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Nanoparticles, as one of the nanotechnology implementations, have a potential 
application due to their advantages compared to bulk size. The type of nanoparticle 
widely used for many applications such as sensing, imaging, photothermal therapy and 
optical devices is a metal nanoparticle through their properties. The advantages of 
metal nanoparticles are unique plasmonic properties, size and shape control flexibility, 
low toxicity and the ability to be functionalized with other substances. Besides silver 
and platinum, gold become the most popular in recent decades because it is highly 
stable and does not quickly oxidize or corrode. Also, gold nanoparticles have a high 
extinction coefficient and efficient energy transfer properties, so they can enhance the 
detection signals, resulting in increased sensitivity and lower detection limits. Then 
gold nanoparticles are also biocompatible in the biomedical field. Several researchers 
successfully synthesize gold nanoparticles with different shapes for various 
applications using bottom-up methods, i.e., chemical reduction, electrochemical 
deposition, sol-gel and seed-mediated growth and top-down methods, i.e., mechanical 
milling, laser ablation, lithography, template-assisted synthesis, high-energy ball 
milling and plasma-based techniques. But, gold with a bipyramid shape is rarely 
reported, causing limited literature sources that discuss gold nanobipyramids (GNBPs). 
GNBPs have a stronger electric field enhancement than other shapes, so GNBPs are 
highly sensitive to surrounding medium change marked with the high value of 
Refractive Index Sensitivity (RIS) and Figure of Merit (FOM). Therefore, GNBPs have 
excellent potential to be implemented in various fields. This work discusses and 
overviews the synthesis method to produce GNBPs for further application. GNBPs can 
be fabricated through a synthesis process using microwave-assisted, one-pot, galvanic 
replacement and seed-mediated growth, with seed-mediated growth being the 
popular method. Then, GNBPs can be functionalized with several substances such as 
polymers, biomolecules, amine and thiol to bind with specific targeted analytes. 
Hence, due to their plasmonic properties, GNBPs are promising materials for many 
fields, especially sensing applications.  
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1. Introduction 
 

Nanoparticles, one of the nanotechnology implementations, have become increasingly popular 
in recent years. This is because nanoparticles have a significantly higher surface area than bulk 
materials due to their small size [1]. The increases in surface area lead to greater interaction with the 
surrounding environment, improving reactivity in sensing, catalysis and adsorption [2]. Also, 
nanoparticles' properties can be adjusted by controlling their size [3]. Materials at the nano size 
exhibit unique properties, such as quantum confinement, surface plasmon resonance and optical, 
electrical and magnetic properties [4]. Nanoparticles require lower quantities of materials than bulk 
materials, leading to efficient use of resources [5]. They can also support greener and more 
sustainable processes [6]. 

Metal nanoparticles become widely used compared to other forms of nanoparticles due to their 
plasmonic properties. Plasmons are collective oscillations of free electrons on metal surfaces, which 
enhance light-matter interactions. Metal nanoparticles can strongly absorb and scatter light at 
specific wavelengths, making metal nanoparticles highly suitable for applications in sensing, imaging, 
photothermal therapy and optical devices [7]. Metal nanoparticles are also generally stable and 
chemically inert, making them ideal for various environments [8]. Moreover, certain metals such as 
gold and silver are biocompatible, making them suitable for biomedical applications [9,10]. They are 
also readily available commercially, making them easily accessible to researchers and industries. 
Metal nanoparticle costs have become more affordable over time, further contributing to their 
widespread use [11].  

Many researchers have successfully synthesized metal nanoparticles, both noble and metal oxide, 
with different structures for many applications such as biomedical and healthcare [12], catalysis [13], 
electronics and optics [14], energy conversion and storage [15], environmental remediation [16], also 
sensing and detection [17]. Gold nanobipyramids, as one of the noble metal nanoparticles, are rarely 
studied compared to spherical and rod shapes. As a result, the discussion and dissemination of 
research findings related to gold nanobipyramids are more limited. Whereas gold nanobipyramids 
have sharp and elongated tips, resulting in a strong electromagnetic field confinement and leading 
to enhanced light-matter interactions and increased sensitivity to the surrounding medium through 
the high value of Refractive Index Sensitivity (RIS) and Figure of Merit (FOM) [18]. Then, gold 
nanobipyramids have a relatively large surface area compared to other nanoparticle shapes, such as 
spheres or rods. The increased surface area provides more active sites for interactions with the 
surrounding medium. This allows for greater adsorption of target molecules or analytes onto the 
nanobipyramids surface, resulting in a stronger signal response [19]. Hence, this review discussed the 
synthesis method to produce gold nanobipyramids as sensing material focuses using several methods 
such as microwave-assisted, one-pot, galvanic replacement and seed-mediated growth. This work 
also reported about the functionalization process using polymers, biomolecules, amine and thiol on 
the gold nanobipyramids surface due to their specific targeted analyte binding. 

 
2. Metal Nanoparticles 

 
Metal nanoparticles are tiny particles of metal, typically with sizes ranging from a few to several 

hundred nanometres. They are composed of metal atoms arranged in a crystalline or amorphous 
structure. The unique properties of metal nanoparticles arise from their small size and high surface-
to-volume ratio, which result in distinctive physical, chemical and optical characteristics compared to 
their bulk counterparts [20]. Nanoparticles exhibit a quantum confinement phenomenon, the 
confinement of electrons and their energy levels within small dimensions [21]. 
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In recent decades, metal nanoparticles have been excellent candidates for several fields. When 
illuminated with light, metal nanoparticles can absorb and scatter light at specific wavelengths, which 
is highly sensitive to changes in the local environment. This sensitivity makes them ideal for detecting 
analytes and monitoring molecular interactions [22]. Besides, metal nanoparticles have a high 
surface-to-volume ratio due to their small size. This increased surface area provides more sites for 
analyte interactions, enhancing nanoparticle sensitivity [14]. They also exhibit low toxicity and can 
be functionalized with biomolecules for specific applications.  

The typical metal nanoparticle widely used as a sensing material in the sensor system is a metal 
oxide and noble metal. Metal oxide nanoparticles are metal atoms combined with oxygen atoms to 
form an oxide compound [23]. Metal oxides can be derived from a wide range of metals, such as 
titanium (Ti), zinc (Zn), iron (Fe) and copper (Cu). Metal oxides are widely used, mostly as sensing 
materials. For example, a study by Pereira-Silva et al., [24] reported the investigations through a 
Localized Surface Plasmon Resonance sensor using TiO2-Au to detect biotin conjugated with 
horseradish peroxidase (HRP). They also used streptavidin as a receptor and coated it in the sensor 
system. Another research is reported by Wang et al., [25] that conducted the detection of water 
pollutant p-cresol using ZnO and immobilized. He et al., [26] also used Fe2O3 as a metal oxide sensing 
material for glucose detection. They modify Fe2O3 by adding the Ni(OH)2 layer to improve the 
performance because Ni(OH)2 has high electrocatalytic activity. Then, Proença et al., [27] used CuO 
as a sensing material for carbon monoxide detection at room temperature. They modify with the 
implantation of Au to improve the system sensitivity.  

Meanwhile, noble metal nanoparticles refer to nanoparticles composed of noble metals, which 
include gold (Au), silver (Ag), platinum (Pt) and palladium (Pd). These metals are classified as noble 
due to their resistance to oxidation and corrosion and relatively low reactivity [12]. Several 
observations are reported due to the usage of the noble metal, especially as a sensing material, such 
as research by Huang et al., [28] that observed the detection of mercury(III) using gold with a 
spherical shape. The detection method they used was colorimetric determination. Chen et al., [29] 
also used noble nanoparticles as sensing material through silver nanoparticles to detect phosmet 
residues in Oolong tea by surface-enhanced Raman scattering. Another application of noble metal is 
platinum nanoparticles supported by graphite/gelatine hydrogel to detect H2O2 by electrochemical 
detection method. This research is reported by Thirumalraj et al., [30]. Yi et al., [31] also reported 
their study through chloramphenicol detection by an electrochemical method using palladium 
nanoparticles as the sensing material. They decorated the palladium with graphene oxide to increase 
the electrochemical characteristics. 

 
3. Gold Nanoparticles 

 
Even though other noble metals such as silver, platinum and palladium also possess unique 

properties, gold nanoparticles are commonly used as sensing material. This condition is based on 
their advantageous properties, such as exhibiting a strong and tuneable absorption peak in the visible 
to the near-infrared region and allowing for easy detection and quantification of target analytes 
through changes in the nanoparticle's optical response [32]. Then, gold nanoparticles are highly 
stable and do not quickly oxidize or corrode. This stability ensures the longevity and reliability of the 
sensing platform. In addition, due to their high extinction coefficient and efficient energy transfer 
properties, gold nanoparticles can enhance the detection signals, resulting in increased sensitivity 
and lower detection limits [33]. Generally, the method used to synthesize gold nanoparticles is 
bottom-up and top-down. 
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Bottom-up approaches, which include chemical reduction, electrochemical deposition, sol-gel 
synthesis and seed-mediated growth, are ways to create nanoparticles by assembling them from 
smaller parts or atoms [34]. In the chemical reduction process, gold ions in a solution are reduced by 
a reducing agent, such as sodium citrate or sodium borohydride. The reduction process produces 
gold nanoparticles with certain diameters [35]. A gold electrode is submerged in a solution containing 
gold ions during the electrochemical deposition process and an electric current is then supplied to 
cause the reduction of the gold ions and the deposition of gold nanoparticles on the electrode surface 
[36]. The sol-gel process then entails the creation of a gold ion-containing sol-gel precursor solution, 
followed by gelation and drying. The dried gel is then calcined to obtain gold nanoparticles embedded 
in a solid matrix [37]. Moreover, the seed-mediated growth method involves synthesizing smaller 
gold nanoparticles (seeds) using a reducing agent. These seed nanoparticles then serve as nucleation 
sites for the further growth of gold atoms, resulting in larger nanoparticles with controlled shapes 
and sizes [38]. 

Besides that, top-down methods physically manipulate and reduce bulk gold materials to obtain 
nanoparticles, such as mechanical milling, laser ablation, lithography, template-assisted synthesis, 
high-energy ball milling and plasma-based techniques [34]. In mechanical milling, bulk gold materials 
are subjected to mechanical forces, such as milling, grinding or attrition, to break them down into 
smaller particles and obtain gold nanoparticles [39]. In the laser ablation method, a high-energy laser 
is focused on a target material containing gold, leading to vaporization and subsequent condensation. 
The condensed particles form gold nanoparticles [40]. Then, the lithography method is used to 
pattern or mask bulk gold films or surfaces. Subsequent etching or deposition processes selectively 
remove or deposit gold, forming gold nanoparticles with desired shapes and sizes [32]. Next, 
template-assisted synthesis involves using templates or moulds, such as porous materials, self-
assembled monolayers or polymer matrices, to shape the synthesis of gold nanoparticles. The 
template guides the growth or deposition of gold, resulting in the desired nanoparticle structure [41]. 
In high-energy ball milling, high-energy collisions between balls and bulk gold materials cause 
mechanical deformation, fracturing and size reduction to produce gold nanoparticles. Furthermore, 
plasma-based techniques, such as plasma etching or sputtering, can selectively remove or deposit 
gold on surfaces, forming gold nanoparticles [42].  

The shape and symmetry of gold nanoparticles can be broadly categorized into two types, i.e., 
isotropic and anisotropic. Isotropic nanoparticles refer to those with a symmetrical shape, where all 
dimensions are roughly the same. They exhibit a spherical or near-spherical shape. Bottom-up 
techniques, such as chemical reduction, are frequently used to create isotropic gold nanoparticles, 
where the reaction conditions are carefully managed to produce consistent particle sizes. Gold 
nanoparticles with a spherical shape have a high degree of symmetry and are frequently employed 
[43]. On the other hand, anisotropic nanoparticles are asymmetric or non-spherical in form and have 
differing dimensions along various axes. The structures of anisotropic gold nanoparticles might 
include rods, wires, plates, prisms or bipyramids. These structures are created using various synthesis 
techniques, including chemical etching, template-assisted synthesis and seed-mediated growth. The 
anisotropic form has distinct optical, electrical and catalytic capabilities compared to spherical 
nanoparticles. Anisotropic gold nanoparticles are widely sought-after for numerous applications, 
particularly sensing platforms, due to their distinctive features [44]. 

 
4. Gold Nanobipyramids 

 
Anisotropic gold nanoparticles with bipyramidal structures are known as gold nanobipyramids 

(GNBPs). They are elongated nanoparticles with a bipyramid-like centre body and two pointed 



Journal of Advanced Research in Applied Mechanics 
Volume 127, Issue 1 (2025) 100-119 

 

104 
 

extremities. Typically, the triangle faces are broader and bigger, while the pointed ends are tapered 
and thinner. They have ten (111) triangular faces and 5-fold symmetry, with five triangle faces on top 
and down [45]. The illustration of GNBPs is shown in Figure 1, with length denoted as L and width 
designated as W. In addition, another parameter, i.e., aspect ratio, is the ratio between length and 
width [46]. 

 

½ W

L

 
Fig. 1. The illustration of GNBPs 

 
GNBP has a sharper Longitudinal Surface Plasmon Resonance (l-SPR) peak in the Localized Surface 

Plasmon Resonance (LSPR) spectrum, resulting in greater electric field enhancement than other 
forms. Figure 2 shows the LSPR spectrum of GNBPs. 
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Fig. 2. LSPR phenomenon by GNBPs with (a) the direction of the oscillation (b) the LSPR 
spectrum 
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Figure 3 shows the electric field enhancement of GNBPs compared to rod shape. It can be seen 
that GNBPs have higher electric field enhancement due to their sharp tips. The increasing electric 
field enhancement can lead to an increasing LSPR phenomenon, resulting in a higher sensitivity to 
surrounding medium change through FOM and RIS value. According to the study by Nafisah et al., 
[19] GNBPs have a sensitivity factor of 4.76 and 5.17 times larger than rod and bone rod shapes when 
applied for glyphosate detection.  

 

High

Low(a) (b)  
Fig. 3. Schematic of electric field enhancement 
of (a) bipyramid (b) rod shapes 

 
4.1 Synthesis  

 
Several methods can synthesize GNBPs, including microwave-assisted, one-pot, galvanic 

replacement and seed-mediated growth. In the microwave-assisted process, microwave radiation is 
used to heat the reaction mixture, accelerating the development of GNBPs. The advantage of this 
method is that the GNBPs results are uniform [47]. Several studies conducted this synthesis method, 
such as Huynh et al., [48] using microwave irradiation and applying GNBPs in immunosensors for 
chloramphenicol residual detection. They embedded the GNBPs in a quartz crystal microbalance 
system. Another research by Mendoza et al., [49] used this method to synthesize GNBPs with core-
shell structure, then used to generate singlet oxygen. On the other hand, this method is also used to 
produce Au supported by ZnO in a hexagonal pyramid shape and is utilized in solar energy conversion 
[50].  

The one-pot method is a simplified approach that involves the simultaneous formation of the 
GNBPs in a single reaction mixture. This method eliminates the need for separate seed synthesis and 
growth steps, making the process more convenient and efficient [51]. However, researchers rarely 
use this method due to several drawbacks, such as hardness to control size and shape through fast 
time reaction, lack of reproducibility, unsuitable for large-scale production and limited tunability 
because it is not easily controllable [52]. This method was successfully implemented in gold nanorod 
production, i.e., a study by Okitsu et al., [53] with a length of < 50 nm, a study by Lai et al., [54] with 
a length of 88 nm and a study by Abidi et al., [55] with a diameter of 10 – 15 nm. Another structure 
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produced by this method is nanoworms that show good performances as photothermal bactericidal 
in Escherichia coli and Staphylococcus aureus by Liao et al., [56]. 

The galvanic replacement method uses a sacrificial template with the desired shape, such as silver 
nanoprisms or gold nanorods. The template is immersed in a gold precursor solution and a suitable 
reducing agent is added. As a result, the gold ions from the precursor deposit onto the template 
surface, replacing the original material and forming GNBPs [57]. In the study reported by Xu et al., 
[58] the galvanic replacement method is used in purification and etching processes. GNBPs are 
produced embedded with Ag-Pt hollow nanostructure. In the study by Yip et al., [59] they make 
GNBPs coated with Ag and then use this method to replace Ag with Pd to exhibit larger responses for 
hydrogen detection. Zhuo et al., [60] also use this method to replace the GNBPs-coated Ag nanorod 
with a hollow nanostructure.  

Moreover, in the seed-mediated growth method, gold nanomaterial of a specific size and shape, 
called seeds, are first synthesized using a particular process, such as the citrate reduction process 
[61]. Then, the GNBPs are grown from these seeds by adding a reducing agent, such as ascorbic acid, 
gold precursor solution, chloroauric acid, the presence of a surfactant and cetyltrimethylammonium 
bromide [46]. So, the size and shape of the nanobipyramids are controlled in the growth process.  

Seed-mediated growth method is often used to synthesize GNBPs because it offers a high degree 
of control over the nanoparticles' size, shape and optical properties. Additionally, the seed-mediated 
growth method can produce GNBPs with high yield and reproducibility, making them reliable for 
large-scale production. The method also allows for fine-tuning the plasmonic properties of the 
nanobipyramids, such as their absorption and scattering spectra, by controlling the aspect ratio and 
other structural parameters [62]. Several studies have reported, such as Ye et al., [63] parameter 
research in silver nitrate, ascorbic acid and gold seed. Nafisah et al., [46] also reported the synthesis 
of GNBPs using a seed-mediated growth method; the parameter is replacing hydrochloric acid with 
other acids. This method expands to the etching process in producing a monodisperse of GNBPs, 
reported by Li et al., [64] with silver used in the etching process. An additional review of the synthesis 
process to produce GNBPs is shown in Table 1. 

 
Table 1  
Overview of synthesis method to produce GNBPs 

Year Author 
[ref] 

Contribution Remarks 

2012 Guo et 
al., [65] 

Using electrolyte-induced 
electrostatic screening method 
to separate gold with spherical 
shape. 

The purity obtained is above 90 %. The purity process is 
conducted by centrifuge growth solution. Then, the residue is 
dispersed using deionized water. After that, 1.5 M NaCl is 
added to the centrifuge process. The sample is dropped into a 
substrate and can be used further.  

2013 Zhou et 
al., [66]  

Using nanoseed with different 
sizes, i.e., 49 nm, 37 nm, 33 nm 
and 25 nm. 

The resulting GNBPs are as follows: 1) using 49 nm produces 
220 nm in length and 60 nm in width; 2) using 37 nm produces 
175 nm in length and 57 nm in width; 3) using 33 nm produces 
157 nm in length and 47 in width and 4) using 25 nm produce 
110 nm in the length and 36 nm in width. 

2014 Liu et al., 
[67] 

Compare the circular dichroism 
response of GNBPs with other 
shapes. 

The purification method is a centrifuge, increasing the yield 
from 30 % to 90 %. Then, the full width at the half-maximum 
value obtained is 50 nm. 

2015 Li et al., 
[64] 

Focused on the purification of 
GNBPs with several sizes. 

After synthesis, several steps are carried out for purification, 
i.e., Ag overgrowth, depletion-induced self-separation and 
chemical etching. 

2016 Qi et al., 
[68] 

Varying HCl, AgNO3, AA and 
seed solution volume 

The optimum volume for HCl and AA is 40 µL, AgNO3 is 50 µL 
and the seed solution is 10 µL. 
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2017 Kang et 
al., [69] 

Using CTBAB and Ag+ as 
surfactants produces GNBPs 
modification in surface 
concave. 

The value of near-field electric field enhancements improved 
3.3 times higher than flat GNBPs in 1,064 nm excitation. The 
size reached 285 nm in length and 59 nm in diameter. 

2018 Ngo et 
al., [70] 

Using CTAB as the surfactant 
and polyethylene glycol, 
polyvinyl alcohol and chitosan 
as the stabilizers. 

Stabilized GNBPs can decrease the purity of spherical shape 
and produce GNBPs with lower intensity peaks and blue shift. 
The average size after stabilization is 81 ± 6 nm in length and 
33 ± 3 nm in diameter. 

2019 Chateau 
et al., 
[62] 

Using HAuCl4 with higher 
concentration than usual, i.e., 
15 mM and 8-hydroxyquinoline 
as reducing agents. 

The seed solution produced is 120 mL, larger than usual in 8 – 
20 mL. The growth solution is added to the overgrown seed 
and produces GNBPs with high purity and diameter in 10 nm. 

2020 Ye et al., 
[63] 

Changing silver nitrate, ascorbic 
acid and gold seed flow rate. 

The results show that optimum GNBPs produce a flow rate of 
160 µL/min silver nitrate, gold seed and 120 µL/min ascorbic 
acid. In condition 160 µL/min silver nitrate, the length 
increases to 145 nm and the diameter increases to 48 nm. In 
condition 160 µL/min gold, the length and diameter were 
obtained at 104 nm and 34 nm. In condition 120 µL/min 
ascorbic acid, the length and diameter were obtained at 79 
nm and 38 nm. 

2021 Nafisah 
et al., 
[46] 

Using different acids in the 
growth process, i.e., HCl, H2SO4 
and HF.  

The optimum GNBPs yield was obtained in 0.6 mL HCl and 
H2SO4, while HF was 0.4 mL. HCl has significantly affected the 
length of GNBPs instead of the diameter. Meanwhile, H2SO4 

affects both parameters, but the optimum length is obtained 
in 0.4 mL. HF produces longer GNBPs than other acids. The 
best aspect ratio was obtained using 0.4 mL of HCl. 

2022 Ye et al., 
[71] 

The usage of CTAC and citric 
acid in the seeding process. 
Meanwhile, NADH is used 
instead of ascorbic acid in the 
growth process. 

The extinction value is 0.4011, with a wavelength of 522 nm. 
Then, the GNBPs solution was deposited into a four-layer 
substrate for further application. 

 
4.2 Functionalization 

 
The functionalization process can occur on the GNBPs surface for several reasons. 

Functionalization, for instance, can improve GNBPs' stability and dispersibility in wide solvents or 
biological conditions. It makes it possible to better manage and manipulate the nanoparticles by 
preventing agglomeration or precipitation. Functionalization can then offer target molecules 
particular binding sites. This circumstance enables the targeted detection of certain analytes or target 
biomolecules, such as proteins, DNA or tiny molecules [72]. Functionalization can also be utilized to 
modify GNBPs' optical characteristics. Adding certain compounds to the nanoparticle surface may 
alter light absorption and scattering, which modifies the plasmonic resonance characteristics [73]. A 
ligand on the surface of the GNBPs is the result of the functionalization procedure, as seen in Figure 
4. The functionalization agent might replace the CTA+ layer with cetyltrimethylammonium bromide 
in the synthesis process, reducing toxicity [74]. Several substances can be used as functionalization 
agents for GNBPs, such as polymers, biomolecules, amine and thiol.  
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Fig. 4. The illustration of the functionalization agent on the GNBPs surface 

 
Polymers can operate as a functionalization agent by providing receptive sites for attaching 

biomolecules like antibodies, proteins, DNA or enzymes. This enables specific targeting, 
bioconjugation and the creation of bioactive interfaces for various biomedical applications. Besides 
that, by modifying the surface properties of GNBPs with polymers, they can be readily dispersed in 
aqueous solutions or other organic solvents. Several studies have been successfully done through the 
usage of polymers. For example, a study by Liu et al., [75] used polyethylene glycol (PEG) to 
functionalize the GNBPs surface and observed its effect on cancer cell ablation. Then another 
observation is also reported by Amirjani et al., [76]. They use polyvinyl alcohol to functionalize GNBPs 
and then apply them in the photodynamic therapy of cancer. Stoia et al., [77] also use the kind of 
polymer, i.e., polyethyleneimine, to functionalize GNBPs and control drug delivery in the human 
body. 

Besides polymers, biomolecules can also be used as functionalization agents for GNBPs. Examples 
of biomolecules are proteins, peptides and nucleic acids. The study conducted by this 
functionalization agent is Wang et al., [78]. They use DNAzyme to functionalize GNBPs and apply 
them to the Vibrio parahaemolyticus detection. Basically, biomolecule ligands are used in simple 
shapes, for example, spherical. Shi et al., [79] research uses spherical DNA for miRNA detection in the 
exosome location. Li et al., [80] also used biomolecules such as non-thiolated nucleic acid to detect 
kanamycin antibiotics. Lee et al., [81] conducted the pRNA to functionalize gold with a spherical 
structure for microRNA detection. Mehranfar et al., [82] reported their research on implementing 
peptides as a ligand and applying them for SARS-CoV-2 detection. 

The usage of a functionalization agent depends on the analyte targeted. But amine and thiol 
groups become popular functionalization agents several researchers use because both can form 
strong covalent bonds with gold surfaces by forming gold-amine or gold-thiol complexes. These 
bonds are generally stable and resistant to degradation, ensuring the long-term stability of the 
functionalized GNBPs [83,84]. Furthermore, both amine and thiol can be easily modified with various 
molecules, such as biomolecules, polymers or dyes, introducing specific properties or functionalities 
to the GNBPs [85]. Then, amine and thiol are commonly found in biological systems, making them 
compatible with natural environments. The functionalization of GNBPs with amine or thiol groups 
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can enhance their biocompatibility and minimize potential cytotoxicity [86]. According to their 
advantage as functionalization agents, amine and thiol are most widely used to detect glucose. 

Amine groups (-NH2) are primary functional groups that can form covalent bonds with glucose 
molecules through an imine formation or Schiff base reaction. This reaction involves the reaction 
between an aldehyde or ketone group on the glucose molecule with an amine group on the ligand. 
The resulting imine bond is stable and can detect glucose through changes in the plasmonic 
properties of the GNBPs [87]. On the other hand, thiol groups (-SH) can form disulfide bonds with 
glucose molecules, allowing for specific and selective detection of glucose through changes in the 
plasmonic properties of the GNBPs [88]. In addition, the overview of functionalization using amine 
and thiol in various nanomaterials for glucose detection is shown in Table 2 and Table 3.  

 
Table 2 
Overview of nanoparticle functionalization using amine to detect glucose 
Year Author 

[ref] 
Nanoparticle Functionalization 

Agent 
Method of 
Detection 

Remarks 

2010 Li et al., 
[89] 

Organosilica 
nanosphere 

3-(trimethoxysilyl) 
propyl 
methacrylate  

Electroche
mical 

Nanocomposite immobilized using glucose 
oxidase. Then, the sensitivity reaches 
122.6 µAmM-1cm-2 and the detection limit is 
2 µM. This study uses a linear range of 
glucose in 0.006 – 1.3 mM.  

2011 Tasviri et 
al., [90] 

TiO2-CNTs 3-aminopropyl-
triethoxysilane 

Catalysis The time response is obtained at 3 s. Also, 
the sensor's sensitivity is 0.007 µAM-1 
with a detection range of up to 266 µM. 

2012 Gu et al., 
[91] 

Graphene-
nanoplates 

Amine-terminated 
ionic liquid 

Electroche
mical 

The linear range of glucose is 10 – 500 µM 
with a detection limit of 3.33 µM. The 
time detection needed is 30 minutes. The 
basal level obtained is 0.376 ± 0.028 mM. 

2013 Zhang et 
al., [92] 

Graphene 
composite 

Amine-terminated 
ionic liquid 

Electrocatal
ysis 

The minimum value of glucose that can be 
detected is 0.05 mmolL-1. The linear 
response towards glucose is up to 8 
mmolL-1. 

2014 Khodada
dei et al., 
[93] 

Multiwalled 
CNTs 

3-aminopropyl-
triethoxysilane 

Electroche
mical 

Glucose oxidase is immobilized in a glassy 
carbon electrode. The range used for 
glucose is 17 – 646 µM and the sensitivity 
reaches 12.3 µA/mMcm2. The detection 
limit is 9 µM, with the Michaelis-Menten 
constant being 480 µM. 

2015 Vasu et 
al., [94] 

Graphene 
oxide 

N-(3-
dimethylaminopro
pyl)-N-
ethylcarbodiimde 
hydrochloride 

FET devices The variation of glucose concentration is 
100 pM – 100 mM, with a limit of 
detection in 2 nM. Electrical conductance 
changes to 0.1 mM when it detects other 
analytes, i.e., lactose. 

2016 Dabbawal
a et al., 
[95] 

Nanoporous 
polymer  

Non-coordinating 
tertiary amine 
moieties 

Catalytic 
hydrogenat
ion 

Ru supports the nanomaterial and the 
system's selectivity reaches 98 %. 

2017 Wang et 
al., [96] 

AgInS2 
quantum 
dots 

Polyethyleneimine Photolumin
escence 

The nanomaterial is synthesized using an 
electric pressure cooker. The limit of 
detection is 0.9 µM, with a linear 
concentration between 
photoluminescence and glucose of 1 – 10 
µM and 10 – 1,000 µM.  
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2018 Navaee 
et al., 
[97] 

Flavine 
adenine 
dinucleotide 

Amino-Gr Electroche
mical 

Sensitivity reached 0.177 AM-1cm-2 and the 
range of glucose used was 0.5 – 6.9 mM. 
In addition, the limit of detection of the 
system is 50 µM. 

2019 Buk et al., 
[98] 

GNPs/CQDs Cysteamine Photocatal
ysis 

Amine is used to functionalize GNPs 
before combining with CQDs. Then, the 
nanomaterial combination is immobilized 
using glucose oxidase. The sensitivity 
resulting from this system is 626.06 µA 
mM-1cm-2. 

2019 Maity et 
al., [99] 

CNTs Ethylenediamine Electroche
mical 

After functionalization, CNTs are 
immobilized with glucose oxidase. The 
sensitivity is 246 µAmM-1cm-2 with a 1 – 10 
mM detection range. The limit of 
detection is 63 µM. 

2020 Ortega-
Liebana 
et al., 
[100] 

GNPs-
mesoporous 
silica 

3-
aminopropyltrieth
oxysilane 

Catalysis Nanomaterial is immobilized with 
electrostatic attraction using glucose 
oxidase. The limit of detection is 150 mM.  

2021 Van Tam 
et al., 
[101] 

Graphene 
quantum 
dots 

3-
aminopropyltrieth
oxysilane 

Fluorescent Nanocomposite is synthesized using 
microwave-assisted pyrolysis of fructose. 
The detection limit is 2.1 µM and a linear 
response is obtained in 0 – 1 mM.  

2022 Kaimal et 
al., [102] 

Graphene 
quantum 
dots – silica 
NPs 

dopamine 
hydrochloride 

Electroche
mical 

The glucose concentration range is 0.5 – 7 
µM with a detection limit of 0.5 µM. The 
sensitivity was established in 2.64 µAµM-1. 

 
Based on Table 2 and Table 3, amine and thiol are commonly used as ligands for glucose 

detection, but no functionalized GNBPs exist. Hence, functionalization on the GNBPs is a promising 
sensing material that refers to the advantages of GNBPs compared to other structures. 

 
Table 3 
Overview of nanoparticle functionalization using thiol to detect glucose 
Year Author Nanoparticle Functionalization 

Agent 
Method of 
Detection 

Remarks 

2007 Pandey et 
al., [103] 

GNPs 11-
mercaptoundecanoic 
acid 

Electrocata
lysis 

Glucose oxidase is used to immobilize 
the nanocomposite and the result 
affected is the increase of the 
Michaelis-Menten constant (from 3.74 
mM to 5.85 mM). Also, the shelf life of 
this functionalized nanomaterial is 6 
months due to controlling pH and 
temperature.  

2011 Radhaku
mary et 
al., [104]  

GNPs 16-
mercaptohexadecanoic 
acid 

Visible 
colour 
change 

Glucose oxidase is used in 
functionalized GNPs. Then, the 
solution's colour is changed from red 
to blue if glucose is detected in 100 
µg/mL.  

2012 Chen et 
al., [105] 

Gold 
nanoporous 

5,5-dithiobis (2-
nitrobenzoic acid) 

Electroche
mical 

The role of thiol is to immobilize 
glucose oxidase enzymes on 
nanoporous surfaces. The limit of 
detection is 10 µM and the linear 
response is obtained in 3 – 8 mM.  
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2013 Vesali-
Naseh et 
al., [106] 

GNPs-CNTs 5,5-dithiobis (2-
nitrobenzoic acid) 

Electrocata
lysis 

Glucose oxidase is used to immobilize 
nanocomposite in a hybrid way. The 
glucose concentration range used is 
0.4 – 4 mM, with limit detection in 3 
µM. Also, the sensitivity is obtained in 
23.1 µAmM-1cm-2. It is crucial to 
control the pH 7 in the redox process 
when the hybrid way has occurred.  

2014 Chowdhur
y et al., 
[107] 

gold-
polyaniline 
nanocompos
ite 

thiol-ended ssDNA Electroche
mical 

This system used 
chronoamperometric and flow cell 
methods, with a biomolecule attached 
to glucose oxidase. The detection limit 
is 1 µM, with a sensitivity value of 
14.63 µAmM-1cm-2. In addition, the 
glucose concentration range is 1 µM – 
20 mM.  

2015 Bas [108] GNPs 4-aminothiophenol Electrocata
lysis 

Thiol groups are mixed with graphene 
oxide to detect glucose. Liner range 
obtained in 0.1 – 3.8 mM with a 
sensitivity of 17.68 µAmM-1cm-2. 
Furthermore, the limit detection of 
glucose is 0.075 mM.  

2016 Spampina
to et al., 
[109] 

GNPs 1-ß-D-thio-glucose 
modification 

Catalysis The functionalization process works 
well on flat surfaces and affects the 
lower density. 

2017 Hazra et 
al., [110] 

RuNPs 3-mercaptopropyl 
trimethoxysilane 

Electroche
mical 

The electrode used is screen-printed 
Au. The glucose concentration range is 
10 µM – 100 mM, with a detection 
limit of 1.67 µM (0.3 ppm). 

2018 Nandwan
a et al., 
[111] 

Fe3O4/MoS2 

nanocompos
ite 

11- 
mercaptoundecanoic 
acid 

Absorbanc
e 

Fe3O4/MoS2 nanocomposite has a 
higher catalysis effect than Fe3O4 

nanoparticle and MoS2 nanosheet. The 
limit of detection is 2.4 µM. 

2019 Murugan 
et al., 
[112] 

GNPs-CNTs Mercaptoacetic acid, 
mercaptopropionic 
acid and 
mercaptosuccinic acid 

Electroche
mical 

GNPs average size is 14 nm using 
mercaptosuccinic acid. The glucose 
concentration range is 0.12 – 4 µM 
with limit detection in 0.036 µM. Also, 
the optimum potential applied in the 
system is 0.8 V/s. 

2019 Akhtar et 
al., [113] 

Gold thin 
film 

Thiol graphene Electroche
mical 

The sensitivity is 3.1732 µAmM-1cm-2, 

with a detection limit of 0.3194 mM. 
The linear response is obtained in the 
3 – 9 mM, with R2 being 0.94693. The 
system is immobilized using 1-ethyl-
3(3- (dimethylamino) propyl) 
carbodiimide.  

2020 Baghayeri
et al., 
[114] 

CuO 
honeycombs 
/AgNPs 

triethoxypropylthiole Electroche
mical 

The thiol solution is dropped into a 
carbon electrode and then 
nanomaterials are electrodeposited 
on the surface. The sensor is stable in 
0.06 – 1,000 µM because it produces a 
linear response. Then, the limit of 
detection is 15 nM.  
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2021 Chen et 
al., [115] 

Carbon dots mercaptopropylamine Fluorescen
ce 

Glucose oxidase is used to support the 
catalytic oxidation process. The range 
of glucose that can be detected is 0.1 
– 1,000 µM, with the limit detection of 
this device being 0.03 µM. 

2022 Qian et 
al., [116] 

Graphene 
oxide/PEG/r
hodamine 
B/gold 
nanocompos
ite 

Dithiobis  Electroche
mical 
 
 

Nanographene oxide is a base for the 
thiol active side. The range of glucose 
used is 0.5 – 1 mM. In addition to 
glucose, −0.295 𝑉𝑉 it changes those 
values as operating potential points.  

 
5. Summary and Future Prospective 

 
GNBPs have higher sensitivity compared to other shapes. This condition gives GNBPs an excellent 

potential to be applied in many fields. GNBPs can be synthesized using microwave-assisted, one-pot, 
galvanic replacement and seed-mediated growth. Seed-mediated growth become a popular method 
that researchers widely use due to the advantages of a high degree of control over the nanoparticles' 
size, shape and optical properties. Also, using the seed-mediated growth method, GNBPs can be 
synthesized in large-scale production. Then, GNBPs can be functionalized using polymers, 
biomolecules, amine and thiol. The functionalization agent chosen depends on the specific bind to 
the targeted analyte. However, the researcher commonly uses amine and thiol because of their 
ability to produce solid covalent bonds on the GNBPs surfaces and they are primarily used to detect 
glucose analytes. Hence, GNBPs functionalized with amine and thiol become promising materials for 
sensing applications, especially in glucose detection. Further modification and development on the 
fabrication of GNBPs are needed to improve the sensing performances. 
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