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This paper considers the prediction of the critical frequencies of the ionospheric F2 
layer, foF2, by using two models: a backpropagation neural network (BPNN) model and 
a BPNN combined with particle swarm optimization (BPNN–PSO) model for different 
states of solar activity: low, medium and high. Nine-year critical frequency data from 
an ionosonde installed at the Universiti Tun Hussein Onn Malaysia in Johor (1.86° N, 
103.80° E) were used. The efficiency of the models in predicting foF2 under different 
states of solar activity was explored. The output of the models was evaluated using 
root-mean-square error (RMSE) and mean average percentage error (MAPE). The 
BPNN–PSO model provided a better result compared with the BPNN model during low, 
medium and high solar activity. The BPNN–PSO model had RMSE and MAPE equal to 
0.50 MHz and 5.27%, respectively, during low solar activity and RMSE and MAPE of 
0.32 MHz and 4.16%, respectively, during medium solar activity. In addition, the 
BPNN–PSO model had the lowest RMSE (0.24 MHz) and MAPE (2.45%) during high 
solar activity. Overall, the performance of the BPNN–PSO model was higher than that 
of the BPNN model during any state of solar activity. 
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1. Introduction 
 

Variability in ionospheric parameters depends on space weather disturbances that affect the 
efficiency of communication, radar and navigation systems. One of the most important ionospheric 
parameters is the critical frequency of the ionospheric F2 layer, foF2. This value depends on local time, 
geographical latitude, solar and geomagnetic activity, wind from the atmosphere and other factors 
[1]. This value is crucial for forecasting high-frequency (HF) communication [2]. HF radio signals are 
well known for frequently enabling low-cost long-distance communication 24 hours a day [3]. 
Consequently, foF2 must be predicted by considering factors of the instability of the ionosphere, 
limiting the capability for achieving accurate frequencies for HF communication. 

foF2 has been predicted using a variety of techniques. Researchers, such as Wang et al., [4] and 
Pietrella [5], created analytical models to predict the changes of foF2. A backpropagation neural 
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network (BPNN), rather than an empirical model, was used in several studies to test the outcomes 
[6-11]. Ionospheric parameters perform better when they are predicted using BPNN than when using 
an empirical model. Nonetheless, this technique has major disadvantages, such as a slow 
convergence rate and a propensity to end up in local minima [2]. The inherent flaws in the current 
algorithm were addressed by utilizing a convolutional neural network [12], genetic algorithm (GA) 
[1,9], particle swarm optimization (PSO) [2,13,14], AdaBoost-BP algorithm [15] and the empirical 
orthogonal function model [16]. 

Based on data from 2004 to 2012, this paper develops a single-station neural network model for 
forecasting the value of foF2 near the Universiti Tun Hussein Onn Malaysia (UTHM). This paper 
examines the performance of the developed foF2 forecasting model under various states of solar 
activity by using BPNN and BPNN combined with PSO (BPNN–PSO). Other works have shown that 
PSO can provide better outcomes in forecasting. Therefore, it is employed in our work in forecasting 
the critical frequency of the ionospheric F2 layer. 

 
2. Methodology  

 
Ionospheric variability depends on local time, latitude, solar and geomagnetic activities and other 

factors [17-20]. The input parameters of the foF2 model are diurnal and seasonal variations, solar 
activity, solar flux and sunspot number. The proposed networks were developed using nine-year 
ionogram data collected from the Canadian Advanced Digital Ionosonde (CADI) at the Advanced 
Telecommunication Research Centre (formerly known as Wireless and Radio Science Centre), UTHM. 
Two different methods, namely, general BPNN and BPNN with PSO, were used to forecast the value 
of the critical frequency. 

 
2.1 Inputs to the Prediction Models 

 
Eight input parameters were used related to day number (DN), universal time (UT), sunspot 

number (SSN), solar flux F10.7, global geomagnetic index Kp and equatorial geomagnetic index Dst. 
These parameters represent diurnal and seasonal variations and solar and geomagnetic variations. 

 
2.1.1 Diurnal and seasonal variations 

 
Diurnal and seasonal variations were represented by a UT of 0000 to 2300 and a DN of 1 to 365. 

Based on the previous work, the sine and cosine of UT and DN were translated into quadrative 
components in Eq. (1) to Eq. (4) [2]. 

 
𝑈𝑈𝑈𝑈𝑈𝑈 = sin �2𝜋𝜋 ×𝑈𝑈𝑈𝑈

24
�         (1) 

 
𝑈𝑈𝑈𝑈𝑈𝑈 = cos �2𝜋𝜋 ×𝑈𝑈𝑈𝑈

24
�           (2) 

 
𝐷𝐷𝐷𝐷𝐷𝐷 = sin �2𝜋𝜋 ×𝐷𝐷𝐷𝐷

365
�                              (3) 

 
𝐷𝐷𝐷𝐷𝐷𝐷 = cos �2𝜋𝜋 ×𝐷𝐷𝐷𝐷

365
�                     (4) 
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2.1.2 Solar variations 
 
The SSN and solar flux F10.7 obtained from the NASA/Goddard Space Flight Centre Physics Data 

Facility were used as input parameters to indicate solar activity. The values can be grouped into three 
phases: low, medium and high solar levels of activity. Table 1 and Figure 1 present the yearly mean 
of SSN dan solar flux F10.7 and the daily SSN dan solar flux, respectively, from January 2004 to 
December 2012, which covers all three solar activity phases. 
 

Table 1 
Yearly mean of SSN and solar flux F10.7 from January to 
December (2004 to 2012) 
Year Mean SSN Mean Solar Flux F10.7 Solar Activity Level 
2004 65.34 106.49 High 
2005 45.71 91.71 Medium 
2006 24.67 79.99 Medium 
2007 12.64 73.07 Low 
2008 4.15 74.16 Low 
2009 4.76 70.54 Low 
2010 24.90 79.99 Medium 
2011 80.81 115.70 High 
2012 84.39 122.29 High 

 

 
Fig. 1. Daily sunspot number and solar flux F10.7 data from January 
2004 to December 2012 [21] 

 
 
 
 



Journal of Advanced Research in Applied Mechanics 
Volume 127, Issue 1 (2025) 16-29 

 

19 
 

2.1.3 Geomagnetic variations 
 
A geomagnetic storm is a substantial disturbance of Earth’s magnetosphere caused by an intense 

energy flux from the solar wind into the planet’s surroundings [17]. foF2 varies dramatically in 
accordance with solar and geomagnetic activities. Geomagnetic indices, such as Kp and Dst, reflect 
geomagnetic storm activities. 

This neural network modelling technique was used to predict foF2 values under quiet and 
disturbed conditions. Thus, geomagnetic storm parameters Kp and Dst were used to represent a 
geomagnetic storm activity. Table 2 provides the equatorial geomagnetic disturbance level, Dst.  
 

Table 2 
Equatorial geomagnetic disturbance level, Dst 
Geomagnetic disturbance level Peak 𝐷𝐷𝑠𝑠𝑠𝑠  (nT) 
Quiet condition  Peak 𝐷𝐷𝑠𝑠𝑠𝑠 > −20  
Weak storm Peak  𝐷𝐷𝑠𝑠𝑠𝑠 > −50  
Moderate storm −100 < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐷𝐷𝑠𝑠𝑠𝑠 < −50 
Intense storm Peak 𝐷𝐷𝑠𝑠𝑠𝑠 < −100 

 
Table 3 presents the level of global geomagnetic disturbance level, Kp, along with its equivalent 

value. 
 

Table 3 
Global geomagnetic disturbance level, Kp 
Geomagnetic disturbance level Kp index Equivalent Kp index 
Quiet condition 0–4 3–43 
Weak storm 5 47–53 
Moderate storm 6–7 57–73 
Intense storm 8–9 77–93 

 
Figure 2 shows the three-hour Kp and one-hour Dst data obtained from CDAWeb for the whole 

period of the training and testing data, which covers all geomagnetic conditions: quiet and storm. 
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Fig. 2. 3-hour Kp and 1-hour Dst data from January 2004 to December 2012 [21] 

 
2.2 Outputs of the Prediction Models 

 
This paper examined the association between the actual and predicted values of foF2 by using the 

ionogram data obtained from the CADI ionosonde at UTHM. Figure 3 illustrates an example of CADI’s 
ionogram showing the reflection signal from the F2 layer on 23 December 2004. The value of foF2 was 
manually extracted from the ionogram. 

 

 
Fig. 3. Example of an ionogram of CADI data from UTHM 
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2.3 foF2 Prediction Model using BPNN 
 
Figure 4 presents the BPNN topology used in this work with eight inputs and one output. The 

BPNN employed two hidden layers. The number of hidden neurons was determined based on a few 
trials that fulfilled the training stopping criteria. 

 

 
Fig. 4. BPNN topology 

 
2.4 foF2 Prediction Model Optimized using PSO 

 
PSO is a computational method that describes the movement of organisms in a flock of birds or 

a school of fish as simplified and optimized by the algorithm. In PSO, each particle can learn from the 
others’ outcomes, enabling it to use all available data [13]. Figure 5 illustrates the flowchart of BPNN–
PSO. The position is represented by P(m) and each particle moves at a velocity of V(m). Each part in 
the swarm is randomly driven by a controlled parameter that will be addressed later. After each 
particle movement, the particle evaluates it’s fitting value with the previous best value that the 
particle has achieved so far. If the current fitness value is better than the previous value, the particle 
position is recorded as a Pbest. A global best value is achieved by comparing all particles' fitness values, 
selecting the best value between them and comparing them with the previous global best value. If 
the previous global best value is lower than the current global best value, the global best value is 
recorded with its position and this new position represents a global best position as Gbest.  

Particle movement is controlled by three parameters: inertia weight (iw), local acceleration 
constant (C1) and global acceleration constant (C2). Inertia weight is used to monitor the contribution 
of the past particle velocity to the current particle velocity. Local acceleration constant (C1) is used to 
monitor the velocity's contribution due to the difference between the current part position. Due to 
the difference between current particle position and global best position, particle best position and 
global acceleration constant (C2) are used to monitor velocity contribution. The fitness function value 
for each particle is calculated.  

Then, the position of the particle whose fitness function value is the smallest is chosen as the 
local minimum (Pbest) and the global minimum (Gbest). Each particle's velocity and position are 
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updated using the known local and global best. The next step is verifying the stop conditions have 
been met. If yes, it is then stopped and the latest global best is selected as input for the neural 
network system. Otherwise, all steps from measuring fitness values are repeated until a new stop is 
achieved. 

 

 
Fig. 5. Flowchart of BPNN–PSO 

 
2.5 Training, Validation and Testing Phases 
2.5.1 Datasets 

 
The processed ionogram data were split into two sets: training and testing datasets. Several 

network properties were modified to construct the optimum BPNN model. Training was performed 
using feedforward backpropagation and the Levenberg–Marquardt algorithm (TRAINLM). Table 4 
provides the input ranges of the training dataset, which covers all three phases of solar activity, 
namely, low, medium and high and quiet and disturbed geomagnetic activity.  
 

Table 4 
Input ranges of the training dataset 
Model BPNN and BPNN–PSO 
SSN 0–167 
Solar flux F10.7 70.7–170.4 
Equivalent Kp index 0–87 
Dst index (nT) −320–30 

 
Table 5 shows the training parameters for the BPNN and BPNN–PSO models to predict foF2. All 

training parameters are the same for both models, except for the numbers of hidden neurons, 
namely, 13 for the BPNN model and 11 for BPPNN–PSO. These numbers were chosen because they 
resulted in the optimum training outcomes.  
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Table 5 
Training parameters for BPNN and BPNN–PSO 
Parameter BPNN BPNN–PSO 
Number of training data 10500 10500 
Number of hidden layers 2 2 
Number of hidden neurons 13 11 
Training function TRAINLM TRAINLM 
Adaption learning function LEARNGDM LEARNGDM 
Transfer function TANSIG TANSIG 
Performance function MSE MSE 

 
Table 6 presents the selected testing datasets to compare the performance of the BPNN and 

BPNN–PSO models during different solar activities and their monthly mean SSN and solar flux F10.7. 
 

Table 6 
Testing dataset and the monthly mean of SSN and solar flux F10.7 

Month/year Mean SSN Mean solar flux F10.7 Solar activity level 
May 2008 and April 2009 8.39 71.22 Low 
November 2004 and May 2005 44.72 93.00 Medium 
October 2011 and January 2012 110.00 146.71 High 

 
2.5.2 Error analysis 

 
The test dataset was used to assess the final output of the BPNN and BPNN–PSO models during 

the training phase. Not all the test data were included in the training and validation phases. The mean 
squared error (MSE) was selected to represent the results of the BPNN and BPNN–PSO models. The 
performance of both models was determined using the root-mean-square error (RMSE), mean 
absolute error (MAE), mean absolute percentage error (MAPE) and correlation coefficient (R). Eq. (5) 
was used to calculate RMSE: 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �1
𝑁𝑁
∑ �𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜����� − 𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝������

2𝑛𝑛
𝑖𝑖=1                                                                                                                    (5) 

 
In addition, MAE was determined based on the difference between the measured and predicted 

foF2 values for the BPNN model. MAE can be calculated as follows: 
 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑁𝑁
� �𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝 −  𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜�

𝑁𝑁
𝑖𝑖=1 ,                               (6) 

 
where fpre is the predicted value of foF2 and fobs represents the measured foF2 from the CADI data. 
MAPE can be established as follows:   

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁
� �𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝− 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜�

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜

𝑁𝑁

𝑖𝑖=1
 × 100%.                      (7) 

   
3. Results and Discussions  
3.1 Testing Result During Low, Medium and High Solar Epoch 

 
Table 7 summarizes the prediction results of the BPNN and BPNN–PSO models for years of low, 

medium and high solar activity considering more than 4,500 testing data. The forecast results for the 
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output of both models are similar to the findings by Zhao et al., [9], where foF2 was predicted using a 
neural network with a GA, RMSE ranged from 0.55 MHz to 2.09 MHz and R ranged from 0.73 to 0.94. 
The research conducted by Zheng et al., [1] yielded an RMSE between 0.54 MHz and 1.47 MHz, whilst 
R was between 0.82 and 0.92. 
 

Table 7 
Daily test results for low, medium and high solar activities 
using the BPNN and BPNN–PSO models 
Solar activity level Model MAPE (%) RMSE (MHz) 
Low solar activity BPNN 6.94 0.58 

BPNN–PSO 5.27 0.50 
Medium solar activity BPNN 5.60 0.49 

BPNN–PSO 4.16 0.32 
High solar activity BPNN 4.38 0.41 

BPNN–PSO 2.48 0.24 
 
The average RMSE for the BPNN and BPNN–PSO models during low, medium and high solar 

activities ranged from 0.24 MHz to 0.58 MHz, while the average MAPE was from 2.48% to 6.94%. R 
was between 0.88 and 0.94. RMSE and MAPE were better for the BPNN–PSO model compared with 
the performance of the BPNN model. The RMSE for the BPNN–PSO model was from 0.24 MHz to 
0.50 MHz. The MAPE values ranged from 2.48% to 5.27%. The BPNN–PSO model outperformed the 
BPNN model, exhibiting lower RMSE and MAPE. These findings were consistent with the results by 
Fan et al., [2], which stated the BPNN with PSO models provided higher predictive accuracy than the 
only BPNN model. In all three scenarios of low, medium and high solar activity, BPNN–PSO showed 
better forecasting compared with the BPNN model.  

Overall, forecasting during the period of high solar activity provided the lowest average predictive 
error of 2.48% using the BPNN–PSO model. This outcome could be due to the fact that during this 
period, even though the solar activity level was high, the geomagnetic activities were mostly quiet 
with only a few weak storms. However, despite having a large amount of low solar activity data during 
the training phase, the outcome of the testing phase for low solar activity testing data achieved a 
forecasting error of 5.27% for the BPNN–PSO model, which was relatively high compared with high 
and medium solar activity.     

Few cases are presented here representing the condition of low, medium and high solar activity 
in Figure 6 to Figure 8. Figure 6 compares the actual foF2 and the models’ predictions during low solar 
activity and quiet geomagnetic activity. During low solar years, the BPNN–PSO model produced 
higher predictive output than the BPNN model, in which the average RMSE and MAPE were 0.50 MHz 
and 5.27%, respectively. Overall, the BPNN–PSO model outperformed the BPNN model. The 
prediction of each model followed the trend of the actual value. However, the BPNN–PSO forecast 
was marginally accurate at most data points due to the optimum data selection using PSO algorithm 
prior to the training phase.  

For example, on 7 May 2008, when the Dst and equivalent Kp indices were −14 nT and 7, 
respectively (i.e., quiet condition), the prediction error of the BPNN–PSO model was 1.02%, resulting 
foF2 of 6.78 MHz, which was closer to the actual value of 6.85 MHz compared with the prediction of 
the BPNN model, which was 5.49% higher than the actual value. These results indicated that a low 
error percentage made the BPNN–PSO model more accurate than the BPNN model. Similarly, on 
20 April 2009 with Dst and equivalent Kp indices of −2 nT and 17, respectively, the prediction error of 
the BPNN–PSO model was only 0.39% (foF2= 7.64 MHz), which was closer to the actual value of foF2 
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(i.e., 7.61 MHz). The BPNN model underpredicted the actual value of foF2 with 7.01 MHz, which was 
7.88% lower than the actual value. 

 

 
Fig. 6. Comparison of actual foF2 and the models’ predictions during low solar activity 
(May 2008 and April 2009): (a) daily SSN and solar flux F10.7 (b) Dst and equivalent Kp 
indices (c) actual (black), BPNN (orange) and BPNN–PSO (blue) 

 
Figure 7 illustrates the performance of the BPNN and BPNN–PSO models during medium solar 

activity. Despite the occurrence of geomagnetic storms on 8 November 2004, both models fit the 
rising and falling segments of the foF2 curve well during medium solar activity, as shown in Figure 7(c). 
The BPNN–PSO model achieved lower prediction error between the actual and predicted values than 
the BPNN model. 

For example, on 8 November 2004, the values of Dst and equivalent Kp were −343 nT and 83 (Kp= 
8+), respectively, which can be considered an intense storm. The prediction of the BPNN–PSO model 
was 4.42 MHz, which was 0.94% closer to the actual value, that is, 4.38 MHz. Simultaneously, the 
BPNN model was 12.36% higher than the actual value (3.84 MHz). In addition, on 10 November 2004, 
the BPNN–PSO model demonstrated its capability to predict accurately during another occurrence of 
geomagnetic storm. On that day, the values of Dst and equivalent Kp were −135 nT and 77 (Kp= 8-), 
respectively, which meant an intense storm. The prediction of the BPNN–PSO model was 2.44 MHz 
and the actual foF2 was 2.11 MHz.  

Furthermore, on 15 May 2005, the BPNN–PSO model demonstrated its capability to predict 
accurately during the occurrence of geomagnetic storm. The values of Dst and equivalent Kp were 
−105 nT and 53 (Kp= 5+), respectively, suggesting an intense storm. The prediction of the BPNN–PSO 
model was 1.59% (7.65 MHz), which was closer to the actual foF2 of 7.53 MHz. The prediction of the 
BPNN model was overestimated because it was 4.59% (7.87 MHz) higher than the actual value. Figure 
7(c) shows the BPNN model could not match the actual foF2 values during these two months. Overall, 
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these results indicated the BPNN–PSO forecast outperformed that of the BPNN model, even when 
geomagnetic storms occurred during medium solar activity. 

 

 
Fig. 7. Comparison of actual foF2 and the models’ predictions during 
medium solar activity (November 2004 and May 2005): (a) daily SSN and 
solar flux F10.7 (b) Dst and equivalent Kp indices (c) actual (black), BPNN 
(orange), (red) and BPNN–PSO (blue)  

 
The BPNN–PSO model also performed better than the BPNN model during high solar activity. The 

average RMSE of the BPNN–PSO model was 0.24 MHz and its average MAPE was 2.48%. Figure 8 
compares the actual foF2 and the models’ predictions during high solar activity, with solar and 
geomagnetic activity values. 

On 23 January 2012, Dst and equivalent Kp were −62 nT and 23 (Kp= 2+), respectively. The BPNN–
PSO forecast was 5.68 MHz (MAPE= 1.39%), which was closer to the actual foF2 value of 5.76 MHz. By 
contrast, the BPNN model slightly underpredicted the actual value of foF2 at 1.91% error, forecasting 
an foF2 of 5.65 MHz. These observations revealed the BPNN–PSO forecast was apparently more 
accurate than that of BPNN during high solar activity with moderate storms. 

On 25 October 2011, the Dst and equivalent Kp values were −40 nT and 17 (Kp= 2-), respectively, 
signifying a weak storm. The BPNN–PSO prediction was more accurate in terms of percentage error, 
which was only 0.52%, forecasting an foF2 of 7.67 MHz. The BPNN model was 2.98% (7.48 MHz) below 
the actual value of foF2, that is, 7.71 MHz. The BPNN–PSO model can provide accurate predictions 
under quiet and disturbed geomagnetic conditions at high solar activity because it achieved lower 
prediction error at most data points. 

The BPNN–PSO model performed better than the BPNN model. These findings agree with the 
results by Zhao et al., [9], which concluded that the BPNN model with optimization methods, such as 
PSO and GA, can reasonably predict foF2, with only a slight error ranging from 0.13 MHz to 0.42 MHz. 
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Based on the findings when the BPNN–PSO model was used, the predicted and actual values of foF2 

were comparable under quiet and geomagnetic storm conditions. Our BPNN–PSO worked very well 
in forecasting the critical frequency of the F2 layer, even in high solar activity and achieved the best 
outcome during this period. However, the testing data mostly covered quiet and weak geomagnetic 
conditions. 

 

 
Fig. 8. Comparison of actual foF2 and the models’ predictions during 
high solar activity (October 2011 and January 2012): (a) daily SSN and 
solar flux F10.7 (b) Dst and equivalent Kp indices (c) actual (black), BPNN 
(orange) and BPNN–PSO (blue)  

 
4. Conclusions 

 
All the tests were performed using the BPNN and BPNN–PSO models. The test results were 

analysed in terms of MAPE and RMSE. Two datasets, namely, the monthly and diurnal test data, were 
used to perform the test phase. Data from May 2008, April 2009, November 2004, May 2005, October 
2011 and January 2012 were used to represent low, medium and high solar activity data. The BPNN–
PSO model, with RMSE and MAPE equal to 0.50 MHz and 5.27%, respectively, during low solar 
activity, performed the best. 

 The BPNN–PSO model performed better than the BPNN model during medium solar activity, 
achieving the lowest RMSE and MAPE of 0.32 MHz and 4.16%, respectively. Moreover, the best model 
for high solar activity was the BPNN–PSO model, with 0.24 MHz and 2.48% RMSE and MAPE, 
respectively. Overall, the performance of the BPNN–PSO model was better than that of the BPNN 
model during low, medium and high solar activities. In addition, the BPNN–PSO model performed the 
best, particularly during high solar activity, because it exhibited the lowest RMSE and MAPE. 

The proposed work can be further expanded by adjusting the weight and bias of the PSO 
algorithm during training to improve the performance accuracy of the prediction model, particularly 
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under disturbed conditions. Furthermore, different training methods, such as the Elman neural 
network, can be used to build an foF2 prediction model to determine whether different training 
methods can yield more reliable results than previous ones. 
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