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Longitudinal dynamics control is one of the essential tasks for an autonomous vehicle, 
where it deals with speed regulation to ensure smooth and safe operations. To design 
a good controller, a simple yet reliable mathematical model is needed so that it can be 
used as a plant and to tune the controller. Although there are many types of 
mathematical models available in the literature, finding the right one for control 
application is essential. The model cannot be too complex and can be too simple. Thus, 
the main objective of this work is to derive a simple yet reliable vehicle longitudinal 
model so that it can be used as a simulation plant in MATLAB Simulink to test or tune 
various types of control algorithm's performance. The model consists of three main 
parts which are the vehicle body dynamics, simplified power train dynamic, and 
braking dynamic. To validate the reliability of the model, standard urban drive cycles 
will be used as a reference speed and a hierarchical PID control structure with inverse 
plant model is used to control the pedal inputs replacing the driver in simulation 
environment. Results show that the controller managed to track the drive cycle with 
an acceptable pedal pressing response which is between 40% throttle press and 20% 
brake press that in line with the normal operation of a vehicle. Although only 
simulation result is presented, the model can be used as a good starting point for 
further development and testing of different types of control algorithms for future 
work. 

 

Keywords: 
Vehicle longitudinal dynamics; 
hierarchical PID controller; system 
identification; speed control  

 
1. Introduction 

 
Vehicle longitudinal dynamics refer to the motion and behaviour of a vehicle when it travels in 

the longitudinal axis. The motion includes factors such as acceleration, deceleration, speed, position, 
as well as the forces that are acting on the vehicle. There is a wide range of applications in the 
automotive industry that utilise vehicle longitudinal dynamics such as design and optimisation of 
vehicle performance, evaluation of vehicle safety, development of vehicle control system, and 
simulation analysis [1-3]. In general, there are various modelling approaches and levels of complexity 
in the model, which depend on the type of application. For design and optimisation work, a high-
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fidelity mathematical model is usually used to analyse the vehicle's performance for improving its 
fuel efficiency and safety requirements [4]. Nevertheless, this type of model will consume high 
computation time due to the usage of complex equations to retain the accuracy of the result. For 
control applications, a simple model is usually enough to ensure fast calculation and decision-making 
processes, especially if model-based control were to be implemented.  

Based on the literature review, there are two ways to obtain a mathematical model which is via 
system identification and derivation using the first principal law. System identification is a process of 
building mathematical models based on observed data. The goal is to identify the underlying 
dynamics of a system, which may be difficult to measure directly. The process of system identification 
involves collecting data from the real system using sensors and then using mathematical techniques 
such as least squares regression, maximum likelihood estimation, and Bayesian methods to estimate 
the parameters of a model that best describes the observed data. Although there are many successful 
implementations to develop the vehicle longitudinal dynamics as reported by Jin et al., [5], Bernardo 
et al., [6] and Syahira et al., [7], it should be noted that this technique can be quite challenging, where 
it requires careful consideration of the limitations and uncertainties of the data, as well as the choice 
of appropriate modelling techniques. Besides, the obtained model can only be used for a specific 
vehicle that has been trained by their data and it is quite difficult to generalise the model for different 
types of vehicles.  

The second approach or the most common approach is by using the first principal modelling, 
which builds a mathematical model based on the fundamental physical laws. There are many 
examples of this model specifically for vehicle longitudinal dynamics that can be found in literature 
such as in the work of Cole et al., [2], Gillespie [8], and Rajamani [9]. Nevertheless, the first principles 
modelling approach can be time-consuming and challenging, requiring a deep understanding of the 
physical principles and properties of the system being modelled. Besides, the determination of 
individual parameters such as masses, coefficients and others can be quite tedious.  However, it 
provides a rigorous and accurate description of the system's behaviour that can be used to design 
and optimise control systems for a wide range of applications. Besides, if ones would like to develop 
a general model, this will be the best approach as one only needs to change the parameters according 
to the vehicle of interest.   

In general, vehicle longitudinal dynamics has three major components, namely: vehicle body 
dynamics, powertrain dynamics and brake dynamics. Although many works have covered the 
derivation of these systems, finding a suitable one may be challenging. This is because different 
authors provide different kinds of simplification. For example, in the work of Amer et al., [10], the 
vehicle body model includes the effect of bending while other's work such as Fauzi et al,. [11] 
neglected it. Some authors also improved the fidelity by including the dynamics of road slope [12] or 
by considering a full dynamic braking system which included a tire model that covers the effect of 
deflection and coefficient of friction [13]. As in powertrain dynamics, several authors have considered 
a simplified power loss dynamic relationship between the mechanical device ranging from the torque 
converter to the final drive [14]. While others just assumed a simple equation to sum all the power 
lost based on a look-up table [15]. Similar concepts can be found in describing engine dynamics where 
some used a complete engine equation such as [16], and others by using a lookup table based on the 
engine dyno chart [17]. Clearly, one needs to use a suitable strategy for one’s application. As in this 
work, the focus is more on a model that can be used to develop a controller and thus a simplified, 
yet reliable model is needed that will only focus on longitudinal motion by neglecting the motion in 
other axes.   

The application of mathematical model in automotive control system is very crucial.  For instance, 
researchers have extensively considered the use of Model Predictive Control (MPC) due to its ability 
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to handle multiple constraints and predict future vehicle states. In the longitudinal dynamics, hybrid 
MPC approaches have been utilised for their efficiency in managing intelligent vehicle speeds and 
accelerations while considering external constraints and uncertainties that showcases significant 
improvements in handling dynamic traffic scenarios [18]. Similarly, for tackling the combined lateral 
and longitudinal dynamics, robust control methods like the super-twisting sliding mode controller 
have been applied. This method offers high robustness against model uncertainties and disturbances, 
crucial for maintaining path stability and preventing collisions [19]. Moreover, the integration of 
longitudinal collision avoidance with lateral stability has led to advanced adaptive control systems. 
These systems synergize multiple control strategies to simultaneously ensure collision prevention 
and vehicle stability [20]. In general, all these control methods require a reliable mathematical model 
to derive the control law or tune the required parameters.  

Based on the previous discussion, it should be note that the main contribution of this paper is to 
develop a simple and reliable mathematical model for vehicle longitudinal dynamics that can be used 
a simulation plant to test and tune various control methods. The model of interest for the Internal 
Combustion Engine (ICE) based vehicle is derived based on the available parameters in MATLAB 
extension file [21], which is quite good for testing and validating a simple speed and distance control 
for Adaptive Cruise Control (ACC) development. A few modifications will be made to enhance its 
reliability to fit a real application. The paper is organized as follows: Section 2 discusses the 
methodology that covers the modelling work of each component along with its simplification and 
modification. Section 3 provides the hierarchical PID control architecture for simple speed control to 
track a standard drive cycle for validation purposes. Section 4 analyses and discusses the simulation 
results and Section 5 provides the conclusions.  

 
2. Vehicle Longitudinal Dynamics Model 
 

The model for vehicle longitudinal dynamics consists of three main parts as shown in Figure 1: 
vehicle body dynamics, powertrain dynamics, and braking dynamics. The inputs to the model are the 
percentage of throttle pressing 𝑥𝑥𝑡𝑡 and percentage of brake pressing 𝑥𝑥𝑏𝑏. The output will be the vehicle 
speed 𝑣𝑣 and the parameters of 𝐹𝐹𝑡𝑡 and 𝐹𝐹𝑏𝑏 both denote the states that consist of tractive force 𝐹𝐹𝑡𝑡 and 
braking force 𝐹𝐹𝑏𝑏, respectively. The detailed derivation for each part is given in the following 
subsections, where the parameters and equations are based on these references [9,21,22].   

 

 
Fig. 1. Block diagram for longitudinal vehicle dynamic 

 
2.1 Vehicle Body Dynamics 
 

The vehicle body dynamic consists of the summation of forces that are acting on the car as shown 
in Figure 2. There are five main forces namely: total tractive force 𝐹𝐹𝑡𝑡, total braking force 𝐹𝐹𝑏𝑏, weight 
𝑚𝑚𝑚𝑚, total rolling resistance force 𝐹𝐹𝑟𝑟, and aerodynamic force 𝐹𝐹𝑎𝑎.   
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Fig. 2. Free body diagram for vehicle body [19] 

 
Assuming the respective forces that developed in the tires can be summed directly, the equation 

of motion can be derived based on Newton’s second law: 
 

𝑚𝑚
𝑑𝑑𝑣𝑣
𝑑𝑑𝑑𝑑

= 𝐹𝐹𝑡𝑡 − 𝐹𝐹𝑏𝑏 − 𝐹𝐹𝑟𝑟 − 𝐹𝐹𝑎𝑎  −𝑚𝑚𝑚𝑚 sin𝜃𝜃 (1) 

 
The inputs to this system are the total tractive force that is generated from the powertrain 

dynamics and the total braking force that is developed by braking dynamics. These inputs will be 
generated by their own equations which will be discussed in the later subsection. As for the 
aerodynamic force and rolling resistance force, it can be expressed as:  

 
𝐹𝐹𝑎𝑎 =  0.5𝜌𝜌𝜌𝜌𝐶𝐶𝑑𝑑(𝑣𝑣 + 𝑣𝑣𝑤𝑤)2 (2) 

 
𝐹𝐹𝑟𝑟 =  𝐶𝐶𝑟𝑟𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 (3) 

 
The description and value for parameters in Eq. (2) and Eq. (3) that are used in this work are given 

in Table 1. It should be noted that the rolling resistance force depends on the normal force that is 
generated by the car. To simplify the modelling process, only the normal force that is related to the 
weight is considered although more detailed calculations that involved the summation of the 
moment can be used for higher fidelity response [9].  

 
Table 1 
Parameters for vehicle body dynamics [21] 
Parameters Value 
Mass of vehicle, m 1535 kg 
Gravitational constant, g 9.81 m/s2 
Slope angle, 𝜃𝜃 0O 
Rolling coefficient, Cr 0.015 
Air density, ρ 1.202 kg/m3 
Front cross-section area, A 1.88 m2 
Drag coefficient, Cd 0.31 
Wind gust, vw 0 m/s2 
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It should be mentioned that the parameters of slope angle and wind gust depend on the 
instantaneous environmental conditions. Currently, these parameters are fixed according to the 
values in the table, where it is assumed that the vehicle is traveling on a flat road without any wind 
gust. However, it can be changed to assess the robustness of a controller for future work.  

 
Remark 1: Technically, negative velocity means that the vehicle is moving in the reverse direction. To 
avoid the model from giving negative velocity, a minor modification on the set of conditions needs 
to be implemented based on the current value of brake pressing and velocity: 
 

i. If the brake is activated and velocity is negative then the net tractive force (𝐹𝐹𝑡𝑡 − 𝐹𝐹𝑏𝑏) is set to 
zero, which represents the vehicle is in a complete stop.  

ii. Similarly, the rolling resistant force is set to zero if the current velocity is negative. This is to 
indicate that when the vehicle is not moving, the coefficient of kinetic friction should be zero. 

 
2.2 Brake Dynamics 
 

For simplicity, the brake dynamic can be considered to have a linear relationship between the 
input brake pressing 𝑥𝑥𝑏𝑏 and output brake force 𝐹𝐹𝑏𝑏. The equation for brake can be represented as in 
Eq. (4) by referring to the schematic diagram in Figure 3.  

 

𝐹𝐹𝑏𝑏  =
µ𝑘𝑘𝑃𝑃𝑃𝑃𝐷𝐷𝑏𝑏2𝑅𝑅𝑚𝑚𝑁𝑁

4𝑅𝑅𝑤𝑤
 (4) 

 

 
Fig. 3. Schematic of disk brake system [18] 

 
where µ𝑘𝑘 is the disk pad coefficient of kinetic friction, 𝑃𝑃 is the applied brake pressure, 𝐷𝐷𝑏𝑏 is the brake 
actuator bore diameter, 𝑅𝑅𝑚𝑚 is the mean radius of brake pad force on the brake rotor, 𝑁𝑁 is the number 
of brake pad assembly 𝑅𝑅𝑤𝑤 is the wheel radius. Based on Eq. (4), it can be noted that all the parameters 
other than 𝑃𝑃 are constant. Empirically, 𝑃𝑃 can be directly mapped to the percentage of pedal pressing 
𝑥𝑥𝑏𝑏, thus the equation can be reduced to:  
 
𝐹𝐹𝑏𝑏 = 𝑘𝑘𝑏𝑏𝑥𝑥𝑏𝑏 (5) 
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Here, the 𝑘𝑘𝑏𝑏 is assumed as a brake constant that consists of all the parameters other than 𝑃𝑃 in Eq. 
(4). The brake constant can be obtained by using a brake testing machine. However, in this work for 
simplicity, the constant 𝑘𝑘𝑏𝑏 value is assumed arbitrarily to be 100 just to get a direct map between 
pedal pressing and brake force.  
 
2.3 Powertrain Dynamics 
 

The powertrain dynamics consist of many interconnecting subsystems such as engine torque 
map, gear scheduling logic, engine speed estimator, and driveline. Figure 4 shows the overall block 
diagram for powertrain dynamics where the input is throttle pressing 𝑥𝑥𝑡𝑡 while the output is the 
traction force 𝐹𝐹𝑡𝑡. Note that the velocity 𝑣𝑣 in the figure is taken from the output from the vehicle body 
dynamic model in Section 2.1.  

 

 
Fig. 4. Block diagram for powertrain component  

 
2.3.1 Engine torque map 
 

The engine torque is estimated based on the current engine speed, 𝜔𝜔𝑒𝑒 and its Brake Mean 
Effective Pressure (𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃) using the relationship below [18]: 

 

𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 =
𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃�𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

4𝑃𝑃
 (6) 

 
where 𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑= 0.0053 l is the engine vehicle’s stroke displacement measured in litres. Note that the 
𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃 can be obtained from a correlation between the 𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃 and the 𝜔𝜔𝑒𝑒 through experiment data 
as shown in Figure 5 by a simple lookup table [9,21]. 
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Fig. 5. Typical BMEP vs engine speed curve 

 
It is important that the 𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 obtained from Eq. (6) does not exceed the specified maximum 

engine torque calculated based on the maximum engine power, given by [21]: 
 

𝑇𝑇𝑒𝑒,𝑙𝑙𝑑𝑑𝑚𝑚 =
𝑃𝑃𝑒𝑒,𝑚𝑚𝑎𝑎𝑚𝑚

𝜔𝜔𝑒𝑒
 (7) 

 
Where in this case, 𝑃𝑃𝑒𝑒,𝑚𝑚𝑎𝑎𝑚𝑚 = 280000 W is assumed as the maximum engine power. This value is usually 
specified in the vehicle's technical specification. Thus, the maximum engine torque 𝑇𝑇𝑒𝑒 at a given pedal 
position, 𝑥𝑥𝑡𝑡, is given by: 
 

𝑇𝑇𝑒𝑒,𝑙𝑙𝑑𝑑𝑚𝑚 =
𝑃𝑃𝑒𝑒,𝑚𝑚𝑎𝑎𝑚𝑚

𝜔𝜔𝑒𝑒
 (8) 

 
where 𝑇𝑇𝑒𝑒,𝑚𝑚𝑎𝑎𝑚𝑚 is set by taking the minimum value between the two as formulated in Eq. (9). 
 
𝑇𝑇𝑒𝑒,𝑚𝑚𝑎𝑎𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,𝑇𝑇𝑒𝑒,𝑙𝑙𝑑𝑑𝑚𝑚� (9) 

 
Remark 2: When the vehicle is stationary or not moving i.e., 𝑣𝑣 = 0 m/s, the engine torque should be 
𝑇𝑇𝑒𝑒 = 0 since 𝑥𝑥𝑡𝑡 = 0. This is because although the engine is still running, the torque is not transferred 
to the drive line. Thus, it is important to include this rule in the Simulink model.  
 
2.3.2 Gear shift logic 
 

In ICE vehicles, a gear ratio needs to be changed to provide optimum torque to the driveline. This 
is because the engine can only provide maximum torque at a specific engine speed and hence a 
suitable gear ratio is needed for different driving speeds. Since the real gear logic shift is quite difficult 
to obtain from a manufacturer, a default logic from the MATLAB example is used in this work [21]. 
Assuming a car has 6 different gears including the final drive, the upshift and downshift logics as 
shown in Figures 6 and 7, respectively can be used. These logics are based on the current 
measurement of speed and throttle pressing. Again, a simple lookup table can be used to obtain a 
suitable value based on these parameters.  
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Fig. 6. Upshift gear schedule 

 

 
Fig. 7. Downshift gear schedule 

 
For increasing vehicle speeds (typically a result of vehicle acceleration), an upshift gear schedule 

(shown in Figure 6) was followed. Conversely, decreasing engine speeds will observe a downshift gear 
schedule, as shown in Figure 7. Table 2 provides the values for each gear including the final drive 
ratio.  
 

Table 2 
Value for respective gear ratio [21] 
Parameters Value 
Gear 1 4.47 
Gear 2 2.47 
Gear 3 1.47 
Gear 4 1 
Gear 5 0.8 
Gear 6 0.65 
Final Drive 3.4 
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2.3.3 Engine speed estimation 
 

In actual operation, the engine speed can be directly measured from a sensor in a vehicle. 
However, when developing a mathematical model, this parameter needs to be estimated. Thus, the 
standard equation below can be used [9]:  
 

𝜔𝜔𝑒𝑒 =
𝑣𝑣𝑣𝑣𝑟𝑟
𝑅𝑅𝑤𝑤

 (10) 

 
where 𝑣𝑣𝑟𝑟 is the overall gear ratio determined from Section 2.3.2 and 𝑅𝑅𝑤𝑤 = 0.288 m is the wheel 
radius. The engine speed also should be constrained to a minimum value of 0.001 rad/s since by 
default it will still move even during idling.  
 
2.3.4 Driveline 
 

To propel a vehicle, the torque generated from the engine needs to be transferred to the 
driveline. Commonly, transferred torque will be susceptible to mechanical losses due to heat, friction, 
and other factors. Mathematically, these losses can be estimated as [21]: 

 

𝑇𝑇𝑙𝑙 = 𝑐𝑐0 +
𝑐𝑐1

200
𝑇𝑇𝑑𝑑,𝑑𝑑 + 

𝑐𝑐2
2000

(𝜔𝜔𝑒𝑒 − 200) (11) 

 
where c0= 8, c1=10, and c2=4 are constants obtained from curve fitting from experimental data [18], 
and 𝑇𝑇𝑑𝑑,𝑑𝑑 is the engine torque at a specific gear, given by: 

 
𝑇𝑇𝑑𝑑,𝑑𝑑 = 𝑇𝑇𝑒𝑒𝑣𝑣𝑟𝑟 (12) 

 
Therefore, the net output torque can be calculated to be: 
 

𝑇𝑇𝑑𝑑,𝑜𝑜 = 𝑇𝑇𝑑𝑑,𝑑𝑑 − 𝑇𝑇𝑙𝑙 (13) 
 

Finally, the traction force that will be fed to the vehicle dynamic block in Section 2.1 can also be 
estimated using Eq. (14). The maximum limit for this value is set to 5000 N [21]. 

 

𝐹𝐹𝑇𝑇 =
𝑇𝑇𝑑𝑑,𝑜𝑜

𝑅𝑅𝑤𝑤
 (14) 

 
3. Model Validation with Hierarchical PID Structure 
 

In this work, the mathematical model is validated with the standard drive cycle to see whether it 
can track the reference velocity with an acceptable level of pedal pressing. For tracking the drive 
cycle in a simulation environment, a Proportional Integral Derivative (PID) controller is used to 
represent a driver. Usually, a PID controller can be tuned directly based on the mathematical model 
of a system. Nevertheless, as the model in Section 2 is nonlinear and has many interconnected 
subsystems, a hierarchical control structure can be utilized for ease of tuning and implementation as 
shown in Figure 8 [9,19].   
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Fig. 8. Hierarchical PID control structure 

 
For this structure, the PID controller is tuned based on a simple kinetic vehicle model rather than 

the longitudinal model. Based on the error between the desired velocity 𝑣𝑣𝑑𝑑 and actual velocity 𝑣𝑣, the 
PID controller will provide the desired acceleration to achieve the target. This signal is then passed 
to the inverse model where a reverse calculation based on the previous equations is used to calculate 
a suitable throttle and brake pedals pressing inputs to actuate the plant. A detailed explanation of 
each block is provided in the next subsections.  

 
3.1 Tuning of PID Control 

 
As discussed before, the PID control is tuned based on a simple kinematic relationship between 

the output velocity and input acceleration of a vehicle. Ideally, the demanded velocity should be 
equal to the output velocity, however in reality there will be some delay due to the power transfer 
from the engine to the wheel. According to Rajamani [9], a small delay of 0.5 s is often observed. 
Thus, the relationship between desired velocity and output velocity can be presented as a first-order 
transfer function: 

 

𝑣𝑣(𝑐𝑐) =
1

0.5𝑐𝑐 + 1
𝑣𝑣𝑑𝑑(𝑐𝑐) (15) 

 
For ease of calculation in the inverse model, the relationship between the desired velocity 𝑣𝑣𝑑𝑑 and 

output velocity 𝑣𝑣, can be converted to the desired acceleration 𝑎𝑎𝑑𝑑 by a simple integrator 1/s. Thus, 
the kinematic model in Eq. (15) can also be presented as: 

 

𝑣𝑣(𝑐𝑐) =
1

𝑐𝑐(0.5𝑐𝑐 + 1) 𝑎𝑎𝑑𝑑
(𝑐𝑐) (16) 
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Fig. 9. Tuning apps for PID controller 

 
With the transfer function in Eq. (16), tuning the PID controller should be straightforward. Various 

methods can be used such as Zigler Nichols, Cohen Coon, and others. Yet in this work, a PID tuner 
toolbox in MATLAB is utilised. This feature can provide a user with suitable gain values for 𝑘𝑘𝑑𝑑, 𝑘𝑘𝑑𝑑, and 
𝑘𝑘𝑑𝑑 by visual inspection of their step response via adjusting the speed of convergence and robustness 
properties as shown in Figure 9 (refer to the two sliders). As the slider is moved, the step response 
also will change. Once suitable response and PID gains value are obtained, it can be used to control 
the plant by generating the acceleration signal.  

 
3.2 Inverse Model 

 
Based on this hierarchical structure, the PID controller only provides a desired acceleration and 

thus this signal needs to be converted to the actual inputs which are throttle and brake pressing. 
From Eq. (1) the net tractive force 𝐹𝐹𝑛𝑛𝑒𝑒𝑡𝑡 can be calculated from the desired acceleration 𝑎𝑎𝑑𝑑 and thus: 

 
𝐹𝐹𝑛𝑛𝑒𝑒𝑡𝑡 = 𝑚𝑚𝑎𝑎𝑑𝑑 + 𝐹𝐹𝑟𝑟 + 𝐹𝐹𝑎𝑎 + 𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃 (17) 

 
If the net force value is negative, then braking input should be applied by reversing Eq. (5) to get the 
𝑥𝑥𝑏𝑏 value. However, if net force is equal to zero, a minimum brake pressing equal to 5% is applied to 
overcome the default traction force that will come from a vehicle when no throttle pedal is applied 
to keep a vehicle from moving. 

As when the net force is positive, the throttle pedal needs to be applied. Nevertheless, as can be 
seen in Section 2.3, the powertrain dynamic cannot be simply inverse since it has many 
interconnecting subsystems and logic rules. This issue has the potential to generate an algebraic loop 
error in the Simulink environment. To overcome this problem, a system identification model can be 
used to represent the powertrain dynamic in a simple discrete Auto-Regressive with eXogenous 
variables (ARX) model which has a form of: 

 
𝑦𝑦(𝑘𝑘 + 1) = 𝑏𝑏1𝑢𝑢(𝑘𝑘) + 𝑏𝑏2𝑢𝑢(𝑘𝑘 − 1) − 𝑎𝑎1𝑦𝑦(𝑘𝑘) − 𝑎𝑎2𝑦𝑦(𝑘𝑘 − 1) (18) 
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where 𝑘𝑘 is the current sample, 𝑦𝑦 is the output traction force and 𝑢𝑢 is the input throttle pressing. The 
parameters 𝑎𝑎 and 𝑏𝑏 in the model will be identified based on a set of training data consisting of input 
and output with a sample time of 0.1 s. Figure 10 shows the overall system identification process.  
 

 
Fig. 10. System identification process for 
powertrain dynamics 

 
The input throttle pressing can be estimated by reversing Eq. (18) to find the 𝑢𝑢(𝑘𝑘) and 

substituting the future output 𝑦𝑦(𝑘𝑘 + 1) with the positive traction force that comes from Eq. (17). 
Note that the past input 𝑢𝑢(𝑘𝑘 − 1) and past output 𝑦𝑦(𝑘𝑘 − 1) can be taken from stored memory in the 
microprocessor.  

 
4. Results  

 
This section presents the simulation results which consist of the open loop response of the vehicle 

longitudinal dynamic model, upper-level PID control tuning performance in tracking the step 
response, system identification model accuracy in representing power train dynamics for inverse 
calculation and the overall model validation performance in tracking the drive cycle.    
 
4.1 Open-loop Response 
 

The model developed in Section 2 is assumed to be a plant that represents a real car. An input 
signal of the throttle and brake pedal is generated by using Repeating Sequence Stair function in 
MATLAB Simulink to mimic the actual pedal pressing by varying the value between 100 to -100 
percent. Figure 11 shows the open-loop response of the plant. It should be noted that the positive 
input represents the percentage of throttle pressing, while the negative input is for the brake 
pressing. It is assumed that while driving, both pedals will not be pressed simultaneously and hence 
both inputs can be assumed to be a single signal.  
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Fig. 11. Open-loop response of the plant model 

 
The results show that the velocity output gives a response for each change in pedal pressing. The 

modifications that have been made in Remark 1 (blue line) provide a logical response. As can be 
observed in the duration between 120 to 150 seconds, the velocity is zero when the brake is pressed. 
When no pedals are pressed, the vehicle resumes cruising with a minimum velocity that mimics the 
behavior of a real car. Compared to the model without Remark 1 modification (red dash-dotted line), 
the velocity goes to a negative value since the braking force is producing negative tractive force and 
acceleration should the modification is not implemented, which is not logical if compared to the real 
situation. 

 
4.2 Upper-level Control Performance 
 

Once the plant has provided a logical response, the next task is to tune the PID controller based 
on the kinetic model in Eq. (16). In this task, 3 sets of PID gains are tuned for comparison analysis of 
the step response and the control effort of the pedal pressing, where the values are given in Table 3. 
During the tuning process, these gains are tuned for a balance performance between tracking the 
desired setpoint and robustness to uncertainties by using the MATLAB PID tuner app. This aspect is 
important when using a hierarchal control structure as the PID is not tuned based on the full kinetic 
model.  

 
Table 3 
Gain for different PID controllers 
Gain PID 1 PID 2 PID 3 
𝑘𝑘𝑑𝑑 0.39 0.214 0.1 
𝑘𝑘𝑑𝑑  0.027 0.00083 0.0019 
𝑘𝑘𝑑𝑑  0 0.271 -0.16 
Filter 100 1.23 0.169 
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Figure 12 shows the response of the three PID controllers. As can be observed, the PID 1 (blue 
dotted line) is tuned to reach the setpoint faster compared to the other two. Although this 
requirement can be achieved, often a user forgets to check the control effort that is needed where 
it demands around 6 m/s2 acceleration to reach the target, which for a certain car is not feasible. 
Observing the PID 3 (green solid line), this controller is tuned for a slower convergence, yet after 100 
s, the controller still not converging to the setpoint. PID 2 (red dashed line) shows an optimum 
performance in this case where it managed to converge around 60 s with minimum overshot at a 
reasonable and comfortable control effort. Thus, the gain values of the PID 2 controller will be used 
to track the drive cycle. Table 4 shows the qualitative time response performance comparison of the 
three PID.  

 

 
Fig. 12. Response of different PID controllers with the control effort 

 
Table 4 
Time response performance for different PID controllers 
Time Response PID 1 PID 2 PID 3 
Percentage of overshoot  12.3 1.59 13.5 
Settling time (s) 33.2 17.4 124 
Rise time (s) 3.39 10.6 14.2 

 
4.3 System Identification for Powertrain Dynamics 
 

The control input generated from the PID in the previous subsection only gives a reference 
acceleration signal. To get the actual input the inverse model needs to be utilized. For brake pressing 
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the calculation is straightforward but for throttle pressing the system-identified model is used. To 
identify this model, a set of input (throttle pressing) and output data (traction force) is generated as 
can be observed in Figure 13 by using Repeating Sequence Stair varied between 0 to 100% pressing. 
This is to ensure that the training input is covering most of the important dynamics.  

 

 
Fig. 13. Input and output profile for training data 

 
Next, the parameters of the ARX model are identified as given in Eq. (19) and used to represent 

the system. As can be observed in Figure 14, the model is unable to produce a similar response as 
compared to the actual data. The percentage of fit is just around 4.84 %, which is quite low. 
Nevertheless, it is well known that the main advantage of the ARX structure is for predicting future 
output based on the current input and output. The percentage of fit for 1 step ahead prediction based 
on the current data is quite high which is around 92.82% (refer to Figure 14). Since the inverse model 
is responsible for calculating the current input based on the future desired target, this model is quite 
suitable to be used since it has the capability to predict.   

 
𝑦𝑦(𝑘𝑘 + 1) = 4.544𝑢𝑢(𝑘𝑘) + 4.484𝑢𝑢(𝑘𝑘 − 1) − 0.9783𝑦𝑦(𝑘𝑘) − 0.01872𝑦𝑦(𝑘𝑘 − 1) (19) 
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Fig. 14. Simulated and 1 step ahead prediction response of the identified 
model 

 
4.4 Tracking Drive Cycle using Hierarchical Control Structure 
 

In this part, the hierarchical control structure is employed to track a standard urban drive cycle 
to assess its capability to track real data speed. A drive cycle is a predefined pattern or sequence of 
vehicle operating conditions that represent typical driving behaviour. The drive cycle is often 
developed for various purposes such as vehicle testing, emissions certification, fuel efficiency 
evaluation, and development of control strategies [23]. By using the same PID 2 gain as in Section 
4.2, Figure 15 shows that the proposed control structure managed to track the US urban drive cycle 
[21] with acceptable delay. When the car needs to be at zero m/s, the controller holds it by pressing 
the brake to prevent the vehicle from moving. As the desired speed is increasing, the throttle pedal 
is pressed. Conversely, as the desired speed is decreasing, a brake pedal is pressed.  Besides, the 
input signal for throttle pressing and brake pressing do not conflict with each other and is within an 
acceptable range for daily usage between -20% to 40%.  
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Fig. 15. Drive Cycle tracking response using hierarchical PIC controller 

 
Nevertheless, it also should be noted that the PID controller itself has several weaknesses where 

in this case the controller is only designed to track a speed without considering the operational 
constraints such as maximum and minimum acceleration and safe distancing. For future work, an 
advanced controller such as model-based control can be implemented by using the same structure 
and vehicle plant to develop and improve the existing Cruise Control system, where the conflicting 
performance such as fast response, driving comfort, safe distancing and fuel efficiency can be 
optimised.  
 
5. Conclusions 
 

In summary, this work has provided a detailed explanation and derivation of a simple vehicle 
longitudinal dynamic model that is suitable for control applications. The model only focuses on the 
longitudinal motion without considering the motion in other axes.  Besides, a PID controller has been 
tuned and employed by using a hierarchical structure where it produces a reference acceleration 
signal for the lower-level system to track via the inverse model relationship. The system identification 
method is also utilized to represent the powertrain dynamics to simplify the reverse calculation of 
the throttle pedal pressing. The results show that the proposed system managed to track a standard 
urban drive cycle with acceptable throttle and brake pressing with minimum delay in tracking the set 
point and without conflict. For future work, the same plant and set-up can be used to design and 
tune other advanced controllers such as model-based controllers for designing an ACC system that 
can track the speed while maintaining a safe following distance.   
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