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Over the years, plastic explosive PE4 has been imported from the United Kingdom and 
is fully utilised in military activities and drills. This study is to discover a ratio of the 
plastic explosive PE4 explosion performance in tropical conditions and develop a 
multilayer perceptron neural network model for the prediction of plastic explosive in 
Malaysia. Several environmental tests have been performed in Kem Kongkoi, Jelebu, 
Negeri Sembilan. Six parameters were considered, including environmental 
temperature, distance measurement, explosive material, variety of shapes, weight and 
ignition point. In this paper, the Bayesian Regularization, Levenberg-Marquardt 
algorithm and Scaled Conjugate Gradient model were developed. Every model was 
tested with 24 datasets to discover the root mean square error and regression 
performance. The Bayesian Regularization model provides the best prediction model 
as it has a mean square error of 0.0005 and a regression performance value that is 
close to 1 at 0.9992.  
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1. Introduction 
 

Over the years, a significant number of scientists and researchers have utilised a diverse set of 
methodologies to explore the military plastic explosive's influence on the product's shelf life and 
stability. Experiments session which required a significant investment of the researcher's time, 
money and effort, were carried out in order to discover and accurately specify the features of each 
explosive material. These parameters included the detonation velocity, the detonation rate, and the 
detonation pressure. According to the definition provided from the previous study [1], due to the 
chemical reactivity of the components that make up some explosives, these substances can detonate 
when placed in certain conditions. Hence, before conducting an experiment using explosives, it is 
essential to understand the approximate range of parameters for each explosive substance. This is 
need to be measured in order to limit the risk that for an experiment with explosives.  
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1.1 Matter of Explosion 
 
The high explosives used by the military are safe to handle and have a long shelf life, a high energy 

density, and a rapid detonation reaction [2]. Due to this quality standard, they are particularly well-
suited for use in explosive weapons. The chemical makeup of a quantity of high explosive will 
determine how much energy is released and how much of a blast load is generated when that 
explosive is detonated. Consequently, these two variables are related to each other. This is going to 
be the case in every scenario, regardless of whether or not the bulk of the explosive was really 
detonated. 

Primary and secondary high explosives are the two categories of high explosives that may be 
differentiated from one another based on the explosive grade and the explosive sensitivity to the 
quantity of energy input. Primary high explosives are typically used in military applications. Primary 
explosives are particularly sensitive to even minor amounts of energy that may be brought into the 
system by means of friction, shock, or static electricity [3]. These types of energy can cause the 
primary explosive to detonate prematurely. It just takes a small amount of energy to generate a shock 
wave, which then moves through the unreacted explosive as it moves through the system. Figure 1 
shows the types and applications of explosives. 

 

 
Fig. 1. Classification of explosive material for high explosives [1] 

 
1.2 Plastic Explosive PE4 
 

Military explosive is a type of high explosive with a detonation velocity of greater than 7000 
meters per second (m/s). PE4 is a conventional plastic explosive, widely used for the production of 
improved energetic systems for defensive and offensive use. PE4 is RDX-based and is available in the 
cartridge and in bulk form. Previous research has defined the characteristics of PE4 and measured its 
great performance in blast experiments and explosion performance [4].  

Currently, the well-known plastic explosive PE4, or called PE4, imported from Europe specifically 
from defence manufacturers from the United Kingdom, is broadly used by the Malaysian Armed 
Forces (MAF) in military training. As stated by the Malaysian Army, PE4 has been used in their routine 
for the past 20 years. Due to the widespread use of British PE4 in explosion, demolition, and blast 
testing activities according to the previous study [4-6], the authority has imposed Rules and 
Regulations specifically for PE4 usage and Standard Operation Procedures (SOP) in military drills. It is 
almost certain that plastic explosive PE4 product specifications in the military practical are referring 
to European standards. 

For many years, this phenomenon was surprisingly neglected by the researcher as well as the 
military personnel to the considerable risk that the explosion standard will vary owing to the tropical 
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impacts in Malaysia, due to the PE4 being imported directly from the United Kingdom. This can be 
illustrated briefly by Figure 2, which shows the comparison data taken from the previous study [7] 
for both countries as the United Kingdom is the explosive manufacturer while Malaysia is the end 
user. To date, no Tropical Standards have been developed for PE4 explosives. One of the most 
obvious possibilities is that erroneous explosion tests have been performed as a result of tropical 
effects when compared to the Standard provided by the manufacturer. Furthermore, there are 
currently no research or guidelines that take into account tropical elements. Thus, there is a 
significant risk that an explosion will have a direct impact or cause injuries.  
 

 
Fig. 2. Comparison of the country’s temperature data 

 
1.3 Predictive Models Deployment in an Explosion 
 

Artificial Neural Networks (ANNs) are becoming more commonplace in the field of explosion. One 
use of this technology is the prediction of explosion, which is just one of its many applications. ANNs 
can be trained to perceive patterns and correlations within vast datasets, and after the training 
session has been completed, they can be used to make accurate predictions based on suitable input 
parameters. According to the previous study [8], this ability to learn comes from the fact that ANNs 
are capable of being taught to recognise patterns and correlations hidden within enormous datasets. 
Artificial neural networks (ANNs) have the ability to accurately anticipate a variety of explosions 
including Blast-Induced Ground Vibration (BIGV), Rock Burst Failure, Flyrock-Induced Explosions, and 
Boiling Liquid Expanding Vapour Explosion (BLEVE). ANNs are able to be trained by utilising data 
relevant to the qualities of the explosive material, the environment in which it is located, and 
numerous physical parameters such as detonation pressure, temperature, and vibrations.  

Significant analysis has been postulated from the previous studies [9-15], on ANN can be trained 
using data concerning the characteristics of the explosive substance, the distance from the blast site 
to nearby structures, and the geological properties of the area that surrounds the blast site. All of 
these different aspects can be taken into account when making predictions regarding the likelihood 
of BIGV. It has been demonstrated that the ANN can make accurate predictions based on the input 
data, such as the predicted quantity of ground vibration and the likely damage to structures in the 
nearby area. 

Several lines of evidence suggest that ANNs can also be trained on data related to the geological 
properties of the location, the stress level in the rock formations, as well as the type and frequency 
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of previous rock burst failures. The prediction of rock burst failure is made possible as a result of 
these variables. Many recent studies [16,17], have shown that the ANN are able to generate 
predictions about the likelihood of future rock burst failures and the likely effects those failures could 
have on mining equipment and employees. 

ANNs can be trained on data relating to the explosive material and blast design parameters, as 
well as the physical qualities of the surrounding environment, such as the distance to any other 
structures and the topography of the area, in order to anticipate the potential for flyrock-induced 
explosions. This will allow for more accurate predictions of the likelihood of explosions being caused 
by flyrock. According to previous study [18], the reason for doing this is to increase the accuracy with 
which the possibility of flyrock-induced explosions can be predicted.  

Finally, artificial neural networks (ANNs) can be trained on vast data related to the properties of 
the liquid and vessel, such as the temperature and pressure of the liquid, as well as the design 
parameters of the vessel, in order to make a prediction about the possibility of a BLEVE explosion. 
This can be accomplished by feeding the ANNs information about the properties of the liquid and 
vessel. As noted from previous study [19], the ANN are able to predict the likelihood of a BLEVE 
explosion and the potential repercussions of such an explosion on nearby structures and human life. 

In conclusion, artificial neural networks are a powerful tool that can be used to evaluate the risks 
associated with explosives and to forecast the performance of explosions. ANNs can be trained on 
large datasets and then used to make accurate predictions based on the input data linked to the 
qualities of the explosive material, the environment it is in, and the physical parameters.  
 
1.4 Tropicalisation in Defence Area 
 

The term "tropicalisation" is used in the context of defence and security to refer to the process 
of adapting military equipment, infrastructure, and procedures in order for them to be able to 
function effectively and sustain the unique challenges and climatic conditions that are prevalent in 
tropical countries. In Malaysia, which is located in a tropical zone, it is indispensable for the defence 
and security sector to measure to tropicalisation standards [20]. This proactive action is a must to 
ensure that military actions must be planned and carried out with the highest possible effectiveness.  

Hence, some prospective knowledge contributions could make by academics and researchers on 
the topic of tropicalisation are environmental testing and simulation, material and equipment 
selection, infrastructure design and equipment adaptation as well as research and development 
(R&D) collaboration which is relevant to the country's defence and security concerns. In general, a 
multidisciplinary approach is required for Malaysia's knowledge contributions in the field of 
tropicalisation for the sake of defence and security. Furthermore, the Malaysian defence and security 
sector will be able to improve its operational readiness, lengthen the lifespan of its equipment, and 
raise the efficiency of military operations performed in tropical circumstances if it places a greater 
emphasis on tropicalisation. 
 
2. Methodology  
 

There has been significant development in the field of computer intelligence science in the form 
of a new subfield known as artificial neural networks since the 1980s. These advancements have been 
made at a rapid pace by researchers in artificial neural networks (ANN) [21]. At this point in time, 
ANN is considered to be one of the intelligent tools that can be utilised in order to gain a better 
understanding of difficult problems. The Artificial Neural Network (ANN) is gaining popularity as an 
effective tool that can assist researchers, designers, industry players and other professionals in 
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accomplishing their work. Therefore, ANN is currently being applied successfully in various business 
contexts in addition to the arena of academic research. An artificial neural network (ANN), also 
known as a flexible mathematical model structure, is a technology that is used in information 
computing that imitates the structure, processing methods, as well as learning skills and capacities 
of the human brain [22-24].  

In this paper, a research methodology will be composed of two stages which are plastic explosive 
field testing and computer modelling and simulation as summarised in Figure 3. The first 
methodology consists of a flow of activities on technical processes that must be taken in order to 
fulfil the objective of checkout the tropical effect on explosive PE4 performance. Also, the second 
methodology outlines the design techniques and the sequence of actions that must be performed in 
the Matlab programme for modelling plastic explosive performance based on previous experimental 
data. In addition, research methodologies offer a technical perspective that occurred in the process 
of investigating the tropical effects in an explosion situation for plastic explosives.  

 

 
Fig. 3. Research activities flowchart 

 
2.1 Experimental Setup and Data Collection 

 
Field test operations have been carried out as part of a significant number of research projects in 

order to investigate the pattern of explosive effects in tropical environments. During the experiment, 
a series of investigations were performed to identify the volatile pattern of the PE4 subjected to air 
blast loading. This was done to ensure that the experiment was conducted correctly. The 
experimental works are carried out in the designated military camp in Peninsular Malaysia, which is 
located in Kem Kongkoi, Jelebu, Negeri Sembilan. The PE4 explosive is obtained from the Malaysian 
Armed Forces. This place was selected for the experiment because it has a long history of explosive 
activities, and is very accessible by military and researchers to coordinate the fieldwork.  

Multiple readings have been taken to determine the cumulative temperature of the surrounding 
environment as well as to validate the exploration of the tropical elements in research. It is a 



Journal of Advanced Research in Applied Mechanics 
Volume 123, Issue 1 (2024) 206-220 

211 
 

measurement that is taken of the temperature at different heights within the atmosphere of the 
Earth. Temperature is used as a measurement for the quantity of energy that is absorbed by the earth 
from the sun. This energy comes in the form of heat. It is contingent on a broad variety of elements, 
such as height and humidity, among others. In addition, during the data collection process, various 
recording equipment has been set up as depicted in Figure 4 such as a hygrometer, a high-speed 
camera, a high-speed data acquisition system, and a free field pencil probe, were utilised. The 
experimental parameters measured are detailed in Table 1. 

 

      
(a)                                                                                                 (b) 

                                                         
                                      (c)                                                           (d)                                                               (e) 

Fig. 4. Illustration of material preparation and equipment setting for plastic explosive PE4 
explosion testing a) illustration of explosion test b) the blast test setup c) hygrometer for 
temperature measurement d) shapes of explosive material e) high-speed camera 

 
Table 1 
Experiment parameters 
Parameter(s) Scale or Type 
Explosive Material Plastic explosive PE4 
Shape Mould  Spherical, Hemispherical, Cylinder 
Distance 0.5 – 4.0 meter  
Ignition Point Top 
Explosion performance MPa 
Environment temperature 
Weight 

29.0 – 32.3 (°C) 
500 grams 

 
Hopkinson-Cranz, also called "cube-root" scaling, is the type of blast scaling used most frequently. 

Researchers who have a comprehensive understanding of blast technology may be able to use these 
principles to anticipate the features of blast waves from large-scale explosions based on studies 
conducted on a much smaller scale. This is possible because scaling the properties of blast waves 
from explosive sources has its own approach, and researchers who have this understanding may be 
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able to use it. Throughout history, this has typically been examined by comparing the findings of 
smaller-scale experiments to the conclusions of larger-scale testing. 

 
𝑍𝑍 = 𝑅𝑅

𝑤𝑤1/3                                                                                                                             (1) 
 
where R is the distance from the charge to the surface of a structure, W is a charge weight as TNT 
equivalent, and Z is scaled ground distance. To obtain the absolute values of the blast wave 
parameters, multiply the scaled values by a factor of W1/3. 
 
2.2 Computer Model Setup and Configuration 
 

This research was conducted to determine whether or not it is possible to predict the military 
explosion performance by using relevant parameters such as the explosive material, the blast design, 
and the explosion distance. At this point in time, it is difficult to ascertain all of the pertinent 
parameters that influence the prediction of the military explosion performance in a climate classified 
as tropical. Nevertheless, there is a strong correlation between the factors that play a role in the 
process. As a result of this, utilising each and every potential variable as an input parameter in the 
model was not required to be done. In light of prior discussion and the objectives of the current 
investigation, the neural network was designed to make accurate predictions regarding the explosion 
performance findings due to tropicalisation. 

In this paper, three types of neural networks were developed to predict plastic explosive PE4 
explosion performance which are the Levenberg-Marquardt algorithm, Bayesian Regularization and 
Scaled Conjugate Gradient model. The three methods are selected to apply a neural network fitting 
tool in MATLAB application. Each model was tested with 24 datasets to discover the root mean 
square error and regression performance. While developing and designing the model, the dataset 
was divided into 15 training sets (60%), 7 testing sets (30%) and 2 validation sets (10%), in a 
reasonably haphazard method. This was done in order to facilitate the development process. The 
dataset was utilised and optimised, initially for training the network, testing process and then, 
accordingly, to validate the selected network capabilities, as shown in Table 2. Based on the output, 
the least mean square error (LMSE) from both design and learning methods has been accepted as 
the most accurate artificial neural network model to predict detonation performance for the plastic 
explosive PE4 in the tropical settings of Malaysia. 
 

Table 2 
Details of the ANN algorithms 
Model Information Levenberg– 

Marquardt (LM) 
Bayesian 
Regularization (BR) 

Scaled Conjugate 
Gradient (SCG) 

Network structure 6 x 8 x 1 6 x 8 x 1 6 x 8 x 1 
Training trainlm trainbr trainscg 
Training dataset (%) 15 dataset (60%) 15 dataset (60%) 15 dataset (60%) 
Testing dataset (%) 7 dataset (30%) 7 dataset (30%) 7 dataset (30%) 
Validation dataset (%) 2 (10%) 2 (10%) 2 (10%) 
Epochs set to 1000 1000 1000 
Transfer function in the 
hidden layer  

Log-sigmoid (log-sig) Log-sigmoid (log-sig) Log-sigmoid (log-sig) 

Transfer function in the 
output layer 

Linear (purelin) Linear (purelin) Linear (purelin) 
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2.3 Input Features 
 

The research focused on predicting military PE4 explosion performance using relevant 
parameters such as explosive material, blast design, and explosion distance. In constructing the 
artificial neural network (ANN), input features played a crucial role in capturing the complexity of the 
explosive performance prediction. The network architecture involved an input layer, hidden layer(s), 
and an output layer. The input neurons comprised six parameters which are the PE4 as explosive 
material, 500 grams weight of the explosion substance, three different shape moulds such as 
spherical, hemispherical and cylinder, a range of distance from the explosion point starting from 0.5 
meter to 4.0 meter, top ignition point at every moulds, and the suurounding temperature for a range 
of 29.0 °C to 36.5°C. These features aimed to encapsulate the diverse aspects of the PE4 explosion 
performance and their interaction with the tropical environment. 
 
2.4 Evaluation Metrics 
 
Following is a list of assessment metrics that were utilized in order to measure the efficiency of the 
model's performance. 
 
2.4.1 Mean Square Error 
 

Mean Square Error formulation is derived Eq. (2). It has been found to be especially useful in 
detecting outlier within a predicted range. 
 
MSE = 1

𝑛𝑛
∑ �𝑌𝑌𝑗𝑗 − 𝑓𝑓(𝑋𝑋)𝑗𝑗�

2𝑛𝑛
𝑗𝑗                                            (2) 

 
2.4.2 Regression 
 
R2 or R-squared is given as follows. The numerator and denominator are respectively the total sum 
of squares and the residual sum of squares. 
 

𝑅𝑅2 = 1 −  
∑ �𝑌𝑌𝑗𝑗−𝑓𝑓(𝑋𝑋)𝑗𝑗�

2
𝑗𝑗

∑ (𝑌𝑌𝑗𝑗− 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑜𝑜𝑜𝑜𝑜𝑜)2𝑗𝑗
                    (3) 

 
2.5 Multi-Layer Perceptron 

 
A Multilayer Perceptron network, also known as an MLP network, is a specific kind of artificial 

neural network that can be identified by numerous layers of neurons that are connected with one 
another. This is a type of feedforward neural network; hence the data starts at the input layer and 
continues all the way through the network until it reaches the output layer [25]. This shows that the 
data cannot go through the network simultaneously in both directions because the network cannot 
handle it. The MLP comprises three unique levels, as represented by the network structure in Figure 
5. These are the input layer, one or more hidden layers and the output layer. The input layer is the 
lowest level. The input layer is the one that the user is actually looking at. Neurons can be found in 
each layer, and the neurons in each layer are connected to the neighbour's layer which is close to 
them. It is possible to have one or more neurons in each layer.  

A multi-layer perceptron (MLP) is a type of artificial neural network in which every neuron in the 
network’s input layer is connected to every neuron in the first hidden layer of the network. In a similar 
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manner, each neuron in the first hidden layer is connected to each neuron in the second hidden layer, 
and so on and so forth, right up until the output layer is reached. It is conceivable that the hidden 
layer could contain traditional hidden units which would serve as inputs to gate units and memory 
cells if they were present [26]. It is widely believed that every unit in every layer is connected to every 
other unit through direct connections that act as inputs except gate units [27]. Hence, these 
connections go from one unit to the next layer.  
 

 
Fig. 5. Network structure for MLP Neural Network 

 
2.6 Bayesian Regularization (BR) Algorithm 
 

Utilising Bayesian Regularization Artificial Neural Network (BRANN) in explosion-related studies 
has proven effective across various contexts, including explosion risk analysis, blast-induced ground 
vibration, rock burst failure, fly rock induction, and Boiling Liquid Expanding Vapor Explosion (BLEVE) 
from the previous studies. Each application underscores the versatility and precision of BRANN in 
modelling and predicting complex phenomena associated with explosions.  

The application of the Bayesian Regularization Artificial Neural Network across these explosion-
related studies underscores its adaptability and effectiveness in handling diverse scenarios. BRANN's 
advantages include preventing overfitting, improving accuracy, and addressing imbalanced data 
issues, making it a valuable tool for predicting and understanding complex explosion phenomena. 
 
3. Results  
 
3.1 Plastic Explosive (PE4) Experimental Results 
 

The findings from the field test and computer modelling and simulation are presented, along with 
a beneficial commentary with research findings that were produced. Based on Figure 6, Figure 7 and 
Figure 8, data collection illustrates a trend of explosion performance for the top point of initiation for 
both spherical, hemispherical and cylindrical-shaped charges of explosive. As a result, the data 
pattern has linearity for comparison to the standard set forth by a manufacturer. At the present time, 
the "standard" has been established and is been referenced by the manufacturer PE4, which was a 
pioneer in the manufacturing of explosives in the United Kingdom some decades ago. According to 
the graph in Figure 6, the highest pressure 4.216 MPa was measured at a distance of 0.5 meters, and 
the graph also shows that the wave quickly gradually decreases when it reaches a far distance from 
the explosion point at 4.0 meter. 
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Fig. 6. Graph for spherical shaped charge 

 
According to the graph in Figure 7, the highest pressure 5.209 MPa was measured at a distance 

of 0.5 meters, and the graph also shows that the wave quickly gradually decreases when it reaches a 
far distance from the explosion point at 4.0 meter. Based on Figure 8, the highest pressure 5.571 MPa 
was measured at a distance of 0.5 meters, and the graph also shows that the wave quickly gradually 
decreases when it reaches a far distance from the explosion point at 4.0 meter. The difference 
between the highest point and the lowest point is most pronounced between a distance of 0.5 meter 
and 4.0 meter, which is also the range in which the reading abruptly close to zero. The high point and 
the lowest point are separated by this distance, which reflects the greatest significant difference 
between the two points. After analysis of these three distinct types of shape charges, we discovered 
that the cylinder shape recorded the highest pressure at 0.5 meter distance. 

 

 
Fig. 7. Graph for hemispherical shaped charge                
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Fig. 8. Graph for cylinder shaped charge 

 
The ratio of the PE4 field test measurement to the Standard from the manufacturer has been 

computed, assessed, and determined based on the peak overpressure value for each number of tests 
in order to fulfil the research objective. The fact that the PE4 product documentation is controlled by 
the authority, the standard measurement reading from the manufacturer cannot be divulged. As a 
result, the data tabulation is shown in Table 3 to illustrate the ratio based on the data results because 
this is the safest way to convey the information. According to the findings, the most achievable 
description of the blast pressure produced by an emulsion explosive reacting to the tropicalisation 
effect was obtained by using the PE4 ratio in the range of 1: (1.31 to 1.45). 

 
Table 3 
Ratio of PE4 standard from manufacturer versus experimental session in tropical condition 

Shape Distance, 
meter 

Temperature, 
0C 

Pressure, MPa Conversion MPa to kg 
(manufacturer standard) 

Ratio, 
Standard: 
Experiment 

Spherical, 
Hemi-
spherical, 
Cylinder 

0.5 30.1 to 31.4 4.216, 5.209 and 5.571 0.344, 0.362 and 0.378 1: 1.32 to 1.45 
1.0 29.3 to 30.1 0.802, 1.119 and 1.289 0.362, 0.370 and 0.378 1: 1.32 to 1.38 
1.5 30.3 to 31.2 0.232, 0.475 and 0.496 0.359, 0.362 and 0.378  1: 1.32 to 1.39 
2.0 29.3 to 29.7 0.150, 0.247 and 0.247 0.362, 0.376 and 0.378 1: 1.32 to 1.38 
2.5 30.1 to 31.3 0.108, 0.159 and 0.161 0.362, 0.369 and 0.380  1: 1.32 to 1.38 
3.0 30.2 to 32.0 0.074, 0.098 and 0.111 0.373, 0.379 and 0.380 1: 1.32 to 1.34 
3.5 31.3 to 32.3 0.070, 0.080 and 0.085 0.376, 0.380 and 0.381 1: 1.31 to 1.33 
4.0 31.4 to 32.0 0.044, 0.062 and 0.064 0.379, 0.382 and 0.385  1: 1.30 to 1.32 

 
3.2 Neural Network Model Performance 
 

An evaluation of the neural networks model's ability to predict plastic explosive PE4 explosion 
pressure was accomplished by carrying out a performance analysis with the help of the neural 
network tools provided by MATLAB (nftool). The process to analyse performance on the development 
of neural networks models consisted of a training phase, which made use of sixty percent of the data, 
a testing phase, which made use of thirty percent of the data, and a validation phase, which made 
use of ten percent of the data. The study consisted of selecting the regression that produced the 
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greatest fit, as well as calculating the mean square error (MSE), in order to identify errors that may 
have occurred. 

The analysis consisted of determining the regression that provided the best fitting as well as 
evaluating the mean square error (MSE) for every models. For the best prediction model, an MSE 
that is low suggests that there will be a minimum relative error, while a regression value that is higher 
implies that the performance will be at its finest. The mean square error (MSE) and regression values 
for three distinct models were analysed through the neural network fitting tools using the MATLAB 
program. Table 4 presents the results of the performance evaluation of the MLP network, with the 
three training techniques arranged in a descending order of the MSE performance they achieved. 

 
Table 4 
MSE Performance of MLP network 
Training Algorithm 
 

MSE Performance 
Analysis 

Number of Epoch 

Bayesian Regularization, (BR)  0.0005 826 
Scaled Conjugate Gradient, (SCG) 0.0006 31 
Levenberg-Marquadt, (LM) 0.0017 11 

 
Table 4 presents the mean square error (MSE) performance of the MLP networks. It shows BR 

training technique is able to deliver the lowest MSE performance with 0.0005 for the MLP network 
when the Tansig activation function is utilised. This algorithm is able to do so because it uses the 
Tansig activation function. However, with an MSE performance of 0.0006, the MLP network that was 
trained and activated by SCG and Tansig produced the second best result for overall. The LM training 
algorithm, triggered by the Tansig activation function, is utilised in the training process since it 
performs at 0.0017 MSE. 

Table 5 presents the Regression Performance of the MLP network. It shows the BR training 
procedure that was triggered into action by the Tansig activation function. This algorithm has the 
capability of producing the highest possible reading for regression, which is 0.9992. The MLP network 
that was trained using the BR training strategy and activated using the Logsig activation function 
generated the greatest results, outperforming the SCG with a regression performance of 0.9878. Both 
of these training techniques were carried out using the Logsig activation function. With a regression 
performance score of 0.9233, the MLP network that utilised the LM training technique and the Tansig 
activation function finished in third place, just behind the SCG neural network. 
 

Table 5 
Regression Performance of MLP network 

Training Algorithm Regression Performance 
Analysis 

Number of Epoch 

Bayesian Regularization, (BR)  0.9992 826 
Scaled Conjugate Gradient, (SCG) 0.9878 31 
Levenberg-Marquadt, (LM) 0.9233 11 

 
Table 4 and Table 5 reveal that the number of epochs used for the Bayesian model is too high due 

to the unique qualities that distinguish them from other models. Bayesian is more accurate in dealing 
with limited data and the level of uncertainty estimation. The BR analysis was based on probabilistic 
inference and treating model parameters as a probability distribution.  

Despite achieving the lowest mean square error (MSE) at 0.0005, the Bayesian model raises 
concerns about potential overfitting due to an extensive 826 epochs. To address overfitting, a 
technique inspired by prior research [28], involves early stopping in Bayesian optimization, with its 
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probabilistic inference, which effectively handles limited data and uncertainty. Bayesian 
Regularization proves effective in preventing overfitting, addressing model uncertainty, and 
enhancing predictive performance in data-limited scenarios for PE4 explosion performance. 
  
4. Conclusions  
 

The purpose of this study is to analyse the tropical impact on the explosion performance of PE4, 
as well as to develop an artificial neural network model that would aid in the estimation of the 
detonation pressure of PE4. Specific parameters such as shape, distance and blast design were set 
during the experiment. The ratio of PE4 has been successfully measured to be between 1 :(1.31 to 
1.45), which is based on manufacturer standards to the Malaysian tropical effect. The artificial neural 
network model has been shown to be reliable in estimating the detonation pressure of a plastic 
explosive PE4. This was demonstrated through extensive testing.  

The accuracy, reliability and efficiency of the model were known using metrics mean-square error 
and regression analysis. The way that it is accomplished is by contrasting the target values with the 
model's output values. In conclusion, the Bayesian Regularization model provide a close estimation 
of detonation pressure values to actual values that are reached through experimentation because 
the model has an MSE that is close to 0 at 0.0005 and an R-values that are close to 1 at 0.9992. It is 
recommended that in future work, further experimental sessions must be performed in order to look 
for a continuous stability trend in an explosion. The continuous stability trend is important for 
another knowledge exploration in an explosion.  
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