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Flexible plates are widely used in engineering and the industry, primarily due to the 
lightweight nature compared to rigid counterparts. These structures offer benefits 
such as cost savings, lower energy consumptions and improved operational safety. 
However, a notable drawback is that flexible structures are vulnerable to unwanted 
vibrations, which can cause structural damages. Hence, the development of specialized 
models are essential to effectively addressing this challenge. Researchers have devised 
various approaches to suppress unwanted vibrations, with contemporary studies often 
employing system identification techniques utilizing swarm intelligence algorithms to 
construct dynamic models of flexible structures. Therefore, this research employs the 
potent mayfly algorithm (MA), known for its effectiveness in optimization tasks. The 
developed models using MA were then compared with traditional approach known as 
recursive least square (RLS) through a comparative analysis. The outcome reveals that 
RLS exhibited the lowest mean square error (MSE) at 3.7392 × 10−6, while MA had an 
MSE of 5.5185 × 10−6. Yet, MA adeptly depicted the characteristics of the system, 
outperforming the RLS in these validation by indicating a 95% confidence level in the 
correlation test and exhibiting robust stability in the pole-zero diagram. Consequently, 
MA serves as a fitting algorithm to accurately depict the real behaviour of the flexible 
plate structure. 
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1. Introduction 
 

In this modern technological era, the extensive utilization of flexible plate structures are evident 
across various engineering and industrial sectors including, aerospace, construction, maritime and 
energy [1-4]. These structures are favored for their exceptional structural and material properties. 
Notably, flexible structures are renowned for being lightweight, dependable, efficient, and capable 
of facilitating swift operations compared to rigid counterparts. Moreover, flexible structures come in 
diverse shapes and sizes. Presently, these structures play a pivotal role in manufacturing industries, 
offering advantages such as reduced labor requirements, cost-effectiveness, enhanced speed, ease 
of operation, and a decrease in workplace accidents [5]. However, despite their numerous merits, 
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flexible structures do have limitations, primarily related to their susceptibility to both internal and 
external disturbances, resulting in unwanted vibrations. This study aims to revolutionize the 
modelling of horizontal flexible plate (HFP) structures by introducing an intelligent approach, namely, 
the Mayfly Algorithm.  

Unwanted or excessive vibrations pose a range of problems, such as machinery damage, 
diminished capability, bending, fatigue, and reduced overall performance. Hence, it is crucial to 
address and minimize these undesirable vibrations in flexible structures to maintain their optimal 
functionality. Therefore, to achieve this, the development of suitable models and effective control 
methods are essential, ensuring that flexible structures continue to play a significant role in various 
industries. Several approaches have been suggested by prior researchers and academic experts to 
address the concerns of undesired vibrations experienced by flexible plate structures [6]. 
Traditionally, passive vibration control (PVC) techniques have been employed to dampen excessive 
vibrations exerted towards such structures. Passive control can be applied in the form of mechanical 
solutions, such as incorporating vibration dampers or dynamic vibration absorbers into the system. 
However, passive control mechanisms are effective primarily in high-frequency range systems and 
tend to be less efficient in low-frequency ranges [7].  

Furthermore, in engineering applications, greater emphasis is placed on utilizing lightweight 
systems. The inclusion of dampeners could lead to an increase in overall system weight, making it 
impractical. More recently, active vibration control (AVC) techniques have gained attention as a 
promising approach to reduce and manage vibrations, given their higher efficiency and reliability [8-
9]. Hence, to address the limitations of passive vibration control (PVC) techniques, this research 
introduces an active vibration control (AVC) approach. However, before an effective controller can 
be developed for vibration suppression in a flexible plate system, it is crucial to create an accurate 
model of the structure. System identification (SI) techniques have emerged as the preferred method 
to determine the most suitable model structure.  

SI involves constructing a mathematical model of the dynamic system based on collected 
vibration data [10]. The parameter estimation to construct mathematical model can be acquired from 
traditional and optimization approaches. Nonetheless, in situations where obtaining a model 
structure using traditional techniques proves challenging, intelligent methods become a desirable 
option [11-13]. Various forms of artificial intelligence, including glowworm swarm optimization 
(GSO), neural network systems, and mayfly algorithm (MA), have proven effective in parameter 
identification [8]. MA algorithm has been extensively studied for optimization and system 
identification across diverse applications, included but not confined to the automotive industry, 
engineering, function optimization, and task scheduling [14-16]. 

Mayflies belong to the Ephemeroptera order and are fragile insects renowned for their brief 
existence [17]. There are more than 3100 identified species of mayflies globally, and they spend 
nearly a year in anticipation of their brief emergence, with most having a lifespan of just one day. 
Their primary focus is on reproduction, often neglecting the need for food. Male mayflies form 
swarms for mating, which can vary in size from a few individuals to hundreds. These swarms form at 
an altitude of 1 to 4 meters above the ground and last for approximately 1.5 to 2 hours in the early 
morning. During this time, male mayflies engage in a distinctive up-and-down nuptial dance. After 
the dance, the males approach the females within the swarms, and the pairs descend into vegetation 
to mate before flying away separately.  

This idea has been transformed into an optimization technique known as the MA. The algorithm 
is constructed by integrating elements from firefly algorithm (FA), particle swarm optimization (PSO) 
and genetic algorithms (GA) [18-20]. By incorporating the strengths of each of these approaches, the 
MA algorithm was devised. In this algorithm, it is assumed that every candidate is an adult ready for 
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breeding upon hatching. Candidates with the most superior values, irrespective of their lifespan, are 
the survivors in MA. Furthermore, the MA employs a diverse search strategy to achieve the optimal  
solution, involving artificial male and female mayflies. Additionally, the algorithm produces pairs of 
mayflies with an initial velocity of zero. This feature of diverse search procedures within MA facilitates 
the acquisition of the best possible solution according to the preset threshold [21]. 

Due to the increasing complexity of employing traditional methods to model flexible structures, 
there has been a notable shift towards the adoption of heuristic algorithm-based approaches in 
recent times. Hence, the primary objective of this study is to demonstrate the modelling of horizontal 
flexible plate (HFP) structure using an intelligence approach namely, MA. The novelty of this study 
lies in its departure from traditional modelling methods for flexible structures, which have become 
increasingly complex to implement. Instead, the research embraces a contemporary approach by 
employing heuristic algorithm-based techniques. Specifically, the study introduces the innovative use 
of the MA to model HFP structures. The experimental setup involved an aluminium rectangular plate 
with all clamped (CCCC) boundary conditions on all edges. Vibration was induced onto the plate by 
exciting it with a piezoelectric patch, and the purpose of this experiment was to gather input-output 
data from the system. Subsequently, this data will be employed in the development of a system 
model using system identification methods. Specifically, for the traditional approach, the model will 
be constructed using recursive least squares (RLS) for comparison purpose with intelligence approach 
namely, MA. Both models will undergo a comparison and validation process using evaluation metrics 
such as mean square error (MSE), pole-zero diagrams, and correlation tests within a 95% confidence 
interval.  
 
2. Methodology  
2.1 Experimental Setup 

 
This study involves a comprehensive vibration data collection to evaluate the physical state of a 

horizontal flexible plate (HFP) system which entails employing transducers, namely sensors and 
actuators, signal conditioning equipment, and a computer operated with a DAQ system. In the 
development of the experimental rig for the HFP, actuators and sensors were affixed to the rig, 
enabling the collection of experimental vibration data. The experiment employed a square-shaped, 
flat, and thin aluminum plate measuring 0.7m on each side and 0.001m in thickness to represent the 
flexible system. In addition, the experimental plate rig was oriented horizontally to induce vertical 
vibrations onto the flexible plate. Complete specifications of the flexible plate utilized in this 
investigation are specified in Table 1 [6]. 

Furthermore, the experimental rig was configured with clamped edges on all sides. The 
generation of actuation force involved positioning a magnetic shaker precisely 1 cm parallel to the 
permanent magnet at the designated excitation point on the experimental setup. This magnetic 
shaker was meticulously controlled via a function generator, employing a power amplifier to create 
a sinusoidal force, thereby stimulating the system. Two piezo-beam type accelerometers were 
strategically positioned at separate locations across the experimental rig, functioning to capture the 
acceleration signal from the system. These accelerometers were carefully positioned at specific 
locations denoted as observation and detection points, as depicted in Figure 1 (a). These 
accelerometers were directly linked to the data acquisition system (PCI 6259) located within the 
computer, connected to an SCC-68 via a shielded cable through the PCI-bus. A fully assembled 
experimental configuration utilized in this research is depicted in Figure 1 (b) [6]. 
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Table 1 
The properties of experimental plate [6] 
No Parameters Numerical value 
1. Length, a 0.7 m 
2. Width, b 0.7 m 
3. Thickness, t 0.001 m 
4. Young’s modulus. E 71.1 Gpa 
5. Poison ratio, ν  0.3 
6 Density, ρ 2.71 × 103 kg/m3 

 

 
(a) 

 

 
(b) 

Fig. 1. System integration for vibration data collection of HFP structure in 
(a) experimental layout and (b) actual experimental setup [6] 
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2.2 System Identification 
 

In this study, a swarm intelligence algorithm and traditional approaches were utilized to model 
the dynamic behavior of a HFP system with all clamped edges as boundary conditions. The parametric 
modelling was carried out employing the RLS and MA, utilizing a linear auto-regressive with 
exogenous input (ARX) model structure. These models were formulated based on actual 
experimental vibration data acquired from the experimental setup [6]. 
  
2.2.1 Mayfly algorithm 
 

The MA is a relatively recent population-based method introduced in 2020 by Zervoudakis and 
Tsafarakis [22]. As mentioned earlier, MA draws inspiration from PSO and combines the strengths of 
PSO, firefly algorithm (FA), and genetic algorithm (GA). The algorithm operates in the following 
manner: Initially, two groups of mayflies are generated randomly, representing the male and female 
populations, respectively. Each mayfly is placed randomly within the problem space, serving as a 
candidate solution represented by a d-dimensional vector denoted as P = (P1, …, P𝑑𝑑). The alteration 
of mayflies is determined by velocity, V, = [V1, V2, …, Vd]T. The direction of movement is influenced by 
a combination the mayflies individual experiences and their interactions within the group. Primarily, 
these mayfly candidates adjust their positions toward two key points: their own best positions (pbest) 
and the best position identified within the group (gbest). The performance of these mayflies is then 
assessed based on a predefined fitness function, f(x). In this study, the fitness function is defined by 
the minimum mean squared error (MSE) value as shown in Eq. (1) [6]. 

 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ (𝑦𝑦(𝑛𝑛) − 𝑦𝑦�(𝑛𝑛))2𝑛𝑛
𝑖𝑖

2
 (1) 

 
In the context of the MSE equation, n refers to the number of data points in the dataset being 

analysed. Meanwhile, ŷ represents the predicted values, and y signifies the actual vibration data 
acquired from the experiment. These elements are utilized in the computation of the MSE. In MA, 
the algorithm operates through three main steps, which are;  

 
i) Movement of male mayflies 

 
Let 𝑃𝑃𝑖𝑖𝑡𝑡 represent the original location of the i-th mayfly in specific search dimension at time step, t, 
with its location altered by the addition of the velocity, 𝑉𝑉𝑖𝑖𝑡𝑡+1 and the current location. This 
relationship is represented by Eq. (2) [22]. 

 
𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡+1 = 𝑃𝑃𝑖𝑖𝑡𝑡 + 𝑉𝑉𝑖𝑖𝑡𝑡+1 (2) 

 
where 𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚0 ~𝑈𝑈�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�. Since male mayflies stay a few meters above water 
surface while performing their nuptial dance, it is believed that they unable to travel at high speeds 
and instead move at a constant pace. Consequently, the velocity of a male mayfly i can be described 
by Eq. (3) [22]. 
 
𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑎𝑎1𝑒𝑒−𝛽𝛽𝑟𝑟𝑝𝑝

2�𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡 � + 𝑎𝑎2𝑒𝑒−𝛽𝛽𝑟𝑟𝑔𝑔
2(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑗𝑗−𝑃𝑃𝑖𝑖𝑖𝑖

𝑡𝑡 ) (3) 
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where 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡  denotes the velocity of a male mayfly in dimension j (where j = 1, 2, …, n) at time step t. 
Next, 𝑃𝑃𝑖𝑖𝑖𝑖𝑡𝑡  represents the position of the i-th male mayfly in dimension j at the current time. The 
parameters a1 and a2 are constants used to scale the contributions of the local and global searches, 
respectively. Here, 𝛽𝛽 indicates a fixed coefficient of visibility that is used to bound the visibility of the 
mayfly from other mayflies, while 𝑟𝑟p is the representation of Cartesian distance between female and 
male mayflies. Additionally, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 represents the personal best position of the mayfly. The 
calculation of the personal best position 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖 at the subsequent time step, t+1, is given by Eq. (4) 
[22]. 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = �𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡+1 , 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡+1 ) > 𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖)
𝑖𝑖𝑖𝑖 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

  (4) 

 
where the cost function, denoted as f: ℝ𝑛𝑛 ⟶ ℝ, assesses the quality of the solution. The expression 
for the global best position gbest at time step t is provided in Eq. (5) [22]. 
 
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 ∈ {𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2, … ,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁|𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)} =
min {f(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝1),𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2), … ,𝑓𝑓(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑁𝑁)} 

 (5) 

 
where N represents the total count of male mayflies. Next, the distances between male mayfly 
position and current local best position can be computed using Eq. (6) [22]. 
 

|| 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚|| = ��(𝑃𝑃𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑛𝑛

𝑗𝑗=1

)2 

 (6) 

 
In this context, 𝑃𝑃𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚represents the j-th element of mayfly i, and 𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 corresponds to either 
pbesti or gbest. Specifically, each mayfly adjusts its trajectory towards its personal best (pbest) 
obtained thus far, as well as the global best position achieved by the entire swarm (gbest). Adding a 
stochastic element to the algorithm, the best mayflies perform a nuptial dance at a given time. This 
dance is mathematically represented by Eq. (7) [22]. 
 
𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡+1 = 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑑𝑑 ∗ 𝑟𝑟  (7) 

 
where, g, d, and r corresponds to the inertia weight, the nuptial dance, and the damping ratio, 
respectively and represents a random value that falls withing the range of -1 to 1.  
 

ii) Movement of female mayflies 
 

Unlike the male mayflies, the female mayflies do not form swarms themselves; instead, they fly 
towards the male mayfly swarms for the purpose of breeding. Let 𝑃𝑃𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡  denote the current 
position of the ith female mayfly in a specific search dimension at time step t. The position altered 
by adding the velocity 𝑉𝑉𝑖𝑖𝑡𝑡+1 to the current position. This can be represented using Eq. (8) [22]. 
 
𝑃𝑃𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡+1 = 𝑃𝑃𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 + 𝑉𝑉𝑖𝑖𝑡𝑡+1  (8) 
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where 𝑃𝑃𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓0 ~𝑈𝑈�𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓�. The velocity, denoted as V= (V1, …, V𝑑𝑑), indicates 
how the position of mayfly changes over time. The direction in which the mayfly moves in determined 
through a dynamic interaction between the two individuals and their shared flying experiences. In 
this research, the method for attracting female mayflies involves locating the nearest male mayfly 
rather than employing random attraction. This approach aims to enhance the optimization 
convergence behaviour. As a result, the velocities of the female mayflies are determined using the 
equation provided in Eq. (9) [22]. 
 

𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡+1 = �
𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑎𝑎2𝑒𝑒−𝛽𝛽𝑟𝑟𝑚𝑚𝑚𝑚

2
�𝑃𝑃𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡 − 𝑃𝑃𝑖𝑖𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑡𝑡 �𝑖𝑖𝑖𝑖 𝑓𝑓�𝑃𝑃𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓� > 𝑓𝑓(𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)

𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑓𝑓𝑓𝑓 ∗ 𝑟𝑟 𝑖𝑖𝑖𝑖 𝑓𝑓(𝑃𝑃𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓) ≤ 𝑓𝑓(𝑃𝑃𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚)
   (9) 

 
Similarly, the velocities of the male mayflies, 𝑉𝑉𝑖𝑖𝑖𝑖𝑡𝑡  signifies the velocity of the female mayfly in 
dimension j (where j = 1, 2, …, n) during the time step t. The variable𝑃𝑃𝑖𝑖𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑡𝑡 represents the position 
of the i-th female mayfly in dimension j at time t. The constant a2 corresponds to positive attraction, 
while β is a fixed coefficient of visibility that determines the extent to which the mayfly’s visibility is 
restricted to other mayflies. Additionally, the rmf denotes the representation of Cartesian distance.  
 

iii) Mating of mayflies 
 

The algorithm incorporates a crossover operator for pairing male and female candidates. This 
involves the selection of two candidates from the population, which can be based on either their cost 
values or chosen randomly. Subsequently, the best couple breed with each other, and this cycle of 
breeding within the next generation continuous. The new generation, also known as offspring is 
derived using the Eq. (10) [22]. 
 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜1 = 𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + (1 − 𝛾𝛾) ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜2 = 𝛾𝛾 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + (1 − 𝛾𝛾) ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 (10) 

  
Here, 𝛾𝛾 signifies a random value ranging from 0 to 1, while 𝛾𝛾 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 and 𝛾𝛾 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 represent the 
male and female parent candidates. The initial velocity of the offspring is initialized to zero.  
 
3. Results and Discussions 
 

In this study, the HFP models were developed using traditional and swarm intelligence 
algorithms, namely RLS and MA, respectively. These models were structured using an auto-regressive 
with exogenous (ARX) framework to depict the outcomes of the developed model in the form of 
transfer function. From the experiments conducted, 5000 input-output vibration datasets were 
selected, which were subsequently divided evenly into two segments. The initial 2500 data points 
were employed for model training, while the remaining 2500 data points were dedicated to test the 
developed model’s performance.  

Next, The HFP models that were developed underwent a validation process through mean 
squared error (MSE), pole-zero diagram analysis, and correlation testing. The selection of the most 
suitable model was primarily based on the outcomes of robustness assessments, prioritizing factors 
specifically in achieving the lowest MSE, demonstrating high stability, and obtaining unbiased results 
in the correlation tests. These assessments were conducted to ensure the exceptional performance 
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of the developed model. The optimal model was accomplished through a heuristic approach, given 
the absence of prior knowledge regarding the actual model order for the HFP system [23]. 
 
3.1 Modelling of HFP using RLS 
 

In the process of modelling using the conventional RLS algorithm, two key parameters, namely 
the forgetting factor and model order, were thoroughly adjusted to achieved a robust model for the 
HFP system. The forgetting factor was fine-tuned within the range of 0.2 to 0.8, while the model 
order was systematically varied from 2 to 20. The outcome of this tuning procedure indicated that 
the most suitable model was achieved at the order 14, with a forgetting factor set at 0.8, resulting in 
the lowest MSE values of 3.7392 × 10−6 for the testing datasets. Figures 2(a) depicts both actual 
and estimated RLS outputs in the time domain, whereas Figure 2(b) offers a closer view at the results, 
specifically within the sample range of 2400 to 2600, providing enhanced visibility for observation. 
Additionally, Figure 3 presents the results in the frequency domain, displaying the natural frequencies 
of the first three modes of vibration in decibels (dB). According to the visual representations, the 
developed HFP model effectively replicates the characteristics of the actual system. This is evident in 
the overlapping of estimated output with the actual output. Moreover, the discrepancy between the 
actual and estimated RLS outputs is shown in Figure 4. 

Correlation tests and assessment on its stability in pole-zero diagram were conducted to evaluate 
the efficiency of the model system achieved. Figure 5(a) indicates that the auto-correlation outcomes 
from the RLS modelling exceeded the 95% confidence level, suggesting bias result. However, the 
cross-correlation highlighted in Figure 5(b) revealed that the RLS modelling was unbiased, as the 
developed model fell within the 95% confidence level. The pole-zero diagram in Figure 6 reveals that 
the model exhibits stability, with all poles of the transfer function situated within the unit circle. 
Finally, the discrete transfer function resulting from the optimal RLS model is defined in Eq. (11). 

 

𝑦𝑦(𝑡𝑡)
𝑢𝑢(𝑡𝑡)

=

0.01527𝑧𝑧−1 + 0.06862𝑧𝑧−2 + 0.08078𝑧𝑧−3 +  0.01027𝑧𝑧−4 − 0.09732𝑧𝑧−5
−0.148𝑧𝑧−6 − 0.107𝑧𝑧−7 − 0.01457𝑧𝑧−8 + 0.06594𝑧𝑧−9 + 0.08618𝑧𝑧−10

+0.04845𝑧𝑧−11 + 0.002782𝑧𝑧−12 + 0.002323𝑧𝑧−13 + 0.04746𝑧𝑧−14
1 − 0.09507𝑧𝑧−1 + 0.008669𝑧𝑧−2 + 0.0723𝑧𝑧−3 +  0.07151𝑧𝑧−4 + 0.03964𝑧𝑧−5
+0.01104𝑧𝑧−6 + 0.01637𝑧𝑧−7 + 0.05073𝑧𝑧−8 + 0.07053𝑧𝑧−9 + 0.02882𝑧𝑧−10

−0.07151𝑧𝑧−11 − 0.1519𝑧𝑧−12 − 0.1319𝑧𝑧−13 − 0.03428𝑧𝑧−14

 (11) 

  
 

  
(a) (b) 

Fig. 2. Time domain for experimental and predicted output of the horizontal flexible plate via RLS: (a) 
5000 selected data (b) Magnified view of the data from 2400 to 2600 
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Fig. 3. The frequency domain for experimental and predicted 
outputs of the system using RLS 

 

 
Fig. 4. The MSE between experimental and prediction 
outputs of the horizontal flexible plate via RLS modelling 

 

  
(a) (b) 

Fig. 5. The correlation test for RLS model in (a) auto-correlation (b) cross-correlation 
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Fig. 6. The stability of RLS model using pole-zero map 

 
3.2 Modelling of HFP using MA 
 

The robust model of HFP utilizing swarm intelligence algorithm via MA was achieved by fine-
tuning seven key parameters including population size, lower and upper bound, random flight, 
nuptial dance, inertia weight, model order, and maximum iteration. The parameters were 
systematically tuned using a heuristic approach. Initially, the size of population was adjusted within 
the range of 20 to 160, aligning with recommendations from Zervoudakis and Tsafar [22, 24] which 
have been found effective for various optimization problems. Once the optimal population size was 
determined, the remaining parameters were adjusted accordingly. Table 2 summarizes the range of 
parameter values that were fine-tuned, along with the optimal values identified during this study. 
These specific parameter settings were selected because they marked the convergence point where 
the MA algorithm had achieved its robust outcomes.  
 

Table 2 
The parameters setting for the best horizontal flexible plate model using MA 
Parameters Range of tuning values Optimum Parameter 
Population size, Npop 20 - 160 40 
[Lower boundary, Upper boundary] [-1, 1] to [-10, 10] [-9,9] 
Random flight, fl 0.1 – 0.9 0.1 
Nuptial dance, d 0.1 – 4.5 5 
Inertia weight, g 0.9 – 9.99 5 
Inertia weight damping ratio, gdamp Fixed Variables 1 
Attraction constant, a1 Fixed Variables 1 
Attraction constant, a2 Fixed Variables 1.5 
Attraction constant, a3 Fixed Variables 1.5 
Visibility coefficient, β Fixed Variables 2 
Random flight damping ratio, fldamp Fixed Variables 0.99 
Mutation rate, mu Fixed Variables 0.01 
Dance damping ratio, dance_damp Fixed Variables 0.8 
Model order 3 – 10 4 
Maximum generation, maxiter 100 – 500 400 
Mean squared error for testing data -  5.5186 × 10−6 
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From all the tested model orders, the best model for the HFP plate system was determined to be 
of order 4. The MSE for the optimal MA algorithm model stands at  
5.5186 × 10-6 attained from testing datasets. Figure 7 displays the convergence of the MA algorithm 
modelling during the simulation. Furthermore, Figures 8(a) and 8(b) illustrate both the actual and 
estimated MA outputs in time domain, covering overall datasets and a sample range of 2400 to 2600, 
respectively. Figure 9 presents outcomes in the frequency domain, demonstrating that the HFP 
model developed using MA algorithm effectively imitates the behaviors of the actual system, as 
indicated by the overlap between the estimated and actual outputs. Furthermore, Figure 10 reveals 
the error between the actual and predicted MA outputs.  

The effectiveness of the developed model was verified through auto and cross-correlation tests, 
along with the pole-zero diagram assessment. Figures 11(a) and 11(b) reveal that both auto and 
cross-correlation results signified unbiased MA modeling, as the developed model remained within 
the 95% confidence level. In Figure 12, all poles of the transfer function located in the unit circle, 
indicating the stability of the developed model. Finally, Eq. (12) provides the derived discrete transfer 
function obtained from the optimal MA model. 

 
𝑦𝑦(𝑡𝑡)
𝑢𝑢(𝑡𝑡)

=
−0.3929𝑧𝑧−1 + 0.3088𝑧𝑧−2 + 0.4256𝑧𝑧−3 − 0.8195𝑧𝑧−4

1 − 1.118𝑧𝑧−1 + 0.4077𝑧𝑧−2 − 0.1119𝑧𝑧−3 + 0.09016𝑧𝑧−4
   (12) 

 

 
Fig. 7. The convergence graph of predicted model via MA 
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(a) (b) 

Fig. 8. Time domain for experimental and predicted output of the horizontal flexible plate via MA:  
(a) 5000 selected data (b) Enlarge view of the data from 2400 to 2600 

 

 
Fig. 9. The frequency domain for experimental and predicted outputs 
of the system using MA 
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Fig. 10. The MSE between experimental and prediction outputs of the 
horizontal flexible plate via MA modelling 
 

  

(a) (b) 
Fig. 11. The correlation test for MA model in (a) auto-correlation (b) cross-correlation 

 

 

 
Fig. 12. The stability of MA model using pole-zero map 
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3.3 Comparative Assessment between RLS and MA Modelling 
 

The performance of all the developed models was assessed to identify the most suitable model 
for representing the flexible plate system. According to the results, the lowest MSE values for RLS 
and MA algorithms were 3.7392 × 10−6 and 5.5185 × 10−6, respectively. Notably, the MSE values 
for both algorithms were relatively close to each other, however, two additional validations are 
required before selecting the optimal model.  

The results of correlation tests indicate that the MA algorithm exhibited unbiased behaviour in 
both auto and cross correlation tests, correlating within a 95% confidence level. On the other hand, 
the RLS algorithm was only found to be unbiased in the cross-correlation test. Following the stability 
analysis using the pole-zero diagram, it was observed that all models were stable, as evidenced by all 
poles residing within the unit circle.  

Through various validation methods, the performance of SIA via MA outperformed the traditional 
algorithm using RLS in modelling the flexible plate system. Additionally, SIA yielded transfer functions 
with lower orders compared to conventional algorithms. Previous research has emphasized the 
importance of constructing simple models that retain essential system attributes [25].  

In this study, SIA generated models with orders of 4, while RLS produced models with orders of 
14. Therefore, SIA represents the simplest model which capable of providing a simple transfer 
function for better control strategies. This indicates that SIA offer more effective insights into the 
behaviour of the flexible plate system compared to traditional approaches. The remarkable 
performance of the MA algorithm can be attributed to its sophisticated optimization strategy, which 
uniquely combines elements from various algorithms.  

The algorithm ability to swiftly converge to optimal solutions surpasses traditional approaches, 
providing a clear advantage in modelling flexible plate model. In delineating the framework and 
methodology of the MA algorithm, it becomes evident that its approach significantly differs from 
conventional methods. The incorporation of innovative components and adaptive strategies enables 
MA to capture the intricacies of the flexible plate systems more effectively, thus outperforming the 
traditional RLS algorithm.  

In light of the findings and insights gained from this study, it is imperative to acknowledge its 
limitations. Firstly, the focus was primarily on this specific algorithm, which may not be universally 
suitable for all flexible structures. Future research should explore its adaptability to different 
scenarios and conditions. Secondly, the experimental setup, while suitable for our objectives, is 
limited in its representation of real-world conditions. Further investigation should encompass a 
broader range of boundary conditions and excitation methods. Additionally, the parameterization of 
MA is critical, and the impact of parameter choices on performance requires further exploration. 

Future research endeavours should encompass a broader spectrum of structural scenarios to 
assess the adaptability and robustness of the Mayfly Algorithm (MA) in modelling various flexible 
structures. Additionally, an in-depth investigation into parameter optimization techniques is 
essential to enhance MA's modelling efficiency and accuracy across different applications. Beyond 
modelling, exploring the integration of MA-based models into real-time control systems for adaptive 
structural control represents a promising avenue. This research direction holds the potential to not 
only expand the practical applicability of MA in structural engineering but also contribute to more 
efficient and adaptive control strategies for flexible structures. 
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4. Conclusions 
 

This research provides a thorough investigation into the dynamic behaviours of a HFP structure. 
It explores two distinct modelling approaches, which were traditional and metaheuristic. In this 
study, two algorithms were employed, specifically RLS and MA to represent the traditional and 
metaheuristic strategies, respectively. An extensive evaluation of both models and their respective 
performances were discussed in-depth. The models derived through the employment of MA and RLS 
algorithms were acquired, verified, found to be acceptable, and can be considered suitable for future 
utilization in developing controllers aimed at suppressing undesired vibrations acting upon a HFP 
system. It is worth noting that the RLS modelling results achieved the lowest MSE compared to MA 
in this research. However, MA adeptly captured the system characteristics by demonstrating strong 
correlations in the test results, and displaying high stability in the pole-zero diagram when compared 
to the RLS. These validations are of utmost importance in gauging the effectiveness of the developed 
models. In conclusion, it can be inferred that the MA has effectively approximated the model of the 
HFP with clamped boundary conditions on all edges. Future research could explore the integration 
of multiple optimization algorithms to enhance the accuracy and efficiency of modelling the dynamic 
behaviour of flexible plate structures. Combining the strengths of both traditional and metaheuristic 
approaches, along with the potential inclusion of machine learning techniques, it could lead to more 
robust and adaptable modelling solutions. This hybrid approach could provide better results, 
especially in complex scenarios or when dealing with noisy data.  
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