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In this study, a curvilinear crack phenomenon laying in the upper part of thermoelectric 
bonded materials subject to mechanical loadings is considered. A curvilinear crack 
problem in thermoelectric bonded materials subjected to shear stress is formulated. 
The modified complex potential (MCP) function method is used to formulate this crack 
phenomenon into the hypersingular integral equations (HSIEs) with the help of the 
continuity conditions of the resultant electric force and displacement electric function. 
The normal and tangential traction along the crack segment serves as the right-hand 
side of the integral equation. The HSIEs are solved numerically for the unknown crack 
opening displacement (COD) function, electric current density, and energy flux load 
using the appropriate quadrature formulas. The numerical solution presented the 
behavior of the dimensionless stress intensity factors (SIFs) at the crack tips which 
depend on the elastic constant’s ratio, the position of the crack, the electric 
conductivity, and the thermal expansion coefficients.  
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1. Introduction 
 

Cracks in engineering structures are defects in the material used to build and construct 
engineering structures such as buildings, bridges, dams, and pipelines. These cracks are primarily 
caused by factors such as material fatigue, corrosion, excessive strain, or stresses, which can result 
in the structure weakening and eventually failing. A lot of researchers have dealt with and analyzed 
the crack problems in elastic materials [1,2], thermal materials [3-6], magnetoelastic materials [7,8], 
and thermoelectric materials [9-12]. 
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There are several methods that were used by previous works to investigate crack problems in 
thermoelectric materials subject to remote stress. Zhong and Meguid [9] used the complex variable 
approach to analyze a circular arc crack in piezoelectric materials with anti-plane shear and in plane 
electric fields. It has been found that the energy release rate is significantly influenced by the crack 
configuration. Jiang et al., [10] interpreted the complex function method and the conformal mapping 
theory for two unequal fractures in infinite thermoelectric materials subjected to a uniform electric 
current and thermal flux. By using a commercial finite element code, a good agreement with the 
regularized simulation result was obtained. Wang et al., [11] analyzed a finite element computational 
method for the transient and nonlinear coupling thermal stresses in thermoelectric materials. To 
create a first-order system of differential-equations, the method uses finite element space 
discretization. The time-dependent response is resolved by using a finite difference approach to 
address the problem. Yang et al., [12] are concerned with a piezoelectric material strip's dynamic 
performance with a parallel crack under thermal shock and transient stress.  

By utilizing the dislocation density functions, Laplace and Fourier transform, and the governing 
thermal and electromechanical equations, a system of singular integral equations of the Cauchy type 
is precisely created. The findings show that while the wave behavior is weaker and stronger, the 
overshooting phenomena would be more obvious with a longer relaxation time and greater fractional 
order. Zhang and Wang [13] influenced the fracture mechanics problem in piezoelectric materials 
subject to thermal, mechanical, and electric loads at infinity is theoretically explored. Maxwell 
stresses acting against crack sides. The thermoelastic Green's function approach and Stroh's 
formalism served as the foundation for this method. Liu and Ding [14] examined a thermoelectric 
thin film attached to an elastic substrate's thermoelectric behavior. The singular integral equation 
method is used to construct a computation model for thermoelectric thin films. The distribution of 
thermal stress in the film and at the contact between the film and substrate is discovered.  

Pang et al., [15] investigated the complex variable function method and the conformal mapping 
methodology, and the two-dimensional problem of thermoelectric materials under the action of 
uniform electric current and uniform total energy flux is investigated. The studies focused on crack 
length and radius as intensity parameters for these nondimensional fields. Liu et al., [16] analyzed in 
thermoelectric materials, a crack runs vertically to the applied electric flux and energy flux loads. It 
creates a strip saturation model with an electric field reaching a saturation limit in front of the crack 
while putting forth the notion of electrical nonlinearity at the crack tip. When evaluating the strength 
of thermoelectric materials and associated devices, the thermal stress intensity factor's results are 
very generic and simple to apply. Zhang and Wang [17] discussed the complex variable method of 
Muskhelishvili and the conformal mapping methodology, two-dimensional problems of an elliptic 
hole or a stiff inclusion inserted in a thermoelectric material to uniform electric current density and 
energy flux at infinity are explored. The effect of the major-to-minor axis ratio of the elliptic geometry 
and the heat conductivity of inhomogeneity on thermoelectric and stress fields is demonstrated using 
numerical data. 

However, to the best of the author's knowledge, less work in the study of crack problems in 
thermoelectric bonded materials using hypersingular integral equations (HSIEs) can be found. As a 
result, the goal of this study is to use HSIEs to develop a formulation for a curvilinear crack 
phenomenon that lies in the upper part of thermoelectric bonded materials subject to mechanical 
loadings and obtained their numerical solution for dimensionless stress intensity factors (SIFs).  
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2. Methodology  
2.1 Mathematical Formulation 

 
According to Bergman and Levy [18], the governing equations for a thermoelectric material in the 

absence of electric charges and heat sources can be presented in the form: 
 

0ej∇• =                      (1) 
 

0eq j V∇• + ∇ =                                                                                              (2) 
 

ej V Tγ γε= − ∇ − ∇                                                                      (3) 
 

2( )q T V k T Tγε γε= − ∇ − + ∇                                                   (4) 
 

where V is electric potential, T is absolute temperature, γ is electric conductivity, k is thermal 
conductivity, ε  is Seebeck coefficient, ej  is electric current density vector and q  is heat flux vector. 
Since energy is transported by both electrons and heat, then the energy flux vector uj can be derived 
from the electric current density and heat flux as: 
 

u ej q j V= +                                                                                    (5) 
 

According to Zhang and Wang [17], an analytic function F is defined as F V Tε= + , then we have 
 

ej Fγ= − ∇                                                                                     (6) 
 

uj F F k Tγ= − ∇ − ∇                                                                   (7) 
 

Combining Eq. (1), Eq. (2), Eq. (6) and Eq. (7), the constitutive equations become: 
 

2 0F∇ =                                                                                                (8) 
 

2 2( ) 0k T Fγ∇ + ∇ =                                                                                              (9) 
 

For the two-dimensional thermoelectric problem considered by this study, the solutions of 
analytic functions  F and T  can be expressed as: 
 

( )ReF f z=                                                                                                (10) 

 

( ) ( ) ( )Re
4

T g z f z f z
k
γ

= −                                                                (11) 

 
where z x iy= + ,  ( )f z  and ( )g z  are unknown analytic functions and “Re” stands for real part of a 
complex number. 
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      The corresponding thermal stresses ( ), ,x y xyσ σ σ  , resultant electric force ( ),X Y   and displacement 
electric ( ),u v  functions induced by the temperature field can be obtained as: 
 

( ) ( ) ( ) ( ) ( )
*22
1xx yy

Gz z f z f z
k

α γσ σ φ ϕ
κ

 ′ ′+ = + +  +
                                                               (12) 

 

( ) ( ) ( ) ( ) ( )
*22 2
1xx yy xy

Gi z z z F z f z
k

α γσ σ σ φ ϕ
κ

 ′′ ′ ′− + = + +  +
                                                         (13) 

 

( ) ( ) ( ) ( ) ( ) ( )
*

1
GY iX z z z z F z f z

k
α γφ φ ϕ
κ

′− + = + + +
+

                                                     (14) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
*

*2 ( ) 2
1x y

GG u iv z z z z F z f z Ga g z dz
k

α γκφ φ ϕ
κ

′+ = − − − +
+ ∫                     (15) 

 
where  ( ) ( ) ( ) ( )' , andF z f z z zφ ϕ=  are complex stress potential functions, G is shear modulus, and 
κ  and  *α  are defined as follows: 
 

( )
*

3 plane stress
, ,1 1 plane strain3 4

v
v vv

α
κ α

α

− = =+  + −

 

 
v and α  is Poisson’s ratio and the linear thermal expansion coefficients, respectively. The 

derivative in a specified direction of resultant electric force (14) with respect to z yields the normal 
(N) and tangential (T) components as follows: 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
*

1
Gd d d z d zY iX z z z z z F z f z F z f z N iT

dz dz dz k dz
α γφ φ φ ϕ
κ

 
′ ′ ′′ ′ ′ ′− + = + + + + + = +  +  

                         (16) 

 
According to Chen et al., [19] and Song et al., [20], the complex stress potential functions, and 

unknown analytic functions for electric and thermal field for the case of infinite material can be 
expressed by: 
 

( ) ( )1
2 L

g t dt
z

t z
φ

π
=

−∫                                                                                                     (17) 

 

( ) ( ) ( ) ( )
( )2

1 1 1
2 2 2L L L

g t dt g t dt g t tdt
z

t z t z t z
ϕ

π π π
= + −

− − −∫ ∫ ∫                                            (18) 

 

( ) 2 2

2
eijf z z a
λ

∞

= −                                                                                                              (19) 
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( ) ( )( )2 2 2 2 2ln
4

eijF z z z a a z z a
λ

∞

= − − + −                                                                    (20) 

 

( ) 2 2

2
uijg z z a
∞

= −                                                                                                            (21) 

 
where the crack opening displacement (COD) function ( )g t  is defined as: 
 

( ) ( ) ( ) ( )( ) ( ) ( )( )2
1

Gg t u t iv t u t iv t
i κ

+ − = + − +
 +

                                                      (22) 

 
( ) ( )( )u t iv t

+
+ and ( ) ( )( )u t iv t

−
+ denotes the displacement at a point ‘ t ’ of upper and lower faces 

respectively. 
 
2.2 Modified Complex Potential for Thermoelectric Bonded Materials 
 
      Consider a curvilinear crack with radius R in the upperpart of thermoelectric materials subjected 
to mechanical loadings as defined in Figure 1. 
 

 
Fig. 1. A curvilinear crack with radius R in the upper 
part of thermoelectric materials subjected to 
mechanical loadings 

 
The MCP functions for this crack phenomenon can be expressed by: 

 
( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1,P C P Cz z z z z zφ φ φ ϕ ϕ ϕ= + = +                                                             (23) 

 
where ( )1p zφ  and ( )1p zϕ  are the elementary solution for isotropic medium (infinite plane) and the 
principal part of the complex stress potential function, ( )1c zφ  and ( )1c zϕ  are the complement part of 
the complex stress potential function. Whereas ( )2 zφ and ( )2 zϕ represent the complex stress 
potential functions for the crack lie in the lower part of thermoelectric bonded materials. By applying 
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continuity condition of resultant electric force (14) and displacement electric function (15), then 
substitute MCP functions (23), yields the following complex stress potential function as follows: 
 

( ) ( ) ( )( ) ( ) ( ) ( )1 1 1 1 2 1 1 3 1c p p p p pz z z z F z f z g z dzφ φ ϕ′= Γ + +Γ −Γ ∫                                           (24) 

 
( ) ( ) ( ) ( ) ( ) ( )1 4 1 1 5 1 1 6 1c p c p p pz z z z F z f z g z dzϕ φ φ′= Γ − +Γ +Γ                                                (25) 

 
( ) ( ) ( ) ( ) ( )2 7 1 8 1 1 6 1p p p pz z F z f z g z dzφ φ= Γ +Γ +Γ ∫                                                                   (26) 

 
( ) ( ) ( )( ) ( ) ( ) ( ) ( )2 9 1 1 2 10 1 1 3 1p p p p pz z z z z z F z f z g z dzϕ φ ϕ φ′ ′= Γ + − +Γ −Γ ∫                        (27) 

 
where 
 

( )
( ) ( )

( )
( )
( ) ( ) ( )

2*
2 1 1 1 12 1 1 2

1 2
1 2 1 1 1 2 1 1 1 2

*
1 2 1 1 2 2 1 1 2

3 4
1 2 1 1 2 1 2 2

2* *
2 1 2 2 2 1 1 1 1

5
2 1 2 2 2 1 2 1 1

*
*1 2 1 2

6 1
1 2 2

,
1

2
, ,

1 2
1 1

2 2

G G G aG G k k
G G k G G k k k

G G a k k G G
G G k k G G

G G a k G a
k G G k k k

G G k a
a

G G k

γ
κ κ

κ κ
κ κ

κ γ γ
κ κ κ

κ

−  − −
Γ = Γ =  + + + + 

 − −
Γ = Γ = + + + 

+  
Γ = − + + + + 

Γ = −
+

( )

( ) ( ) ( )
( )

( )

1 2
7

1 2 1 2 2

2*
2 12 2 2 1

8 1 2 9
2 2 1 2 2 1 2 1 2 1

2*
1 2 1 1 1 2

10
1 1 2 1 1 2

1
,

12
,

1

G
k G G

GG a k
G G

k G G k k G G

G G a k k
k G G k k

κ
κ

κγ
κ κ κ

γ
κ

+ 
Γ = 

+ + 

+ 
Γ = − Γ = + + + + 

 −
Γ =  + + 

 

 
2.3 HSIEs for a Curvilinear Crack in Thermoelectric Bonded Materials 
 

The new system of HSIEs for a curvilinear crack lies in the upper part of thermoelectric bonded 
materials can be obtained by substituted Eq. (24) and Eq. (25) into Eq. (16) and applying Eq. (17)-(21), 
then letting point z approaches 0t  on the crack and changing d z dz  into  0 0dt dt , yields 
 

( ) ( )( ) ( )
( )

( ) ( ) ( ) ( ) ( )0 0 1 0 2 0 3 021
0

1 1 1, , ,
2 2L L L

g t dt
N t iT t M t t g t dt M t t g t dt M t t

t tπ π π
+ + + +

−∫ ∫ ∫              (28) 

 
where 
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( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( )

( ) ( )
( ) ( ) ( )

( )
( )

00
1 0 12 2 2 3 2 2

00 0 0 0 0 0

0 0 0 0 0 0 00
1 3 4 2 2 3

0
0 0 0 0 0

0
4

0

21 1 1 1 1,

2 2 3 6 21 1

1

t tdtdt dtM t t
dt dt dtt t t t t t t t t t t t

t t t t t t t t tdt dt
dt dtt t t t t t t t t t

dt
dt

    −    = − + + Γ + + +    −    − − − − −    
  − + − − −  + Γ − − + − −  

  − − − − −  

+ Γ
( )2

0t t−

 

 

( )
( ) ( )

( )

( )

( ) ( ) ( )
( )

( )
( )
( ) ( )

00
2 0 2 2 3

0
0 0 0

0 00 0
1 2 2 2 3 3 2

0
0 0 0 0 0 0

21 1,

221 1 1 1

t tdtdt dtM t t
dt dt dtt t t t t t

t tt t dtdt
dt dtt t t t t t t t t t t t

  −  = + +  
  − − −  

    −−    + Γ + + + + −    
    − − − − − −    

 

 

( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

2
2 02 2 2 2 2 2 2 2 0

3 0 11 12 0 0 0 0 0 02 2 20
0

2
2 2 2 2 2 2 2

2 0 0 0 0 02 2 2
0

2
2 2 20 0 2 2 2 2

2 2 5 0 0 0 0 02
0 0

( , ) ln
4 2

ln
4 2

ln
4

e

e

e

j tdtM t t t a t a t t a a t t a
dt t a

j tt a t t a a t t a
t a

jdt dt t a t t a a t t a
dt dt

λ

λ

λ

 
 = Γ + Γ − − + − − + −  − 

 
 + Γ − + − − + −
 − 

 
+ Γ −Γ + Γ − + − − + −  
 

( ) ( )

( )

0

2 2
0

2
2 20 2 2 2 0

2 0 0 0 0 0 0 02 32 2 20 2
0 0

20 0 02 20
6 3 3 0 3 0 0 3 02 20 0 0

0

2

1 13 ln
24

e

t

t a

j tdtt t t t t a a t t a
dt t a t a

tdt dt dtt a t t t
dt dt dt t a

λ

 
   

      − 
  
  

   + Γ − + − − + − −      −  −      

 
+ Γ + Γ −Γ − + Γ − + Γ −  

  −

2

2
uja

 
 
  
   

       
3. Results  
3.1 Results and Discussion 
 

The dimensionless SIFs 1AF  and 1BF  at crack tips A and B, respectively is defined as: 
 
( ) ( )1 2 2 lim '

A
A AA t t

K iK t t g t a Fπ π
→

− = − =                      (29) 

 
( ) ( )1 2 2 lim '

B
B BB t t

K iK t t g t a Fπ π
→

− = − =                      (30) 

 
where 1 2A A AF F iF= +  and 1 2B B BF F iF= +  
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Table 1 displays the dimensionless SIFs versus α at the crack tip A for a curvilinear crack with 
radius R lies in the upperpart of thermoelectric materials subject to mix stress x y pσ σ= =  when 

0.0e uj j= =  , and  is defined as in Figure 1. Our results are totally agreeing with those of Chen [21]. It 
is observed that the dimensionless SIFs at 1AF and 1BF  are equals, and 2 AF  is equal to negative value 

of 2BF . This phenomenon is due to the equivalence of the stress acting at the tips of the cracks.  
 

Table 1 
Dimensionless SIFs F1A and F2A for a curvilinear crack in the upperpart of thermoelectric bonded materials 

SIFs 
α  (degree) 
15o 30o 45o 60o 75o 90o 105o 120o 

F1A 0.97503 0.90589 0.80697 0.69404 0.57988 0.47191 0.37338 0.28456 
F1A [18] 0.97483 0.90531 0.80584 0.69285 0.57885 0.47141 0.37357 0.28572 
F1A exact 0.97484 0.90528 0.80586 0.69282 0.57884 0.47140 0.37361 0.28571 
F2A 0.12841 0.24283 0.33442 0.40108 0.4457 0.47321 0.48879 0.49662 
F2A [18] 0.12835 0.24260 0.33379 0.40004 0.44417 0.47141 0.48686 0.49488 
F2A exact 0.12834 0.24257 0.33380 0.40000 0.44416 0.47140 0.48690 0.49487 

 
Figure 2 shows the dimensionless SIFs versus   at the crack tips A and B for a curvilinear crack with 

radius R lies in the upperpart of thermoelectric materials subject to shear stress  x pσ =  when 1.5h R=  
, 20, 0.0e uj j= =  (blue), 200, 0.0e uj j= =  (red) and different values of elastic constant ratio 2 1G G  as 
defined in Figure 1. It is observed that the dimensionless SIFs for Mode I ( 1F ) at crack tip A equal to 
the SIFs at crack tip B, similar to the dimensionless SIFs for Mode II ( 2F ). It is found that dimensionless 
SIFs Mode I and Mode II for electric current density vector 20ej =   (blue) is higher that dimensionless 
SIFs for 200ej =   (red). As  2 1G G  increases the dimensionless SIFs decreases at all crack tips. Whereas, 
as α increases the dimensionless SIFs Mode I ( 1F ) increases for  95oα <  (Figure 2 (a)) and decreases 

for dimensionless SIFs Mode II ( 2F ) when 45oα > (Figure 2 (b)) at all crack tips. This observation 
indicate that the strength of the materials become weaker as   increases, electric current density 
vector decreases and elastic constant ratio 2 1G G  decreases.   
 

 
(a) 



Journal of Advanced Research in Applied Mechanics 
Volume 113, Issue 1 (2024) 27-36 

35 
 

 
(b) 

Fig. 2. (a) Dimensionless SIFs 1AF  and 1BF  (Mode I) and (b) 
Dimensionless SIFs 2 AF  and 2BF  (Mode II), for a curvilinear crack 
in the upper part of thermoelectric bonded materials 

 
4. Conclusions 
 

The MCP function method with the unknown COD function, electric current density and energy 
flux load, and continuity conditions of the resultant electric force and displacement electric function 
were used to formulate the new system of HSIEs for a curvilinear crack phenomenon laying in the 
upper part of thermoelectric bonded materials subjected to mechanical loadings. From the numerical 
results we conclude that the dimensionless SIFs for a curvilinear crack lies in the upper part of 
thermoelectric bonded materials depends on the elastic constants ratio, electric current density 
vector, the crack geometries and the distance between the crack and the boundary. This value will 
have presented the strength of the materials. For the future developments, the approach used in this 
paper could be extended to formulate the three-dimensional cracks with and without electric 
problems in bonded materials with guided work from Chen and Lee [22] that focusing on an infinite 
material.  
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