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In modern wireless communication systems, accurate characterization of wireless 
propagation channels remains a significant challenge. In multiple-input multiple-
output (MIMO) wireless systems, a double-directional channel can be achieved by 
utilizing multipath components' spatial and temporal properties (MPCs). Grouping the 
MPC can simplify the parameters as a trade-off between complexity and accuracy. This 
paper implements k-Deep Auto Encoder (k-DAE), AE+k-means, and K Power Means 
(KPM) clustering approaches and compares their performance in clustering wireless 
propagation multipaths in indoor and outdoor scenarios. The results show that AE+k-
means performs better than k-DAE in indoor scenarios by 25.48%, while k-DAE 
performs 24.60 % better in outdoor scenarios. The KPM algorithm performs best in all 
indoor scenarios among the three algorithms, with a significant increase of 4.38% and 
11.062% to AE+k-means and k-DAE, respectively. However, both k-DAE and AE+k-
means have quite similar performance in outdoor scenarios. The study also highlights 
the first use of autoencoders in clustering the MPCs. The results indicate that k-DAE 
can be used as an alternative clustering method in channel modeling. Future works 
envisioned applying the approach to other wireless channel models. 
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1. Introduction 
 

Over the past few decades, wireless communication systems have experienced significant growth 
in capacity, accessibility, and applications by leveraging MIMO antenna systems. The development 
of Fifth-generation (5G) mobile technology relies on the deployment of massive MIMO systems [1] 
and the development of characterization of antennas for wearable systems [2]. Aside from the 
antenna configuration and design, one of the critical factors for next-generation systems is the 
wireless channel model which is a prerequisite in developing and evaluating system performance [3]. 
However, the accurate and efficient characterization of the propagation channel remains one of the 
challenges in wireless communications [4]. In wireless channels, Electromagnetic Waves (EM) that 
propagate along different paths interact with objects and suffer from reflection, scattering, and 
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diffraction. These paths are referred to as Multipath Components (MPC) and are distinguished by the 
estimated features, such as the delay, Angle of Arrival (AoA), Angle of Departure (AoD), and power. 
By grouping these spatial and temporal properties, the complexity of modeling the wireless channel 
can be reduced without sacrificing accuracy. Cluster-based channel models gain attraction due to 
their accuracy and minimal complexity. Among these models is the COST 2100 Channel Model 
(C2CM) [5], a geometry-based stochastic channel model that can be. Furthermore, by leveraging 
machine learning techniques, the automatic clustering of the MPCs can be realized, aiding the 
channel modeling process. Automatic clustering of MPC using algorithms started in the seminal works 
of Czink et al., in previous works [6,7]. The framework is capable of clustering MPCs, deciding how 
many clusters to use, and discarding outliers was introduced. The study utilized the KPM algorithm, 
3GPP channel model, and real-world MIMO datasets. Clustering algorithms have been proposed 
throughout the literature to cluster real-world and synthetic datasets [8-14]. Deep learning 
techniques have gained attention [15,16] and have been applied to several techniques, such as an 
autoencoder. An autoencoder is an unsupervised learning scheme under dimensionality reduction 
techniques. Its primary purpose is to generate accurate data representations (encoding) by training 
phase to avoid signal noise and reconstruct the input as the output. Autoencoders have been utilized 
to re-generate inputs into lower dimensions and represent the data in minimal parameters. 
Autoencoders have been utilized for data compression, sparse data representation, and anomaly 
detection [17]. 

 Recently, the use of an autoencoder has been applied to the clustering problem because it can 
learn the manifold nature of data. Furthermore, the latent representation of the data in the 
embedded space of the autoencoder can be utilized for clustering or a joint optimization of clustering 
and encoding.  Zheng et al., [18] highlighted autoencoders with the purpose of improving the 
traditional method of cell scene division. The traditional method of cell scene division provides 
inaccuracy as well as it has no display or visualization, hence the proposal to create a new method of 
cell scene division with the use of an autoencoder and the 𝑘𝑘-means algorithm. The clustering function 
of an autoencoder was emphasized by Opochinsky et al., [19], where an extended 𝑘𝑘-means algorithm 
to create a new deep clustering algorithm with the use of an autoencoder. The study aims to simplify 
the work of the clustering algorithm by representing each cluster with an autoencoder, instead of 
the standard centroid, that reconstructs data that belong to the same cluster. This approach can 
allow for more minor errors in reconstruction as well as avoidance of data collapsing, which is a 
known issue in using the traditional deep 𝑘𝑘-means algorithm. Data collapsing, in deep 𝑘𝑘-means 
clustering, happens when the vectors are collapsed at one point in the embedded space, and a single 
entity is formed from the centroids collapsing. The process of application is initiated with the training 
of the single autoencoder for the entire dataset. Several image datasets were used for the study, 
which include the Modified National Institute of Standards and Technology (MNIST) and Fashion 
datasets [20] that both have 70,000 images and the  United States Postal Service (USPS) handwritten 
digit database. After training, the 𝑘𝑘-means is applied and is used to initialize the network parameters. 
Once network parameters are initialized, clustering is performed. The metrics for validation and 
evaluation include NMI, ARI, and ACC. After the procedure, the measures are taken at each dataset 
and compared with existing autoencoder algorithms such as Deep Autoencoder Mixture Clustering 
(DAMIC) [16], Deep Clustering Network (DCN) [21], and Deep Embedding Clustering (DEC) [22]. This 
paper presents the clustering of MPCs using the k-Deep AutoEncoder (k-DAE), a k-means algorithm 
mixed with an autoencoder, and measure the accuracy using external Clustering Validation Indices 
(CVI) and compares the clustering results with the well-known KPM algorithm. The first part of this 
paper introduces the cluster-based channel models in wireless communication in MIMO and the 
utilization of autoencoders in clustering tasks. The second part presents the methodology with the 
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algorithm used and the validity indices followed by the results and comparative analysis in section 3 
and section 4 concludes this work. 
 
2. Methodology  

 
The methodology of the study is discussed in this section illustrated in Figure 1. The datasets 

consist of the indoor and outdoor scenarios extracted from the IEEE data port [21], which has eight 
scenarios and 30 generated snapshots. The datasets are fed to the k-Autoencoder to cluster 
multipaths using 𝑘𝑘 number of autoencoders. The autoencoder initial clustering was also extracted, 
and the single autoencoder was utilized, followed by the k-means. External clustering metrics are 
employed to validate the results. Finally, the well-known KPM and the autoencoders Jaccard 
performances are compared. 

 

 
Fig. 1. Methodology 

 
2.1 k-DAE Algorithm 

 
The 𝑘𝑘-DAE algorithm is an extension of the well-known 𝑘𝑘-means algorithm where the cluster is 

represented by a 𝑘𝑘 number of autoencoders [19]. The first step is the initialization of a single 
autoencoder to learn the input dataset. It also applies 𝑘𝑘-means to the embedded data, where the 
𝑪𝑪initial the output of the first iteration. 𝑘𝑘-DAE proceeds to train 𝑘𝑘 autoencoders and aims to 
reconstruct the input data. The final computation 𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is done by the hard clustering method of the 
𝑘𝑘-means. The pseudocode of the 𝑘𝑘-DAE is summarized in Algorithm 1.  
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Algorithm 1: 𝑘𝑘-DAE Algorithm for C2CM clustering  
Input(s):  
𝑿𝑿 - Dataset excluding power and cluster IDs 
𝑪𝑪ref – Reference Cluster ID 
Output(s): 
𝑪𝑪initial -  Initial clustering results of AE+k means 
𝑪𝑪calc – Cluster ID results of the k-DAE 
Require: number of clusters 𝑘𝑘 
i. Initial training of a single AE based on 𝑘𝑘 clusters 
ii. Apply k-means clustering on the embedded space 
iii. Set the number of AEs based on the number of clusters after the initial clustering 
iv. Each cluster represents an AE instead of a centroid 
  
 𝑥𝑥 → 𝑥𝑥�(𝑖𝑖) = 𝑓𝑓𝑖𝑖(𝑥𝑥; 𝜃𝜃𝑖𝑖), 𝑖𝑖 = 1, … , 𝑘𝑘 
  
v. Training: Clustering of each AE with the initial clustering and minimize the reconstruction 

error 
  
 

𝐿𝐿(𝜃𝜃1, … , 𝜃𝜃𝑘𝑘) = �  
𝑛𝑛

𝑡𝑡=1

min
𝑖𝑖
 𝑑𝑑(𝑥𝑥𝑡𝑡, 𝑥𝑥�𝑡𝑡(𝑖𝑖)) 

  
vi. Set the number of AEs based on the number of clusters after the 2nd training of autoencoders 
vii. Final Clustering; computation of 𝑪𝑪calc or the reconstruction of input 
  
 𝑐̂𝑐𝑡𝑡 = arg min

𝑖𝑖=1

𝑘𝑘
 𝑑𝑑(𝑥𝑥𝑡𝑡, 𝑥𝑥�𝑡𝑡(𝑖𝑖)), 𝑡𝑡 = 1, … , 𝑛𝑛 

 
2.2 Cluster Validity Indices 

 
After obtaining the clustering results 𝐶𝐶calc, an ensemble of validity indices is used to compare the 

results to the ground-truth labels 𝐶𝐶ref, thereby assessing the performance of the algorithm to the 
C2CM dataset. Due to the availability of ground truth, external CVIs are used, namely, NMI,  Accuracy 
[23], ARI [24], and the Jaccard index [25,26]. The normalized mutual index is a measure of similarity 
used for contrasting community detection approaches. Mathematically, the NMI is given by Eq. (1): 

 

NMI(𝑪𝑪ref, 𝑪𝑪calc) =
𝑀𝑀𝑀𝑀(𝑪𝑪ref, 𝑪𝑪calc)

max[𝐻𝐻(𝑪𝑪ref), 𝐻𝐻(𝑪𝑪calc)]
 

(1) 

 

where MI is the mutual information, and H indicates the entropy. The value ranges from [0,1]. 
Furthermore, the Adjusted Rand Index (ARI), considers the number of instances that occur within the 
same cluster and those that exist in distinct clusters. ARI is defined in Eq. (2). 
 

ARI = 𝑴𝑴11+𝑴𝑴00
𝑴𝑴00+𝑴𝑴01+𝑴𝑴10+𝑴𝑴11

= 𝑴𝑴11+𝑴𝑴00

�𝑀𝑀2�
  (2) 
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where 𝑴𝑴11 is the number of pairs that are part of the same cluster, 𝑴𝑴00 is the number of instances 
that are part of different clusters. 𝑴𝑴01 is the number of pairs that are in the reference cluster but not 
in the clustering output and 𝑴𝑴10 represents the pairs that are in 𝑪𝑪calc but not in 𝑪𝑪ref. 

The clustering accuracy (ACC) which evaluates the proportion of data points for which the 
produced clusters can be successfully mapped to the ground truth classes given by Eq. (3) where 𝑁𝑁 
is the total number of data, 𝛿𝛿(𝑥𝑥, 𝑦𝑦) is the delta function that equates to 1 if 𝑥𝑥 = 𝑦𝑦 and 0 otherwise. 
The map(𝑪𝑪calc) is the permutation mapping function. 

 

ACC = ∑ 𝛿𝛿(𝑪𝑪ref,map(𝑪𝑪calc))𝑁𝑁
𝑖𝑖=1

𝑁𝑁
  (3) 

 
The Jaccard index is a measure of similarity between 𝑪𝑪calc and 𝑪𝑪ref and is the intersection over 

the union. The Jaccard index tends to be sensitive to the number of clusters. In multipath clustering, 
the Jaccard index is used to validate the similarity of the clustering solution to the ground truth [25]. 
The Jaccard index can be computed using Eq. (4). 

 
𝜂𝜂Jac = |𝑪𝑪ref∩ 𝑪𝑪cal|

|𝑪𝑪ref∪𝑪𝑪cal|
= 𝑴𝑴11

𝑴𝑴11+𝑴𝑴10+𝑴𝑴01
  (4) 

      
3. Results  
 

The performance of the algorithm to the C2CM dataset is examined with these CVIs. The initial 
clustering was also extracted and compared to the 𝑘𝑘-DAE. Table 1 shows the CVI scores per scenario, 
thus comparing the two algorithms, AE+𝑘𝑘-means, and 𝑘𝑘-DAE. The AE+𝑘𝑘-means algorithm has the 
highest mean values in the indoor scenarios. The highest mean shows a value of 0.8930 under the 
NMI index, 0.6720 under the ARI index, 0.7890 under the ACC index, and 0.5284 under the Jaccard 
index, all on the Indoor B1 scenario, proving that the initial training shows favorable results in the 
indoor scenario. On the other hand, the acquired data 𝑘𝑘-DAE algorithm presents the highest mean 
values in the outdoor scenarios that extend up to 0.4237 in terms of its NMI index under the Semi-
Urban B1 ML LOS, 0.1091 in terms of its ARI index under the semi-urban B1 multiple-link, 0.2424 in 
terms of its ACC index under the semi-urban single link LOS, and 0.0531 in terms of its Jaccard index 
also under the Semi-Urban SL LOS, proving that the deep training of data provides good results with 
regards to the outdoor scenarios. 
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Table 1 
Mean CVI scores per Scenario 
Scenarios CVI AE+ 𝑘𝑘- means 𝑘𝑘-DAE 
Indoor B1 LOS Single Link NMI 0.9148 0.7417 

ARI 0.7093 0.3131 
ACC 0.8153 0.5 
Jaccard 0.591 0.2391 

Indoor B2 LOS Single Link NMI 0.8996 0.6772 
ARI 0.6372 0.2684 
ACC 0.7646 0.4616 
Jaccard 0.4773 0.3052 

Semi-Urban B1 LOS Single Link NMI 0.3681 0.4063 
ARI 0.1015 0.0973 
ACC 0.2387 0.2373 
Jaccard 0.046 0.052 

Semi-Urban B2 LOS Single Link NMI 0.3724 0.3973 
ARI 0.0997 0.0989 
ACC 0.2276 0.2368 
Jaccard 0.0446 0.046 

Semi-Urban B1 NLOS Single Link NMI 0.2967 0.3706 
ARI 0.0925 0.096 
ACC 0.2056 0.2216 
Jaccard 0.0422 0.0486 

Semi-Urban B2 NLOS Single Link NMI 0.2925 0.3878 
ARI 0.0895 0.1107 
ACC 0.193 0.234 
Jaccard 0.0482 0.0476 

Semi-Urban B1 LOS Multiple Links NMI 0.3753 0.4282 
ARI 0.1061 0.1104 
ACC 0.2154 0.2411 
Jaccard 0.0336 0.0337 

Semi-Urban B2 LOS Multiple Links NMI 0.3916 0.414 
ARI 0.1162 0.1051 
ACC 0.2273 0.2379 
Jaccard 0.0291 0.0328 

 
The analysis of variance and empirical cumulative distribution function (ECDF) is performed to 

analyze the Jaccard indices performance of the two algorithms and are compared to the KPM 
algorithm typically used in clustering the multipaths.  Figure 2(a) shows the ANOVA of the indoor 
scenarios. The KPM presents the highest scores in the indoor scenarios with a median and 75th 
percentile of 1 and a 25th percentile of 0.6251. In Figure 2(b), among the three algorithm 
performances in the outdoor scenarios, 𝑘𝑘-DAE has the highest Jaccard score with a median of 0.0435, 
a 75th percentile of 0.0593, and a 25th percentile of 0.0307.  
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                                                    (a)                                                                                                       (b)  
Fig. 2. ANOVA of Jaccard Indices for (a) Indoor Scenarios (b) Outdoor Scenarios 

 
The ECDF of the Jaccard index of all indoor scenarios is illustrated in Figure 3(a). The ECDF of 

AE+𝑘𝑘-means shows an increase from the KPM in the 10th percentile only. However, for the median 
and the 90th percentile, AE+𝑘𝑘-means and 𝑘𝑘-DAE are outperformed by the KPM, which has a value of 
unity that is for perfect clustering performance. For the outdoor scenarios, the ECDF is shown in 
Figure 3(b). The performance of AE+𝑘𝑘-means has significantly increased, with 0.0119, 0.022, and 
0.0348 in the 10th, 50th, and 90th percentile, respectively. On the other hand, the 𝑘𝑘-DAE shows an 
increase of 0.0118, 0.0229, and 0.424 on the same percentiles. 
 

                                            (a)                                                                                                    (b) 
Fig. 3. ECDF of Jaccard Indices for (a) Indoor Scenarios (b) Outdoor Scenarios 

  
Finally, the Jaccard index performances of all scenarios are compared using ECDF, illustrated in 

Figure 4. The 𝑘𝑘-DAE shows an increase of 0.0116 in the 10th and 0.0283 in the 50th percentile. This 
result is due to the indoor scenarios included, where KPM performs well in clustering the multipaths. 
The results show that the 𝑘𝑘-DAE have comparable performance ranging from 0 to 0.1 Jaccard index 
of the outdoor scenarios, which have a large number of multipaths. While for the indoor, KPM still 
has a value of 0.8 to 1 in the 90th percentile.  
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Fig. 4. ECDF of Jaccard Indices for all scenarios 

 
A post-hoc Tukey Test with the Honestly Significant Difference (HSD) was also done for all 

scenarios and is summarized in Table 2. This test was done to see the significant differences between 
the Jaccard index means of the three algorithms.  The post-hoc test reveals that the group means of 
KPM and AE+𝑘𝑘-means are not significantly different, which is also true for the 𝑘𝑘-DAE and AE+𝑘𝑘-
means. Consequently, the group means of KPM and 𝑘𝑘-DAE, suggest a significant difference greater 
than the Tukey HSD value. This result is due to the higher number of outdoor scenarios that still 
remains a challenge to cluster a large number of MPCs. Hence, this work shows that KPM still 
performs better in clustering a low number of MPCs and is still a challenge in the outdoor scenario, 
where the k-DAE shows comparable performance.   
 

Table 2 
Post-Hoc Tukey Test for all scenarios 
Algorithm Mean Difference Tukey HSD Value 
KPM AE+𝑘𝑘-means 0.048376 <  0.07238 
KPM k-DAE 0.11062 > 0.07238 
AE+𝑘𝑘 -means k-DAE 0.062239 < 0.07238 

 
This work utilizes a deep autoencoder approach in clustering multipath waves as an aid to model 

the double-directional properties of the wireless channel. The results also show that clustering higher 
number of multipaths and multiple-links scenarios is still challenging. Hence, the utilization of 
different clustering approaches is deemed necessary to improve the clustering leading to reduced 
parameters and increasing the accuracy of cluster-based MIMO channel models. Future work 
involves applying the algorithm to other standard channel models and investigating the application 
of tracking the MPCs such as in [27]. 
 
4. Conclusions  
 

This paper implements the k-DAE in clustering the C2CM MPC dataset. The analysis of 
the performance of the k-DAE, AE+k-means, and KPM algorithms is presented. The autoencoders 
and deep autoencoders are utilized to cluster the MPCs. In conclusion, the validation and accuracy 
of clustering using autoencoders have a performance comparable to that of the KPM algorithm, 
particularly in outdoor scenarios. However, in indoor scenarios, KPM is still superior. The k-DAE 
algorithm increases by 1.18% in the 10th percentile, 2.29% in the 50th percentile, and 4.24% in the 
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90th percentile in all outdoor scenarios from the KPM. Thus, k-DAE can be utilized when dealing with 
outdoor parameters and can serve as an alternate clustering method for MIMO multipath waves. The 
use of different activation functions for the autoencoder is considered for future work. 
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