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The limitations of the classical finite element (FE) model updating-based damage 
identification method, described as having convergence problems and a high 
computing cost, served as a catalyst for this investigation. Unlike traditional FE models, 
response surface methodology (RSM) employs explicit mathematical functions to 
describe the input-response relationship, offering a clear and concise representation. 
However, the current application of RSM is restricted to a few responses and updating 
parameters, and unresolved issues persist, including symmetrical damage location and 
false damage detection. In this study, a new RSM approach is introduced, using FRF 
curvature as the response. The effectiveness of the proposed method is demonstrated 
through an experimental modal analysis of a free-free aluminium beam, employing 
four different Design of Experiment (DOE) techniques: a minimum-run resolution V 
(CCDmrv) design and a half-fractional (CCDhalf) design using Central Composite Design 
(CCD), Box-Behnken design (BBD), and D-optimal design. The research systematically 
evaluates and compares the performance of these DOE techniques in identifying 
damage. Overall, the results highlight the success of the RSM method, particularly 
CCDhalf, D-optimal and BBD, in effectively identifying damage.  

 

Keywords: 
Structural health monitoring; 
experimental modal analysis; response 
surface methodology; FRF curvature  

 
1. Introduction 
 

Engineering structures, such as aircraft and bridges, play a vital role in facilitating human 
activities. These structures are designed to last for decades or even centuries. However, throughout 
their service life, structural systems are inevitably subjected to damage, leading to potential human 
and economic losses. Various factors contribute to the degradation of structures, including normal 
wear and tear, external forces such as weather and natural disasters like earthquakes, which can alter 
their dimensions and material properties. Different types of damage can influence distinct structural 
properties, resulting in undesirable stress and vibrations that jeopardize the structural integrity [1]. 

The diagnosis of structural damage can be achieved through local and global methods [2]. Local 
methods involve non-destructive testing techniques, such as magnetic testing and visual inspection, 
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while global methods rely on structural vibrations. With the increasing complexity and size of modern 
structures, the effectiveness of local methods has diminished [3]. The advent of sensors and 
transducers has spurred the development of global methods, which have overcome the limitations 
of local approaches [4].  

The global method enables the assessment of the entire structure by analyzing vibration 
parameters, such as frequency response functions and mode shapes. Any changes in these 
parameters can show alterations in the structural properties. A commonly used global method is the 
finite element (FE) model updating strategy [5-7]. This technique involves refining an FE model to 
rectify discrepancies between numerical and experimental data. The FE model updating can be 
executed using either a direct or iterative method. The direct method, also referred to as the non-
iterative method, involves modifying the system matrix [8]. This method offers computational 
advantages and produces accurate results. However, it has limited applicability due to the lack of 
physical interpretation of changes in structural characteristics [9]. On the contrary, the iterative 
method overcomes the limitations of the direct method, but requires the creation of a sensitivity 
matrix for all update parameters, which leads to lengthy calculations [5].  

This research is motivated by the limitations of the classical FE model updating-based damage 
identification method, which suffers from convergence issues and high computational costs. To 
address these challenges, we explore the Response Surface Methodology (RSM), which combines 
mathematical and statistical approaches. RSM offers an excellent solution to inverse problems 
without the need for a sensitivity matrix [2]. By employing explicit functions, known as the response 
surface model (RS), RSM provides a clear and concise explanation of the input-response relationship 
in structural systems, making it a valuable tool for designing efficient damage identification 
techniques. However, the current application of RSM is limited to a small number of responses and 
updating parameters, with most researchers focusing on natural frequencies and mode shapes as 
responses. Additionally, there are unresolved issues, such as symmetrical damage location and false 
damage detection [10, 11].  

To address the lack of application of model updating-based RSM in damage identification, we 
enhance existing RSM-based damage identification methods by utilizing frequency response function 
(FRF) curvature as a response parameter. Damage will only cause subtle shifts in the FRFs, which may 
go undetected until in-depth analysis of the signals. The FRF curvature, however, will magnify these 
slight differences [12]. Critically, FRF curvature exhibits heightened sensitivity to changes in the FRF. 
This distinctive feature positions FRF curvature as a robust candidate for precise and early-stage 
damage identification. By leveraging FRF curvature, this study seeks to provide a comprehensive and 
effective solution for structural damage identification, contributing to advancements in the field and 
enhancing the resilience of critical infrastructures. 
 
2. RSM for Structural Damage Identification  

 
The current RSM-based damage identification method relies on natural frequencies and mode 

shapes as a response, but suffers from false damage detection issues caused by errors in modeling 
and response measurement. As a result, the algorithm lacks reliability in accurately localizing damage 
[13]. Although the FRF exhibits lower measurement errors compared to modal data, it has not been 
extensively utilized as a response parameter in RSM-based damage identification due to its broad 
frequency range [14]. Given that response measurement errors significantly impact the accuracy of 
existing RSM-based damage identification techniques, this study aims to establish procedures for 
utilizing FRF curvature as a response to provide valuable information for damage identification. The 
approach of FRF curvature, as developed by Sampaio, Maia [15], has demonstrated its superiority in 
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damage detection compared to other classical global methods. However, there has been limited 
research conducted on FRF curvature to date [16, 17]. 

The RSM, a statistical regression approach, establishes a relationship between design variables 
and the responses of the system. It aims to identify the optimal combination of design variables 
through an efficient experimental design with a minimal number of samples [18]. Since the FRF 
curvature is selected as the response and Young’s modulus of each element is chosen as the design 
variable, the quadratic response surface (RS) model is simplified as: 

 
𝐻𝐻′′(𝜔𝜔)𝑖𝑖,𝑗𝑗 = 𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝐸𝐸𝑖𝑖𝑘𝑘

𝑖𝑖=1 + ∑∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖𝐸𝐸𝑚𝑚𝑘𝑘
𝑖𝑖<𝑚𝑚=2 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝐸𝐸𝑖𝑖2𝑘𝑘

𝑖𝑖=1 + 𝜀𝜀                                         (1) 
 
where k represents the element, H”(ω)i,j denotes FRF curvature measured at location i for a force 
input at location j, β0 βi βim βii are the regression coefficients, Ei for Young’s modulus, Ei Em is the design 
variable interaction components, and E2i denotes the quadratic components.  

Figure 1 illustrates the step-by-step process of this study. It starts with the identification of design 
variables and responses. Experimental modal analysis was conducted to obtain modal parameters 
for both intact and damaged cases. The experimental results of the intact case were compared with 
the results obtained from the FE analysis. The initial FE model is modelled using initial Young’s 
modulus (Ei). Model updating of the initial FE model was carried out using RSM, resulting in the 
creation of the primary RS model. The primary RS model incorporated updated Young's modulus 
values (E'i). Subsequently, an assessment of the changes in FRF curvature is conducted for the intact 
structure. To identify damage, model updating is applied to the secondary RS model. The model 
updating process yielded the Young's modulus values for each element (Ed), which were then used 
to calculate the stiffness reduction factor (SRF). The SRF, calculated using Eq. (2), compares the 
Young's modulus value for the damaged case; Ed, with that of the intact case; E’i. The SRF serves as 
an indicator of the severity of the damage, with larger values denoting more substantial damage [13]. 
 

𝑆𝑆𝑆𝑆𝑆𝑆 = 1 − �𝐸𝐸𝑑𝑑
𝐸𝐸𝑖𝑖
′�                                                                                                                                       (2) 

 

 
Fig. 1. RSM-based damage identification flow chart using FRF curvature 
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The details of the process of RSM-based model updating using FRF curvature are illustrated in 

Figure 2. The Design of Experiment (DOE) process involves selecting the updating design variables 
and setting the lower and upper bounds for their initial values. Four different DOEs are compared: a 
minimum-run resolution V (CCDmrv) design and a half-fractional (CCDhalf) design were employed 
using Central Composite Design (CCD), Box-Behnken design (BBD), and D-Optimal Design (D-
Optimal). The FRF curvature response is computed using FE analysis based on the chosen DOE. The 
FRF curvature is determined at 96% of the first FRF resonance, employing the equation proposed by 
Sampaio, Maia [15]. Eq. (3) defines the FRF curvature for any given frequency, with Hi,j representing 
the receptance FRF measured at location i for a force input at location j. 
 
𝐻𝐻𝑖𝑖,𝑗𝑗" = 𝐻𝐻𝑖𝑖+1,𝑗𝑗−2𝐻𝐻𝑖𝑖,𝑗𝑗+𝐻𝐻𝑖𝑖−1,𝑗𝑗

ℎ2
                                                                                                                                      (3) 

 

 
Fig. 2. Flowchart for RSM-based model 
updating using FRF curvature 

 
Next, the RS model is constructed to establish the relationship between the response and design 

variables. Quadratic forms are employed in this study to derive the relationship. The generated RS 
model is then tested against certain criteria, including R-squared (R2), adjusted R-squared (R2adj), and 
predicted R-squared (R2pred) as defined by Eq. (4), Eq. (5) and Eq. (6), respectively [19, 20]. R2 
represents the amount of dispersion explained by the RS model around the mean [21, 22]. However, 
the inclusion of insignificant parameter to the model increases the value of R2. As a result, the value 
of R2adj and R2pred must be verified. It is important to note that R2pred measures the model’s predictive 
accuracy, while R2adj measures the model's ability to explain variation about the mean. Their values 
should approach 1, with a marginal difference of 0.2 between them. Notably, the values of R2adj and 
R2pred decrease with the inclusion of insignificant parameters [21, 23]. 

 
𝑅𝑅2 = �𝑆𝑆𝑆𝑆𝑅𝑅

𝑆𝑆𝑆𝑆𝑇𝑇
� = 1 − �𝑆𝑆𝑆𝑆𝐸𝐸

𝑆𝑆𝑆𝑆𝑇𝑇
� ,       0 ≤ 𝑅𝑅2 ≤ 1                                                                                                      (4) 
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𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2 = 1 − 𝑆𝑆𝑆𝑆𝐸𝐸 (𝑛𝑛−𝑝𝑝⁄ )
𝑆𝑆𝑆𝑆𝑇𝑇 (𝑛𝑛−1)⁄ = 1 − 𝑛𝑛−1

𝑛𝑛−𝑝𝑝
(1 − 𝑅𝑅2)                                                                                                    (5) 

 
𝑅𝑅𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 = 1 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

𝑆𝑆𝑆𝑆𝑇𝑇
                                                                                                                                              (6) 

 
After the model is validated, it needs to be updated to match the parameters of the actual 

structure. The updated design variables are used to determine the location and severity of the 
damage. A multi-objective optimization problem is formulated as in Eq. (7) to minimize the 
discrepancy between the FRF curvature obtained from the RS model and the experiment. 
 

min
𝑥𝑥,𝛾𝛾

�𝐹𝐹(𝑥𝑥) − 𝜔𝜔𝜔𝜔 ≤ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑙𝑙𝑙𝑙 ≤ 𝑥𝑥 ≤ 𝑢𝑢𝑢𝑢

                                                                                                                                    (7) 

 
where F(x) is the objective function, γ is a dummy variable, and ω is weight to control the attainment 
of the objectives, goal is the desired value to achieve, lb is the lower bound, and ub is the upper 
bound. The objective function used in this study is defined in Eq. (8). 
 

𝐹𝐹(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎 �𝐻𝐻𝑅𝑅𝑅𝑅𝑅𝑅
" −𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒"

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒" �                                                                                                                                   (8) 

 
where H”RSM and H”exp represent the FRF curvature from the RSM and the experiment, respectively. 
MATLAB's multi-objective optimization algorithm fgoalattain is employed in the updating process. 
The optimization results provide the values of Young's modulus for each element. 
 
3. Experimental Setup 
 

To reduce the impact of boundary conditions on the test results, a free-free condition was used 
for both intact and damaged beams. To achieve a nearly ideal free boundary condition, the beams 
were suspended using soft nylon fishing lines from a steel support frame in the laboratory. The 
aluminium beam used in the experiment has a length of 1000mm and a cross-section of 0.25m x 
0.06m. The beam's material properties include an elastic modulus of 71GPa, a density of 2700kg/m3, 
and a Poisson's ratio of 0.33. To discretize the beam, it was divided equally into 10 elements and 11 
nodes, as illustrated in Figure 3. To evaluate the performance of DOE in identifying damage, saw-cut 
damages were intentionally introduced at three specific locations, as depicted in Figure 4. The cross 
section of the damage can be observed in Figure 5. 

 
 
 

Fig. 3. Free-free aluminum beam 
 
 

 
 

Fig. 4. Damage locations 
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Fig. 5. Damage dimension 

 
Three distinct damage scenarios, namely C1, C2, and C3 as per listed in Table 1, were examined. In the C1 

scenario, three saw cuts with a width of 1mm were introduced. In the C2 scenario, three saw cuts with a width 
of 2mm were implemented. Lastly, the C3 scenario involved three saw cuts with a width of 3mm. The depths 
of the saw cuts corresponded to 1mm, 2mm, and 3mm of the beam height, respectively. 

 
Table 1 
Damage cases 

Scenario W D 
C1 1 mm 1 mm 
C2 2 mm 2 mm 
C3 3 mm 3 mm 

 
Figure 6 depicts the experimental setup used in this study, which consists of a Dytran 

DytranpulseTM 5800B4 instrumented hammer with sensitivity 10.17 mV/lbf, a Dytran 3133A1 
accelerometer with a sensitivity of 10.15493 mV/g and a mass of 0.8 g, a LMS SCADAS Mobile four-
channel data acquisition unit and Simcenter Testlab software for signal acquisition and analysis. The 
responses were measured at 11 nodes along the length of the beam using an accelerometer and the 
impact hammer was utilized to excite the beam at node 6. 

 

 
Fig. 6. Schematic diagram of impact hammer modal testing 

 
4. Results 
4.1 RSM-based Model Updating of Intact Structure – Primary RS Model 
 

The initial FE model was established using SDTools software to accurately depict the intact 
configuration of the beam. In this model, the initial Young's modulus value, denoted Ei, was set at 71 
GPa. A simulated impact force of 1N was applied at node 6, and SDTools calculated the FRF magnitude 
for each node. The Design Expert software was utilized to generate the layout for the DOEs. The FRF 
curvature was then determined at 96% of the first FRF resonance. In the subsequent process to 
obtain a primary RS model, the Ei values for each element served as the RSM design variables, while 
the FRF curvatures at nodes 1 to 11 were used as response. The assigned values of -α and +α were 
60.35 GPa and 81.65 GPa, respectively, which were equal to 0.85Ei and 1.15Ei. By employing the 
practical alpha values, -1 and +1 corresponded to 65.0111 GPa and 76.9889 GPa, respectively. 
CCDhalf consisted of 542 runs with 10 center points, while CCDmrv comprised 82 runs with 6 center 
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points. In the BBD, the lower and upper boundaries were set at 60.35 GPa and 81.65 GPa, 
respectively, and the number of center points was 10, resulting in a total of 170 runs. When creating 
the D-optimal design, the lower and upper boundaries were the same as the BBD, and a coordinate 
exchange feature was selected to create a full quadratic model D-optimal design. The number of lack 
of fit was set to 5, and there were no replicates. The calculation for the D-optimal design involved a 
total of 71 runs. 

The RS model utilized in this study was developed based on a full quadratic model. The model 
criteria for CCDmrv, CCDhalf, BBD, and D-optimal design are presented in Table 2. The R2 values 
obtained for all the DOEs indicate a strong fit of the data to the primary RS models, as they are all 
close to 1. Moreover, the significance of all the parameters considered in this study is confirmed by 
the values of R2adj and R2pred values, which are both close to 1. Additionally, the difference of less than 
0.2 between R2adj and R2pred further supports the adequacy of the selected parameters. Based on the 
analysis of the RS model criteria, it can be concluded that the BBD exhibits the most well-fitted RS 
model, followed by CCDhalf, D-optimal, and CCDmrv in decreasing order of adequacy. 

 
Table 2 
Response surface full quadratic criteria for primary RS model 

Response Criteria CCDmrv CCDhalf BBD D-Optimal 
FRFC node 1 R2 1.0000 1.0000 1.0000 1.0000 

R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9966 1.0000 1.0000 0.9999 

FRFC node 2 R2 0.9999 0.9996 0.9998 1.0000 
R2adj 0.9993 0.9995 0.9997 1.0000 
R2pred 0.9737 0.9994 0.9994 0.9995 

FRFC node 3 R2 1.0000 1.0000 1.0000 1.0000 
R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9968 1.0000 1.0000 0.9995 

FRFC node 4 R2 1.0000 1.0000 1.0000 1.0000 
R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9959 1.0000 1.0000 0.9990 

FRFC node 5 R2 1.0000 1.0000 1.0000 1.0000 
R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9965 1.0000 1.0000 0.9998 

FRFC node 6 R2 1.0000 1.0000 1.0000 1.0000 
R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9948 1.0000 1.0000 0.9999 

FRFC node 7 R2 1.0000 1.0000 1.0000 1.0000 
R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9967 1.0000 1.0000 0.9993 

FRFC node 8 R2 1.0000 1.0000 1.0000 1.0000 
R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9965 1.0000 1.0000 0.9996 

FRFC node 9 R2 1.0000 1.0000 1.0000 1.0000 
R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9966 1.0000 1.0000 0.9992 

FRFC node 10 R2 0.9999 0.9996 0.9997 1.0000 
R2adj 0.9997 0.9995 0.9996 0.9996 
R2pred 0.9885 0.9994 0.9992 0.9899 

FRFC node 11 R2 1.0000 1.0000 1.0000 1.0000 
R2adj 0.9999 1.0000 1.0000 1.0000 
R2pred 0.9962 1.0000 1.0000 0.9996 
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The primary RS model constructed from CCDmrv, CCDhalf, BBD, and D-optimal design, was 
employed to replace the initial FE model. Subsequently, the primary RS model was validated, 
ensuring that its design variables accurately reflected the responses of the actual structure. To 
facilitate the optimization process, the updating of design variables was performed using the 
fgoalattain function within MATLAB's multi-objective optimization algorithm. The lower and upper 
bounds for the design variables were established as 60.35 GPa and 81.65 GPa, respectively. To 
achieve optimal minimization, a weighting factor, denoted as ω, was assigned a value of 0. The results 
presented in Figure 7 demonstrate the Young’s modulus values, or denoted E’i, obtained after 
updating the model through the primary RS models. The E’i values for each element were then used 
to generate the secondary RS model specifically for damage identification purposes. Furthermore, 
Table 3 displays the FRF curvature values obtained when using the E’i value. The findings reveal that 
each primary RS model exhibits a satisfactory level of accuracy in predicting the FRF curvature values, 
albeit with a minor margin of error. 
 

 
Fig. 7. Young’s modulus value after model updating, E’i 

 
Table 3 
FRF curvature value after model updating 

Node Experiment CCDmrv Error 
CCDmrv 

CCDhalf Error 
CCDhalf 

BBD Error 
BBD 

D-Optimal Error D-
Optimal 

N1 -2.77E-01 -2.77E-01 0.0% -2.77E-01 0.0% -2.77E-01 -0.1% -2.77E-01 -0.1% 
N2 4.22E-03 4.22E-03 0.1% 4.23E-03 0.3% 4.22E-03 0.1% 4.22E-03 0.0% 
N3 9.99E-02 9.99E-02 0.0% 9.98E-02 -0.1% 9.98E-02 -0.1% 9.98E-02 -0.1% 
N4 2.79E-02 2.79E-02 0.0% 2.79E-02 0.0% 2.78E-02 -0.1% 2.78E-02 0.0% 
N5 -2.99E-02 -2.99E-02 0.0% -2.99E-02 0.0% -2.99E-02 -0.1% -2.99E-02 -0.1% 
N6 -3.32E-02 -3.32E-02 0.0% -3.32E-02 -0.1% -3.32E-02 -0.1% -3.32E-02 -0.1% 
N7 -2.99E-02 -2.99E-02 0.0% -2.99E-02 0.0% -2.99E-02 0.0% -2.99E-02 -0.1% 
N8 2.79E-02 2.79E-02 0.0% 2.78E-02 0.0% 2.78E-02 -0.1% 2.78E-02 -0.1% 
N9 9.99E-02 9.99E-02 0.0% 9.98E-02 -0.1% 9.98E-02 -0.1% 9.98E-02 -0.1% 
N10 4.22E-03 4.22E-03 0.1% 4.23E-03 0.3% 4.22E-03 0.0% 4.22E-03 0.0% 
N11 -2.77E-01 -2.77E-01 0.0% -2.77E-01 0.0% -2.77E-01 -0.1% -2.77E-01 -0.1% 

 
4.2 RSM-based Model Updating for Damage Identification – Secondary RS Model 
 

The E'i values obtained from the primary RS model were utilized to derive a secondary RS model 
for damage identification. Within the CCD framework, specifically using CCDmrv and CCDhalf designs, 
the design variables were set as the E'i values corresponding to each element. The FRF curvatures at 
nodes 1 to 11 were considered as the response variables. The assigned values of -α and +α were 
designated as 0.6E'i and E'i, respectively. CCDhalf comprised 542 runs with 10 center points, while 
CCDmrv involved 82 runs with 6 center points. Subsequently, the BBD approach was employed for 
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further analysis. The lower and upper boundaries were defined as 0.6E'i and E'i , respectively, with 10 
center points. Consequently, the BBD design encompassed a total of 170 runs. To create the D-
optimal design, the same boundary values as BBD were adopted, and a coordinate exchange feature 
was utilized to construct a full quadratic model. The lack of fit was set to 5, and no replicates were 
incorporated into the design. Executing the D-optimal design required 71 runs.  

The secondary RS model in this study was based on a comprehensive, full quadratic model. Table 
4 presents and analyzes the criteria for CCDmrv, CCDhalf, BBD, and D-optimal designs. The R2 values 
obtained for all DOEs indicate a strong agreement between the data and the RS models, approaching 
1. This demonstrates a robust fit of the models to the empirical data. Furthermore, the R2adj and R2pred 
values, also close to 1, further affirm the substantial influence of the parameters considered. The 
small difference between R2adj and R2pred, less than 0.2, underscores the careful selection and efficacy 
of the chosen parameters. According to the analysis, the BBD design stands out as the most well-
fitted RS model, whereas the CCDhalf, D-optimal, and CCDmrv designs show slightly less adequacy 
compared to BBD. 

 
Table 4 
Response surface full quadratic criteria for secondary RS model 

Response Criteria CCDmrv CCDhalf BBD D-Optimal 
FRFC node 1 R2 0.9999 1.0000 1.0000 1.0000 

R2adj 0.9992 1.0000 1.0000 0.9999 
R2pred 0.9712 0.9999 1.0000 0.9975 

FRFC node 2 R2 0.9997 0.9999 0.9999 1.0000 
R2adj 0.9983 0.9999 0.9999 1.0000 
R2pred 0.9525 0.9998 0.9998 0.9985 

FRFC node 3 R2 0.9999 1.0000 1.0000 1.0000 
R2adj 0.9993 1.0000 1.0000 1.0000 
R2pred 0.9749 0.9999 1.0000 0.9987 

FRFC node 4 R2 0.9998 1.0000 1.0000 1.0000 
R2adj 0.9991 1.0000 1.0000 0.9999 
R2pred 0.9667 0.9999 1.0000 0.9981 

FRFC node 5 R2 0.9998 1.0000 1.0000 1.0000 
R2adj 0.9992 1.0000 1.0000 0.9999 
R2pred 0.9664 0.9999 1.0000 0.9985 

FRFC node 6 R2 0.9998 1.0000 1.0000 1.0000 
R2adj 0.9991 1.0000 1.0000 0.9999 
R2pred 0.9645 0.9999 1.0000 0.9979 

FRFC node 7 R2 0.9998 1.0000 1.0000 1.0000 
R2adj 0.9990 1.0000 1.0000 0.9999 
R2pred 0.9682 0.9999 1.0000 0.9976 

FRFC node 8 R2 0.9998 1.0000 1.0000 1.0000 
R2adj 0.9991 1.0000 1.0000 0.9999 
R2pred 0.9712 0.9999 1.0000 0.9985 

FRFC node 9 R2 0.9998 1.0000 1.0000 1.0000 
R2adj 0.9991 1.0000 1.0000 0.9999 
R2pred 0.9722 0.9999 1.0000 0.9961 

FRFC node 10 R2 0.9998 0.9995 0.9999 1.0000 
R2adj 0.9990 0.9994 0.9999 0.9995 
R2pred 0.9651 0.9993 0.9998 0.9854 

FRFC node 11 R2 0.9998 1.0000 1.0000 1.0000 
R2adj 0.9992 1.0000 1.0000 0.9998 
R2pred 0.9679 0.9999 1.0000 0.9960 
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After undergoing validation, the model's design variables were subject to an updating process. 
The optimization process was similar with the primary model but the lower bound was established 
as 0.6E'i, while the upper bound was defined as E'i. This process was performed using the measured 
FRF curvature of the damaged beam. Subsequently, the updated design variables, representing the 
Young's modulus values for damage state of each element (referred to as Ed), were utilized to 
accurately ascertain both the location and severity of the structural damage. Figure 8, 9, 10 and 11 
show the Ed values obtained by secondary RS models developed from the CCDmrv, CCDhalf, BBD and 
D-optimal after the model updating process for damage cases C1, C2 and C3. 

 

 
Fig. 8. Young’s modulus value, Ed, for CCDmrv 

 

 
Fig. 9. Young’s modulus value, Ed, for CCDhalf 

 

 
Fig. 10. Young’s modulus value, Ed, for BBD 

 

 
Fig. 11. Young’s modulus value, Ed, for D-Optimal 
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The SRF is an important metric used to assess the severity of structural damage. It quantifies the 
changes in the stiffness of structural elements and presents the results on a numerical scale, with 
higher values indicating more significant damage. In this study, the SRF was employed to analyze and 
quantify the damages in three different cases, namely C1, C2, and C3. The SRF values computed for 
these cases are visually presented in Figures 12, 13, and 14, respectively. The highlighted elements 
show the actual damage location. Figure 12 illustrates the outstanding performance of the BBD 
design in accurately identifying damage for C1, surpassing other designs. In comparison to CCDmrv, 
CCDhalf, and D-Optimal designs, BBD outperformed in minimizing false damage location, ensuring 
that the identified damage locations corresponded closely to the true locations within the structure. 
On the contrary, CCDmrv exhibited limitations in accurately localizing damage, as it encountered 
challenges in minimizing false damage locations. 

Figure 13 demonstrates the remarkable accuracy exhibited by the CCDhalf design in identifying 
damage for C2, surpassing the performance of CCDmrv, BBD and D-optimal designs. The CCDhalf 
design demonstrated robustness in the selection of optimal design points, facilitating precise 
assessment of damage severity and accurate localization of the true damage location. In comparison 
to CCDmrv, BBD and D-optimal designs, CCDhalf designs significantly minimized the incidence of false 
damage localization, ensuring close correspondence between the identified damage locations and 
the actual locations within the structure. 

Figure 14 visually demonstrates the exceptional accuracy attained by the D-optimal design 
methodology in successfully identifying damage for C3, surpassing the performance of BBD, CCDmrv, 
and CCDhalf designs. By optimizing the selection of design points, the D-optimal design enabled 
precise assessment of damage severity and accurate localization of the true damage location. 
Importantly, the D-optimal design showcased a significant reduction in the occurrence of false 
damage localization when compared to BBD, CCDmrv, and CCDhalf designs. These findings 
underscore the remarkable accuracy achieved by the D-optimal design, consolidating its position as 
a reliable and robust approach in improving the reliability of damage identification processes to 
identify severe damage cases.  

 

  
(a) (b) 

  
(c) (d) 

Fig. 12. SRF for damage case C1 (a) CCDmrv (b) CCDhalf (c) BBD (d) D-Optimal 
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(a) (b) 

  
(c) (d) 

Fig. 13. SRF for damage case C2 (a) CCDmrv (b) CCDhalf (c) BBD (d) D-Optimal 
 
 

  
(a) (b) 

  
(c) (d) 

Fig. 14. SRF for damage case C3 (a) CCDmrv (b) CCDhalf (c) BBD (d) D-Optimal 
 
5. Conclusions 
 

In conclusion, this paper presents a novel approach for structural damage identification through 
the utilization of an RSM-based model updating approach using FRF curvature. Experimental modal 
analysis conducted on a free-free aluminium beam further validated the efficiency of the RSM 
approach in identifying damage. The findings of this study demonstrate the effectiveness of the RSM 
approach, employing various design methodologies, namely CCDmrv, CCDhalf, BBD, and D-optimal 
design, in identifying damage in three damage severity cases. CCDhalf showcased commendable 
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ability in identifying multiple damage locations, exhibiting enhanced reliability when dealing with 
smaller damage scenarios compared to severe damage cases. In contrast, CCDmrv showed limitations 
in accurately localizing damage, with an error rate of around 40% for all damage cases. 

On the other hand, BBD proved effective in identifying small damage cases, albeit with some 
occurrences of false damage localization, with errors of less than 7%. The D-optimal design, in turn, 
demonstrated accurate identification of severe damage, while also showing minor instances of false 
damage localization with an error rate of less than 4%. However, for small damage cases, it did exhibit 
some challenges in accurately pinpointing the true damage locations. These observations provide 
valuable information on the strengths and limitations of each design methodology, enabling 
practitioners and researchers to make informed decisions when selecting the most appropriate 
approach for the identification of damage based on the specific characteristics and severity of the 
damage under consideration. 

Overall, the results highlight the success of the RSM method, particularly CCDhalf, D-optimal and 
BBD, in effectively identifying damage while minimizing the occurrence of false damage localization. 
However, additional experimentation is necessary to thoroughly investigate the influence of 
measurement points on the effectiveness and overall performance of the proposed method. Such 
investigations will provide valuable information and enable the refinement of the proposed method, 
leading to its enhanced applicability and effectiveness in practical applications. 
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