

α λφ φ ψ α
κ

+

−

 
′ ′+ − + − + + Ω + Ω − + 

 

 
′= − − + Ω − 

 

∫ ∫

∫

    

(10) 
 

Note that jt L∈ ( ), 1,2j = along the crack interface, + and – sign represent the upper and lower 

parts of TEBM, respectively. By employing the method of analytical continuation, it becomes feasible 
to obtain the following expressions through the application of Eq. (9) and (10) 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )
2

1 1 1 1 2 1 1 3 1 4 1c p p p p p pz z z z F z f z f z dz g z dzφ φ ψ′= Γ + +Γ +Γ −Γ∫ ∫                               (11) 
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( ) ( ) ( ) ( ) ( ) ( ) ( )2

1 5 1 1 6 1 7 1 8 1 9 1c p c p p p pz z z z F z z dz f z dz g z dzψ φ φ′= Γ − +Γ +Γ Ω +Γ −Γ∫ ∫ ∫                   (12) 

 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2
2 10 1 11 1 1 12 1 1 7 1 8 1

9 1

p p p p p p p

p

z z F z f z F z f z z dz f z dz

g z dz

φ φ= Γ +Γ +Γ +Γ Ω +Γ

−Γ

∫ ∫
∫

                   (13) 

 
( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )2

2 13 1 1 2 14 1 1 15 1 16 1p p p p p pz z z z z z F z f z f z dz g z dzψ φ ψ φ′ ′= Γ + − +Γ +Γ +Γ∫ ∫          (14) 

 

where  ( ) ( )1 1p pz zφ φ= , and jΓ are bi-Elastic Constant Ratio (ECR) defined as 

 

( )
( ) ( )

( )
( )
( )

2 2
2 1 1 12 1 1 2 1 2 1 1 1 2

1 2 3
1 2 1 1 1 2 1 1 2 1 1 2 1 1 2

2 2 2 1 2 1 21 2 1 1 2 2 1 1 2 1
4 5 6

1 1 2 1 1 2 1 2 2 2 2 1 2 2 1 2

2 1 2, , ,
4

24 2, ,
4

G EG G G G
G G K G G K G G

E G G G KG G G K G K
G G G K G G G K G

α λ λ λ α λ λ λ
κ λ λ κ κ λ λ

α λα κ κ λ
κ κ κ κ κ λ λ

−    − − −
Γ = Γ = Γ =   + + + + +   

 + − −
Γ = Γ = Γ =     + + + + +   

( ) ( ) ( )( )
( ) ( )

( )
( )

( )
( )

2

2

1 2 1 1 2 2 2 1 1 2 2 1
7 8 9

1 2 2 2 1 2 2 1 2 2 1 2 1 2 2

2
1 2 2 2 2 1 2 1 1 1 11

10 11 12
1 2 2 2 1 2 2 1 2 1 1 1 2 2

2 1
13 14

1 2 1

,

2 2 2 8, , ,

1 2 1 1 22, , ,
4 4

1
,

G G G G G G
G K G G K G G K G

K G E G G E G
G K G G K G G G K G

G K
G G K

α α λ λ α κ
κ λ λ κ κ κ

α λ α λλ
κ λ λ κ

 
 
 

 
Γ = Γ = Γ = + + + + + 

+ − − 
Γ = Γ = Γ = + + + + 

+
Γ = Γ

+
( )

( ) ( )

( )

2 2
1 1 2 1 1 1 1 2 1 2 1 1 1 2

15
1 1 1 2 1 1 2 1 1 2 1 1 2

1 2 1 1 2
16

1 1 2 1 1 2

2 2,
4

4

K G G E G G
G G G K G G K

G G
G G K

α λ λ λ α λ λ λ
κ λ λ κ λ λ

α κ κ
κ κ κ

+    − −
= Γ =   + + + +   

 −
Γ =  + + 

 

 
The HSIEs for an ICP lies in the upper part of TEBM can be obtained by substituting Eq. (11) and 

(12) into Eq. (5), and apply Eq. (6), then letting point z approaches 0t on the crack and changing 

/d z dz into 0 0/dt dt yields 
 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( )0 0 1 0 2 0 3 021
0

1 1 1, , ,
2 2L L L

g t dt
N t iT t M t t g t dt M t t g t dt M t t

t tπ π π
+ = + + +   −∫ ∫ ∫  

 
where  
 

( )
( ) ( )

( )
( )

00
2 0 12 2 3

00 0 0

21 1,
t tdt dt dtM t t

dt dt dtt t t t t t

 − = + + +Γ  − − − 

( ) ( ) ( )
( )
( )

( )
( ) ( )

00 0 0
2 2 2 3 3 2

00 0 00 0 0

2 21 1 1 1t t t tdt dt
dt dtt t t t t t t t t t t t

    − −    + + + + −       − − − − − −     
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( )
( ) ( )

( )
( )

00
2 0 2 2 3

00 0 0

21 1,
t tdt dt dtM t t

dt dt dtt t t t t t

 − = + + +  − − − 

     

( ) ( ) ( )
( )
( )

( )
( ) ( )

00 0 0
1 2 2 2 3 3 2

00 0 00 0 0

2 21 1 1 1t t t tdt dt
dt dtt t t t t t t t t t t t

    − −    Γ + + + + −       − − − − − −     

 

 

( ) ( )( ) ( )
2 2

02 2 2 2 2 2 20
3 0 2 0 0 0 0 0 2 6 22 22 2

1 0 10

J J, ln
4 42

t dtM t t t t t t t
dtt

α α α α
λ λα

   
 = Γ − + − − + − + Γ + Γ −Γ  −   

 

( )
22 2 202 2 2 2

0 0 0 0 0 02 022 2 10

Jln
42

tt a t t a t t a t t
t a

α
λ

    − + − − + − +Γ −     − 
 

( )
2 2 22 2 2 20 0 0 02 2 2 2 2 2

0 0 0 0 0 0 0 03 0 03 2
2 0 1 02
0

J3 ln 2 3 2
4

2

t t a dt dtt t t a t t a t t t t t
dt dt

t a
α α α

λ

 
   − −   + − − + − +Γ − − + − −          −  

  

 

( )
2 2 22 2 20 0 02 2 2 2 20 7 8 7 9

0 0 04 0 22 2 0 1 1 1 10

2U J U
2 4 2

t t ti dtt t t i t
dtt

αα α α α
κ λ λ κα

      − − Γ Γ Γ Γ +Γ − − − + + − − + − −          − 
 

( ) ( )( )2 20 0 02 2 2 2 2 2 2 2
017 18 0 0 0 0 02 2 20 01 0

J ln
4 2

dt t dtt t t t t t
dt dtt

α α α α α
λ α

 
 + Γ +Γ − − + − − + −
 − 

 

 
and  
 

2

1 1 1 1 1 1 1 2
17 18

1 1 1 1 1 2

,
4 4
E E

G G
α λ α λ κ κ
κ κ κ κ

 −
Γ = Γ =  + 

    

 
3. Results  
3.1 Numerical results 
 

The dimensional SIFs at crack tips A and B are defined as follows [19,20] 
 

( ) ( )1 1 1
1 2 12 2

1 1

2 lim | | ,A

A

i
A A AA s s

s H s
K K iK s s e F

a s
θπ α π−

→

 −
 = − = − =
 − 

                                         (16) 

 

( ) ( )2 2 2
1 2 22 2

2 2

2 lim | | ,A

B

i
B B BB s s

s H s
K K iK s s e F

a s
θπ α π−

→

 −
 = − = − =
 − 

                                                  (17) 

 
where  
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( ) ( )1 1 1 2 2 2 1 2,A Bi i
A A A B B BF H a e F iF F H a e F iFθ θ− −= − = + = − = +  

 
Table 1 displays the dimensionless SIFs versus h/R at the crack tips A and B for an ICP in the upper 

part of TEBM for 90oa = , and J = U = 0 as illustrated in Figure 2. Our findings align completely with 
those of Isida and Noguchi [18]. It is observed that the dimensionless SIFs at 2 AF  and 2BF  are equals 

to zero. This phenomenon is due to the equivalence of the stress acting at the tips of the cracks. 1AF
and 1BF  are the Mode I dimensionless SIFs at crack tips A and B, respectively, and characterizes the 

amplitude of normal stress singularity. Whereas 2 AF  and 2BF  are the Mode II dimensionless SIFs at 
crack tips A and B, respectively, and describes the amplitude of the shear stress singularity. 
 

Table 1 
Dimensionless SIFs versus h/R at the crack tips A and B for an ICP in the upper part of TEBM 

2 1/G G  h/R 
 SIFs 1.2 1.4 1.6 1.8 2.0 
0.25 1

a
AF  1.2213 1.1274 1.0857 1.0623 1.0476 

 1
b

AF  1.2220 1.1280 1.0860 1.0630 1.0480 
 1

a
BF  1.0783 1.0563 1.0432 1.0344 1.0281 

 1
b

BF  1.0790 1.0570 1.0430 1.0350 1.0280 
0.50 1

a
AF  1.1111 1.0653 1.0444 1.0324 1.0249 

 1
b

AF  1.1120 1.0660 1.0450 1.0330 1.0250 
 1

a
BF  1.0394 1.0289 1.0223 1.0179 1.0147 

 1
b

BF  1.0400 1.0290 1.0220 1.0180 1.0150 
2.00 1

a
AF  0.9032 0.9410 0.9592 0.9699 0.9767 

 1
b

AF  0.9030 0.9410 0.9596 0.9700 0.9770 
 

1
a

BF  0.9656 0.9740 0.9795 0.9843 0.9863 
 

1
b

BF  0.9660 0.9740 0.9790 0.9830 0.9860 
4.00 1

a
AF  0.8291 0.8944 0.9266 0.9455 0.9576 

 1
b

AF  0.8290 0.8940 0.9270 0.9450 0.9580 
 1

a
BF  0.9393 0.9535 0.9631 0.9701 0.9752 

 1
b

BF  0.9390 0.9540 0.9630 0.9700 0.9750 
a Current study; b [18] 

 
Figure 2 presents the dimensionless SIFs versus h/R at the crack tips A and B for an ICP in the 

upper part of TEBM for 90oa =  , U = 0 , and J = 20 . It is observed that the dimensionless SIFs for 
Mode I ( 1AF ) at crack tip A decreases as 2 1/G G increases, and as h/R increases 1AF decreases for 

2 1/G G  < 1.0 and increases for 2 1/G G  > 1.0 as presented in Figure 2(a). whereas the dimensionless 

SIFs for Mode I ( 1BF ) at crack tip B increases as h/R increases for 2 1/G G > 1.0 and decreases for 

2 1/G G < 1.0 as presented in Figure 2(b). This observation indicate that the strength of the materials 

become weaker as h/R increases for 2 1/G G > 1.0.  
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(a) (b) 

Fig. 2. Dimensionless SIFs 1AF (a) and 1BF (b) versus h/R at all crack tips for 90oa = , U = 0 , and J = 20  
 

Figure 3 presents the dimensionless SIFs for Mode I (Blue) and Mode II (Red) versus α at the crack 
tips A and B for an ICP in the upper part of TEBM for h = R/0.9, U = 0 , and J = 20 . It is observed that 
the dimensionless SIFs for Mode I ( 1AF  and 1BF , Blue) at all crack tips increases as α increases and 

decreases as 2 1/G G increases as presented in Figure 3 (a). Whereas the dimensionless SIFs for Mode 
II ( 2 AF  and 2BF , Red) at all crack tips decreases as 2 1/G G increases and decreases as α increases for 

50oa > . The observed trend indicates that an increase in α and a decrease in 2 1/G G correspond to 
a weakening of the materials’ strength. 
 

  
(a) (b) 

Fig. 3. Dimensionless SIFs 1AF (a) and 1BF (b) versus h/R at all crack tips for h = R/0.9, U = 0 , and J = 20  
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4. Conclusions 
 

In this particular investigation, we have focused on tackling an ICP occurring in the upper part of 
TEBM under the presence of remote stress. Although the problem itself has historical origins, our 
study introduces several distinctive elements. Primarily, the application of the MCVF in this work 
represents a novel approach for addressing crack problems specifically in TE materials. Through this 
innovative methodology, HSIEs are derived, with the COD function, ECD, and EFL between the crack 
tips being considered as the key unknown variables. The general solution of HSIEs for an ICP lies in 
the upper part of TEBM have been obtained. The analysis of numerical results leads to the conclusion 
that the dimensionless SIFs for an ICP situated in the upper part of TEBM are dependent on several 
factors. These factors encompass the ECR, ECD, crack geometries, as well as the distance between 
the crack and the boundary. This condition will be effected on the strength of the materials. On the 
basis of this study, we believe that several extensions are possible, such as cohesive models, cracks 
at the interface bonded materials, cracks issued by inclusions, three-dimensional cracks problems in 
TEBM, and so on. Based on the current study, a detailed formulation with numerical analysis will be 
published elsewhere. More research is being conducted to broaden the application field of the 
developed concept. 
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