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One of the notable features of wind speed is its volatility and nonlinearity. Thorough 
assessment on the presence of these features is crucial to obtain a wind speed 
forecasting model with higher accuracy. In this study, the conventional time series 
linear model; ARIMA model was applied to assess the internal structure of the wind 
speed daily data in two stations in Johor; Senai and Mersing. Due to the existence of 
some nonlinearity features in the residuals part of ARIMA modelling, two nonlinear 
models were introduced to capture the internal structure of the residual data. Both 
conventional time series models; GARCH, and machine learning model; MLP was 
applied to model the residuals of ARIMA model. The out-sample performance in 
forecasting accuracy was compared between the ARIMA-GARCH model and the ARIMA-
MLP model. The findings proves that MLP model has outperformed GARCH model in 
capturing the dynamics in the residual data by providing the lowest error 
measurements. Thus, the machine learning approaches has proven its superiority 
against the conventional time series nonlinear model in handling the nonlinearity in the 
daily wind speed series for wind speed forecasting.  
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1. Introduction 
 

Due to its many advantages in terms of economy and environmental friendliness, wind power 
becoming one of the most important and effective renewable energy resources. In addition to being 
readily available and cost-free, it also makes a significant contribution to protect the non-renewable 
energy resources, reducing air pollution, and managing the carbon monoxide emission [1]. Time 
series analysis have been extensively utilized in wind speed forecasting, where it can help to assess 
the internal structure of the wind speed data. Volatility, or variations in variance over time, and 
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nonlinearity are some basic properties of wind speed data that is of great concern. These phenomena 
has a significant impact on wind power generation, but not enough research has been done on it [2].  

Numerous methodologies, including statistical, physical, and hybrid approaches, can be used to 
forecast wind speed [3]. The statistical technique, that includes the time series models and machine 
learning models, is the most often used method for creating prediction models for wind speed data. 
The auto regressive moving average (ARMA) and auto regressive integrated moving average (ARIMA) 
models are two examples of the Box-Jenkins method for linear time series models. On the other 
hand, the machine learning models includes the multilayer perceptron (MLP) and support vector 
regressions (SVR), are commonly used nonlinear forecasting models.  

Even though the ARIMA time series model is widely known to be powerful and flexible, there 
have been situations where the internal structure in the wind speed series have prevented the ARIMA 
model from producing an adequate model. Since ARMA and ARIMA model assume the data are 
linear, there are some limitation in the performance especially in handling the real-world time series 
data that are commonly known for the existence of linear and nonlinear patterns [4]. The Box-Jenkins 
ARIMA model is a frequently used linear model that was used as a benchmark model in investigating 
the internal structure of a time series data. This model can be widely utilized for wind speed 
forecasting and can generate precise forecast values when the data has distinctive linear properties.  

Strong nonlinearities, on the other hand, need the use of nonlinear models to explain the 
relationship between input and output data, and these models typically produce predictions that are 
more accurate than those produced by linear models. Henceforth, a hybrid technique that integrate 
different model through error series modelling are developed to address the challenges associated 
with model selection and design with minimal additional work. The combination of linear and 
nonlinear models will help to significantly increase the forecasting accuracy on the model since it is 
capable of capturing the specific criteria in the time series data [5]. 

To handle the presence of volatility and nonlinearity, many researchers have adopted the 
generalized autoregressive conditional heteroskedasticity (GARCH) models, which is one of the 
nonlinear time series model, in their efforts to model wind speed data. It has also been demonstrated 
that combining GARCH with ARMA or ARIMA can significantly improve the model's estimation and 
forecasting accuracy. To account for the volatility existence in the ARIMA model, Xiang, [6] applied 
the ARIMA-GARCH model and the finding proved that the combination of ARIMA and GARCH model 
have provided a higher forecasting accuracy. While Huang and Gu, [7] analysed the time-varying 
standard deviation of the nonstationary wind speed data using the ARMA-GARCH model and the 
finding shows that combining these models have significantly improve the forecasting accuracy of 
the model.  

Although time series models are frequently employed in the construction of forecasting models, 
some researchers have come to the conclusion that the existing time series models are unable to 
handle the volatility and nonlinear properties [8-10]. In the past few years, a number of research 
have suggested to combine the machine learning model, which is the nonlinear forecasting model, 
with the time series model to anticipate the dynamic fluctuations of meteorological variables like 
wind speed data. Computer intelligence is able to solve difficult nonlinear issues thanks to machine 
learning techniques. A hybrid wind speed prediction technique based on the ARIMA and artificial 
neural network (ANN) models is presented by Jiao [11]. The ARIMA-ANN model performs better than 
the other two in the three prediction tests that were conducted using the ANN, ARIMA, and ARIMA-
ANN models. While Junior et al., [12] selected two nonlinear machine learning model; MLP and SVR 
models, to be combined with the linear time series model; ARIMA model, in order to capture both 
linear and nonlinear criteria in the real-world time series data. 
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The main contribution of this paper is a hybrid wind speed forecasting models, that aims to 
explore the moist suitable combination of linear and nonlinear models that are capable in capturing 
the dynamics in the time series data and provides the best forecasting model. Firstly, ARIMA model 
will be the benchmark model in investigating the internal structure of a time series data. Any 
presence of volatility and nonlinearity in the residuals of ARIMA model will indicate the incapability 
of the model in capturing the dynamics of the wind speed data. Therefore, this study selected two 
nonlinear forecasting models; GARCH and MLP models, to handle any presence of volatility or 
nonlinearity criteria in the wind speed data. In this step, the residuals obtained from ARIMA models 
are modelled and forecasted using the GARCH and MLP model. Finally, the forecasts values from 
ARIMA will be combined with the forecasts of residuals from GARCH and MLP model, respectively, 
will results in the hybrid of ARIMA-GARCH and ARIMA-MLP model. The performance of each models 
will be compared based on the forecasting performance measure.  The model with the lowest error 
measurements will be selected as the best model, which will conclude the superiority of the model 
in handling the dynamics in the wind speed data. 
 
2. Methodology  
2.1 Study Area and Data Description 

 
This study employed the daily wind speed data collected from Malaysia Meteorological 

Department (MMD) at two stations in Peninsular Malaysia; Mersing and Senai, Johor. Senai wind 
station is situated in the airport area, whereas Mersing wind station is in the Mersing district 
particularly coastal area. Before any analysis is performed, the data series will be pre-processed to 
capture the presence of any missing values that is common problem in the real-world time series 
data collection. 

Managing missing data is crucial because it can cause uncertainty in the data analysis process by 
impacting statistical estimators' properties, such as means and variances, and it can result in a loss 
of power and incorrect conclusion [13]. The typical method to handle the existence of missing values 
in time series data is the mean imputation method. This technique functions by substituting the mean 
of the available wind speed data for the missing value that exists at a specific wind station. 

In time series data analysis, the descriptive analysis helps to determine overall structure of the 
datasets. The descriptive statistics will emphasise the internal criteria in the data of wind speed 
series. It gives the central tendency properties, which include the mean value, the standard deviation 
value, which represents the dispersion of a data, and the data distribution, which includes the value 
of skewness. The average wind speed recorded at each station are given by the mean value. The 
deviation of data from the mean can be obtained by calculating the value of standard deviation. 
While the distribution of the data can be explained by the skewness value. These three descriptive 
statistics values can be expressed in the following way: 
 
Mean, �̅�𝑣 = 1

𝑛𝑛
∑ 𝑣𝑣𝑖𝑖𝑛𝑛
𝑖𝑖=1              (1) 

 

Standard deviation, 𝑠𝑠 = � 1
𝑛𝑛−1

∑ (𝑣𝑣𝑖𝑖 − �̅�𝑣)2𝑛𝑛
𝑖𝑖=1          (2) 

 
Skewness = 1

𝑛𝑛×𝑠𝑠3
∑ (𝑣𝑣𝑖𝑖 − �̅�𝑣)3𝑛𝑛
𝑖𝑖=1            (3) 

 
where n is the sample size, 𝑣𝑣𝑖𝑖  represents the observed value of wind speed data with regards to I, 
whereas �̅�𝑣 and 𝑠𝑠 are the mean and standard deviation, respectively. 
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2.2 Linear Modelling 
2.2.1 ARIMA model 
 

The Box-Jenkins approach, often known as the autoregressive integrated moving average 
(ARIMA) model, is commonly used in statistical time series modelling to develop a model to forecast 
future wind speed. In general, the mathematical representation of ARIMA (p, d, q) model can be 
expressed as follows: 

 
  𝜑𝜑(𝐵𝐵)(1 − 𝐵𝐵)𝑑𝑑𝑣𝑣𝑡𝑡 = 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡            (4) 

 
Here, 𝑣𝑣𝑡𝑡 is the empirical wind speed values and 𝜀𝜀𝑡𝑡 represents the term of random error at time t. 

𝜑𝜑1, 𝜑𝜑2, 𝜑𝜑3,…, 𝜑𝜑𝑝𝑝 are the coefficient of autoregressive (AR) of order p, and 𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3,…, 𝜃𝜃𝑞𝑞 are the 
coefficient of moving average (MA) of order q. d is the differencing order.  While, 𝜑𝜑(𝐵𝐵) = 1 −
∑ 𝜑𝜑𝑖𝑖𝐵𝐵𝑖𝑖
𝑝𝑝
𝑖𝑖=1  and 𝜃𝜃(𝐵𝐵) = 1 − ∑ 𝜃𝜃𝑗𝑗𝐵𝐵𝑗𝑗𝑞𝑞

𝑗𝑗  are the polynomials of order p and q, respectively, where B is the 
backward shift operator. Hence, the combination of AR and MA with differencing order d will form 
an ARIMA (p, d, q) model as such): 
 
𝑣𝑣𝑡𝑡 = 𝜇𝜇 + 𝜑𝜑1𝑣𝑣𝑡𝑡−1 + 𝜑𝜑2𝑣𝑣𝑡𝑡−2+ …𝜑𝜑𝑝𝑝𝑣𝑣𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡 + 𝜃𝜃1𝜀𝜀𝑡𝑡−1 + ⋯+ 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞       (5) 
 

There are three procedure in modelling using the Box-Jenkin ARIMA (p, d, q):  
 

i. Model identification. The variables must be checked for stationarity and seasonality in this 
stage. The ACF and PACF plots were then examined to determine which component 
should be included in the model.  

ii. Parameters estimation. This stage is carried out to acquire the best coefficient for the 
selected ARIMA model using the computational approach based on the maximum 
likelihood estimation (MLE) method. To select the most appropriate ARIMA (p, d, q) 
model, the parsimonious model will be chosen based on the model with the lowest AIC 
value [14]. 

iii. Diagnostic checking. This stage will assess the adequacy of the chosen model by 
determining whether the estimated model meets the stationary univariate method 
specifications.  

 
The diagnostic checking part will, the internal structure of a time series data will be determined. 

To assess the presence of serial correlation and volatility in the data series, the Ljung-Box Q statistics 
can be tested on both residuals and squared residuals, respectively [15]. The results can be confirmed 
by running the ARCH Lagrange Multiplier (LM) test to look for any evidence of a volatility in the fitted 
model's residual data. The formulation for Ljung-Box Q statistics and ARCH (LM) test are shown in Eq. 
(6) and Eq. (7), respectively. 
 
𝑄𝑄 = 𝑇𝑇(𝑇𝑇 + 2)∑ 𝑟𝑟𝑘𝑘

2

(𝑇𝑇−𝑘𝑘)
𝐿𝐿
𝑘𝑘=1                           (6) 

 
𝜀𝜀𝑡𝑡2 = 𝑎𝑎�0 + ∑ 𝑎𝑎�𝑠𝑠𝜀𝜀𝑡𝑡−𝑠𝑠2𝑞𝑞

𝑠𝑠=1                           (7) 
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2.3 Nonlinear Time Series Model 
2.3.1 Generalised Autoregressive Conditional Heteroscedastic (GARCH) model 
 

The Generalised Autoregressive Conditional Heteroscedastic (GARCH) model is essentially a 
generalisation of Bollerslev's (1986) ARCH model.  The generic version of the GARCH (r, s) model for 
conditional heteroscedasticity can be written as 𝑦𝑦𝑡𝑡 = 𝜇𝜇𝑡𝑡 + 𝜀𝜀𝑡𝑡, where 𝜇𝜇𝑡𝑡 is the conditional mean for 
𝑦𝑦𝑡𝑡, while 𝜀𝜀𝑡𝑡 is the shock at time t, as such; 𝜀𝜀𝑡𝑡 = 𝜎𝜎𝑡𝑡𝑧𝑧𝑡𝑡, 𝑧𝑧𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖 𝑁𝑁(0,1). Here, the variance equation for 
GARCH (r,s) model can be expressed as: 

 
𝜎𝜎𝑡𝑡2 =∝0+ ∑ ∝𝑖𝑖 𝜀𝜀𝑡𝑡−𝑖𝑖2𝑟𝑟

𝑖𝑖=1 + ∑ 𝛽𝛽𝑖𝑖𝜎𝜎𝑡𝑡−𝑖𝑖2𝑠𝑠
𝑖𝑖=1           (8) 

 
where ∝0> 0 and ∑ (∝𝑖𝑖+ 𝛽𝛽𝑖𝑖) < 1max (𝑝𝑝,𝑞𝑞)

𝑖𝑖=1 . ∝𝑖𝑖  are the parameters coefficient for ARCH and 𝛽𝛽𝑖𝑖 are the 
parameters coefficient for GARCH. In a situation where all values of the coefficient 𝛽𝛽 are zero, ARCH 
model will replace the GARCH model. 
 
2.3.2 ARIMA-GARCH model 
 

To develop the ARIMA-GARCH model, there are two main procedures that can be considered. At 
the beginning, the linear component is estimated using ARIMA model and followed by obtaining the 
residual series, 𝜀𝜀𝑡𝑡, as in Eq. (4) [16]. In the second stage, the GARCH model is employed to model the 
residuals that solely include the nonlinear pattern. The ARIMA model is hybridised with the GARCH 
model's error component, resulting in a model that is known to be capable of handling the internal 
structure in  the wind speed daily data and predicting the future datasets of wind speed series. Based 
on past literatures [17,18], the GARCH (1, 1) is the simplest form of GARCH model. Henceforth, the 
GARCH (1,1) will be applied in this study to model the residuals of ARIMA model in capturing any 
internal structure exist in the error term of the ARIMA model. 

 
2.4 Machine Leaning Model 
2.4.1 Data pre-processing 
 

Data division is an important stage in the modelling process, where this method is classified as 
supervised or unsupervised [19].  There are no standardised rules for partitioning data into training, 
validation, and test sets. Most studies divide data in one of two ways: based on domain expertise or 
arbitrarily [20]. The training set is part of the model fitting, where it serve as the sample data. The 
validation set is the collection of data that is set apart when the training is performed. The validation 
set are known to helps in two ways; (i) model performance assessment while model training is 
performed, (ii) aid in the selection of the best parameter for the machine learning model [21]. The 
validation procedure provides information that can be used to fine-tune the model's 
hyperparameters, preventing overfitting. Lastly, the testing set is applied for the evaluation of the 
model's ability to generalise, and its error from the testing set can be utilize as the tool to compare 
the performance of other prediction models.  Consequently, the machine learning model in this study 
are divided into three groups; 60% training sets, 20% validation sets, and 20% testing sets.  

 
2.4.2 Multilayer Perceptron (MLP) Model 
 

A basic feed forward neural network model, sometimes referred to as a three-layer multilayer 
perceptron (MLP), should be assessed before going on to a more sophisticated model. One popular 
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feed-forward artificial neural network (ANN) for wind speed forecasting is the MLP model. It consists 
of at least three layers, each of which consists of units stacked in layers: the input layer, one or more 
hidden layers, and the output layer. The nodes of the hidden layer process the input values that are 
received by the first layer, the input layer. The output layer will then produce the desired output after 
this [22]. The MLP model's processing elements are all recognised as interconnected nodes 
connected by flexible weights. Each node receives input signals, which are essentially the output of 
other nodes. Each node's output in this case is determined by the weighted input, bias, and activation 
function. Figure 1 illustrated a simple MLP network that consist of one input layer, one hidden layer, 
and 1 output layer. 

 

 
Fig. 1. The MLP architecture of one hidden layer with one 
prediction output 

 
The formulation applied to come up with the output value bpj, by the hidden layer, based on input 

pattern VpN : vp1, vp2,…, vpN can be express as follows: 
 

𝑏𝑏𝑝𝑝𝑗𝑗 = 𝑓𝑓𝑗𝑗�∑ 𝑤𝑤𝑖𝑖𝑗𝑗 ∙ 𝑣𝑣𝑝𝑝𝑖𝑖 +𝑁𝑁
𝑖𝑖=1 𝜖𝜖𝑗𝑗�            (9) 

 
where 𝑓𝑓 is the activation function for hidden neuron, 𝑤𝑤𝑖𝑖𝑗𝑗 is the connection weight for input neuron i 
and hidden neuron j, 𝑣𝑣𝑝𝑝𝑖𝑖 is the input signal based on input neuron i for pattern p, and 𝜖𝜖𝑗𝑗 represents 
the threshold for hidden neuron j.  

The mathematical formulation for the output in output neurons are similar to the neurons in the 
hidden layer which is:  

 
𝑣𝑣�𝑝𝑝𝑘𝑘 = 𝑓𝑓𝑀𝑀�∑ 𝑤𝑤𝑗𝑗𝑘𝑘 ∙ 𝑏𝑏𝑝𝑝𝑗𝑗 +𝐿𝐿

𝑗𝑗=1 𝜖𝜖𝑘𝑘�         (10) 
 
where 𝑣𝑣�𝑝𝑝𝑘𝑘 are the output signal based on output neuron k for pattern p, 𝑓𝑓𝑀𝑀 are the activation 
function for output neuron M, 𝑤𝑤𝑗𝑗𝑘𝑘 are t the connection weight for hidden neuron j and output neuron 
k, 𝑏𝑏𝑝𝑝𝑗𝑗 is the output signal from hidden neuron j for pattern p, and 𝜖𝜖𝑗𝑗 represents the threshold of 
output neuron k. 

The training parameters for number of inputs, number of hidden neurons, activation function, 
loss function, optimizer, learning rates, batch size, and number of epochs, are determined based on 
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the previous literatures. The selected parameter values will be tested according to the trial-and-error 
basis [23]. The training parameters used in modelling using the MLP is summarized in Table 1. 
 

Table 1 
The training parameters for the MLP model 
Parameter Descriptions 
Number of Input 365-day time steps [24,25]  
Number of Hidden Neurons 32, 64, 128, 256, 512 [26] 
Loss function Mean squared error loss [27] 
Optimizer Adam optimizer [28] 
Activation function Rectified linear unit (ReLU) 
Learning Rates 0.001 [29] 
Batch Size 512 [25] 
Epochs Range between 100 to 500 [30] 

 
2.3.4 ARIMA-MLP model 
 

A hybrid model is, in general, an attempt to integrate linear and nonlinear models into one. With 
ARIMA and MLP, a number of researchers have developed a hybrid model based on the idea of 
separating the model for linear and nonlinear components of time series. Zhang's [31] hybrid 
technique is a popular method for creating a hybrid model for prediction. It can be broadly stated as 
follows: 

 
𝑣𝑣𝑡𝑡 = 𝐿𝐿𝑡𝑡 + 𝑁𝑁𝑡𝑡            (11) 
 
where the linear and nonlinear components, respectively, are computed from wind speed data and 
denoted by 𝐿𝐿𝑡𝑡 and 𝑁𝑁𝑡𝑡. In this study, the ARIMA model will extract the linear component, and the 
residuals, 𝜀𝜀𝑡𝑡 from the linear model will only contain nonlinear component, which may be expressed 
as follows: 
 
𝑣𝑣�𝑡𝑡 = 𝜑𝜑0 + ∑ 𝜑𝜑𝑖𝑖𝑣𝑣𝑡𝑡−𝑖𝑖 + ∑ 𝜃𝜃𝑗𝑗𝜀𝜀𝑡𝑡−𝑗𝑗

𝑞𝑞
𝑗𝑗=1

𝑝𝑝
𝑖𝑖=1 + 𝜀𝜀𝑡𝑡                    (12) 

 
where 𝐿𝐿�𝑡𝑡 is estimated by the ARIMA model at time t and is applied to calculate the residual series. 
The next step is to performed a nonlinear modelling with the aim to capture the nonlinear patterns 
from the residuals 𝜀𝜀𝑡𝑡 using the MLP model to form: 
 
𝜀𝜀𝑡𝑡𝑀𝑀𝐿𝐿𝑡𝑡 = 𝑓𝑓𝑀𝑀𝐿𝐿𝑡𝑡(𝜀𝜀𝑡𝑡−1, 𝜀𝜀𝑡𝑡−2, … , 𝜀𝜀𝑡𝑡−𝑛𝑛) + 𝜖𝜖𝑡𝑡𝑀𝑀𝐿𝐿𝑡𝑡        (13) 
 

At this point, 𝑓𝑓𝑀𝑀𝐿𝐿𝑡𝑡 represented the nonlinear functions for MLP with n input and 𝜖𝜖𝑡𝑡𝑀𝑀𝐿𝐿𝑡𝑡 is the error 
term. To obtain the final model of ARIMA-MLP, the out-sample forecast from MLP,  𝑁𝑁�𝑡𝑡𝑀𝑀𝐿𝐿𝑡𝑡 was added 
up with the forecasted value from ARIMA model, 𝐿𝐿�𝑡𝑡 to form a combined forecast as below: 
 
𝑣𝑣�𝑡𝑡−𝑀𝑀𝐿𝐿𝑡𝑡 = 𝐿𝐿�𝑡𝑡 + 𝑁𝑁�𝑡𝑡𝑀𝑀𝐿𝐿𝑡𝑡           (14) 
 

The development of the ARIMA-MLP model can be done in two steps, to sum up the hybrid 
methodologies from [31]. To capture the linear component of the series, the wind speed dataset will 
first be fitted to the ARIMA model. Second, the predicted value will be obtained by feeding the ARIMA 
model's residuals into the MLP model. In order to get the combined forecast, the forecast values of 
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residuals from MLP will then be added to the values predicted by the ARIMA model to produce 
ARIMA-MLP model. 
 
2.5 Forecasting Performance Measure 
 

To conclude the superiority of the selected nonlinear models, the difference between the 
observed and predicted wind speed series will be calculated. The RMSE, MAE, and MAPE are used to 
assess forecasting performance. The equations are written as follows: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ (𝑣𝑣𝚤𝚤� − 𝑣𝑣𝑖𝑖)2𝑛𝑛
𝑖𝑖=1              (15) 

 
𝑅𝑅𝑀𝑀𝑅𝑅 = 1

𝑛𝑛
∑ �(𝑣𝑣𝚥𝚥� − 𝑣𝑣𝑖𝑖)�𝑛𝑛
𝑖𝑖=1           (16) 

 

𝑅𝑅𝑀𝑀𝑀𝑀𝑅𝑅 = 1
𝑛𝑛
∑ �(𝑣𝑣𝚥𝚥�−𝑣𝑣𝑖𝑖)�

𝑣𝑣𝑖𝑖
𝑛𝑛
𝑖𝑖=1           (17) 

 
where 𝑣𝑣𝑡𝑡 and 𝑣𝑣�𝑡𝑡 represents the empirical and theoretical wind speed daily data sets, while n denotes 
the sample data. Here, model with lowest error measurements from RMSE, MAE, and MAPE will then 
be selected as the most promising model, which concluded its superiority in capturing the 
nonlinearity in the wind speed data. 
 
3. Results  
3.1 Descriptive Statistics 
 

Prior to doing exploratory data analysis, the wind speed data underwent pre-processing. It was 
observed that only a tiny proportion of missing values, specifically less than 5%, were present in the 
wind speed data series for each station. Consequently, the absent data values in each dataset were 
approximated using the Mean Imputation method. Subsequently, the wind speed data is analysed, 
and the descriptive statistics for each dataset are presented in Table 2. 
 

Table 2 
The statistical descriptive of daily wind speed data 
Station Mean Standard Deviation Skewness 
Mersing 9.892 2.784 1.128 
Senai 9.228 2.354 0.881 

 
From the results presented in Table 2, the mean of wind speed for Mersing and Senai stations 

can be categorized in a high range speed. The standard deviation also shows that the wind behavior 
for both stations is in a good consistency. A skewness value serves as an indicator of the direction in 
which outliers are present. When the skewness is positive, the outliers are located more to the right 
and closer to the mean on the left side.  

It also suggests that a distribution has exceptional values towards its positive end. A highly 
skewed distribution is shown by Mersing stations, which produced a skewness value of more than 
one. Senai, on the other hand, seems to be somewhat skewed, with a skewness level between 0.5 
and 1. When data points favour one side of the distribution, the underlying data have a high degree 
of skewness. This indicates that there are more outliers in the wind speed data, with a higher 
percentage of extreme values recorded on a higher scale. 
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3.2 ARIMA Modelling 
 

As part of the Box-Jenkins methodology, a time series plot is generated to assess the presence of 
seasonality or trend in the data series. The charts in Figure 2 indicate that the wind speed series does 
not exhibit discernible trend or seasonality, as it remains consistently variable rather than fluctuating 
at a consistent level. 

 

 
(a) 

 
(b) 

Fig. 2. The time series plot for station in (a) Mersing and (b) Senai 
 

Subsequently, the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test is employed to assess the 
stationarity of the time series. The unit root test results for Mersing and Senai stations indicate that 
both data series are non-stationary, as evidenced by a p-value that is less than 0.01 for the KPSS test 
shown in Table 3.  

 
Table 3 
The KPSS test for stationarity 

Station 
Observed Data First Differencing 
KPSS Level p-value Stationary KPSS Level p-value Stationary 

Mersing 7.381 < 0.01 NO 0.0012 > 0.1 YES 
Senai 44.949 < 0.01 NO 0.0012 > 0.1 YES 

 
This is further corroborated by the consistent decline observed in the ACF plots for both sites. In 

order to address the issue of nonstationarity, it is necessary to apply differencing to obtain datasets 
that exhibit stationarity. The KPSS test yields a p-value of more than 0.1 for station Mersing and Senai 
after applying the first differencing. This implies that the series, after being differenced once, exhibits 
stationarity.    

This conclusion is additionally reinforced by the ACF plot, which exhibits a rapid decline to zero. 
The ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function) plots are utilised to 
determine the appropriate component to include in the ARIMA model once the series achieves 
stationarity after differencing. The plots demonstrate that, for d=1, the possible combinations are 
p=0, 1, 2 and q=0, 1, 2. The study reveals that the Mersing station's ARIMA (1, 1, 2) and the Senai 
station's ARIMA (2, 1, 2) exhibit the lowest AIC values as shown in Table 4. Henceforth, the final 
ARIMA model for Mersing station is ARIMA (1, 1, 2), while Senai station is ARIMA (2, 1, 2). 
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Table 4 
The AIC value for the potential ARIMA models 
Tentative 
ARIMA Model 

AIC values 
Mersing Senai 

ARIMA (0,1,1) 42027.05 45513.70 
ARIMA (0,1,2) 41802.27 45470.85 
ARIMA (1,1,0) 43521.38 48895.63 
ARIMA (2,1,0) 42962.31 47782.52 
ARIMA (1,1,1) 41728.66 45466.96 
ARIMA (1,1,2) 41628.48 45427.25 
ARIMA (2,1,1) 41640.57 45452.07 
ARIMA (2,1,2) 41630.35 45422.91 

 
In order to determine the appropriateness of the potential model, diagnostic checks will be 

performed on both of these models. Table 5 shows that the residual of the ARIMA model in both 
stations do not possesses any serial correlation.   

The Ljung-Box test results on the squared residual from Table 5 suggest the existence of a 
volatility effect in the residual data from the ARIMA model, as well as a pattern of white noise. This 
is further confirmed by the findings of the ARCH (LM) test. Thus, it can be concluded that the ARIMA 
models lack statistical significance and are inadequate for estimating both stations. Instead, a 
nonlinear model is necessary. Subsequently, the GARCH and MLP models will be incorporated into 
the ARIMA model to account for the underlying patterns that have been demonstrated to impact the 
accuracy of the ARIMA model, hence addressing its limitations.  

 
Table 5 
The p-value for Ljung-Box test and LM test for the potential ARIMA model 

Station ARIMA Model 
Ljung-Box test ARCH (LM) 

test Residuals Sq. Residuals 
Mersing ARIMA (1,1,2) 0.230 <0.001 <0.001 
Senai ARIMA (2,1,2) 0.139 <0.001 <0.001 

 
3.3 ARIMA-GARCH modelling 
 

This step is taken to address the issues with the ARIMA model that arise from the volatility being 
present in the model's residuals. In order to account for the existence of conditional 
heteroscedasticity, the GARCH model is presented. The GARCH (1,1) model is selected to be used in 
this study since it is the simple GARCH model and has been used as the benchmark GARCH model by 
the previous literature in modelling using ARIMA-GARCH model [17,18].  The MLE approach is used 
to estimate the GARCH model's parameters, and a computational algorithm is used to get the ideal 
constant and coefficient values for the ARIMA-GARCH model. The estimated ARIMA-GARCH model 
results for each chosen wind station's wind speed data are shown in Table 6. Based on the results 
presented in Table 6, it can be concluded that the GARCH model managed to capture the existence 
of volatility in the residuals of ARIMA-GARCH model for both stations. Following this, the error 
measurement for ARIMA-GARCH model are calculated to be compared with the ARIMA-MLP model. 
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Table 6 
The ARIMA-GARCH model and the results for ARCH LM test 

Station Model 
LM Test 
Statistics p-value 

Mersing ARIMA (1, 1, 2) – GARCH (1, 1) 12.886 0.230 
Senai ARIMA (2, 1, 2) – GARCH (1, 1) 14.796 0.139 

 
3.4 ARIMA-MLP Modelling 
 

The ARIMA-MLP hybrid model is widely regarded as the most common choice for capturing both 
linear and nonlinear components in time series data, especially in the domain of wind speed 
forecasting. When employing this hybrid approach in modelling, the initial stage involves acquiring 
the residuals from the ARIMA model and subsequently training these values using the MLP model. 
To determine the ideal number of hidden neurons, we chose five distinct values based on previous 
research: 32, 64, 128, 256, and 512. A total of five distinct MLP models were trained using the residual 
values obtained from the ARIMA model. The MLP model with the lowest validation error will be 
identified as the optimal choice to represent the residual of the ARIMA model for each station.   

The findings are succinctly presented in Table 7. The study selects six discrete epochs, spanning 
from 100 to 500, to investigate the influence of varying epoch counts on the performance of the MLP 
model. This is done by monitoring the occurrence of underfitting or overfitting during the training 
process, as indicated in the literature. This procedure establishes the optimal number of epochs for 
training the model. The loss plot was generated and the ideal number of epochs for the MLP model 
was selected based on the point where the training loss and validation loss showed the smallest 
difference and the inflection point in the loss plot was clearly visible.   

Table 7 demonstrates that the ideal number of hidden neurons for both stations is 32 since it 
gives the lowest RMSE values among all five selected number of hidden neurons. While the number 
of epochs was concluded based on the loss plot obtained in the study with Mersing station requiring 
150 epochs and Senai station requiring 300 epochs. 
 

Table 7 
The optimal parameters for the ARIMA-MLP model 

Station Optimal Parameter  
Hidden Layer Hidden Neurons Epoch 

Mersing 1 32 150 
Senai 1 32 300 

 
These models are determined to be the most effective MLP models for capturing the residuals of 

the ARIMA model. After that, the chosen model is used to forecast the out-of-sample residual data 
for each station in order to assess the model's performance. The out-of-sample data derived from 
ARIMA modelling is added to these numbers. Following this, the error measurement for ARIMA-MLP 
model are calculated to be compared with the ARIMA-GARCH model. 
 
3.5 Performance Comparison 
 

To ascertain the most accurate model for capturing the wind speed data dynamics, we assessed 
and compared the RMSE, MAE, and MAPE values of each model in a study on model performance. In 
general, a model with the lowest error measurement is regarded as good. The performance 
comparison of the ARIMA-GARCH and ARIMA-MLP models is presented in Table 8.    
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Table 8 
The comparative performance of ARIMA-GARCH and ARIMA-MLP model 
Station ARIMA-GARCH ARIMA-MLP 

RMSE MAE MAPE RMSE MAE MAPE 
Mersing 3.491 2.996 37.146 2.261 1.706 17.291 
Senai 2.736 2.325 31.920 2.189 1.624 18.072 

 
The performance of the ARIMA-MLP model is generally superior to that of the ARIMA-GARCH 

model for both stations. The ARIMA-MLP model yields the lowest RMSE, MAE, and MAPE values for 
both stations, in comparison to the ARIMA-GARCH model. Therefore, the results indicate that the 
MLP model outperforms the GARCH model in capturing the nonlinearity characteristics of the wind 
speed data and generating a more precise forecast of wind speed. 

Four criteria can be used to categorise the typical value of MAPE, as was discussed in the 
preceding section by Lewis [32]. A forecasting value of more than 50% falls into the category of 
"inaccurate" forecasting; a value between 20% and 50% falls into the category of "reasonable" 
forecasting; a value between 10% and 20% falls into the category of "good" forecasting; and a value 
less than 10% falls into the category of "excellent" forecasting. The model's predictive power over 
the out-of-sample datasets is the basis for evaluating the MAPE value. Based on Table 6, ARIMA-
GARCH model only able to provide a reasonable forecasting, while ARIMA-MLP model belongs to a 
good forecasting category. 

The percentage of improvements that is based on a higher reduction of error from MAPE value 
was also measured. As compared to the ARIMA-GARCH model, the error measurement using MAPE 
values from the ARIMA-MLP model has greatly decreased for Mersing station and Senai station, by 
53% and 43%, respectively, according to the data shown in Table 8. Based on these results, this 
demonstrates how the ARIMA model's drawback can be overcome by combining the MLP model with 
the ARIMA model, which has demonstrated the capability to handle the nonlinearity feature present 
in the wind speed data. In consequence, the combination of linear and nonlinear models has also 
increase the performance of the wind speed forecasting model.  
 
4. Conclusions 
 

The primary aim of this study was to assess the efficacy of the time series model and the artificial 
neural network model in addressing the nonlinearity present in wind speed data, and determining 
the superior forecasting model. This was achieved by employing scientific methodologies to assure a 
high degree of accuracy in the projected data points, closely aligning them with the actual values. 
This study employed multiple pre-existing models to effectively harness the potential of each model 
in capturing the nonlinearity present in the wind speed data. A performance comparison was 
undertaken to select the model that yielded the most accurate forecasting metric, as determined by 
the lowest values of RMSE, MAE, and MAPE. Therefore, in this study, the ARIMA model was employed 
to analyse linear patterns, while the GARCH and MLP models were utilised to capture the nonlinearity 
criterion in the wind speed data. The selection of these two models was based on their widespread 
applicability in describing nonlinear data.   

This study aims to enhance the construction of a forecasting model that can effectively capture 
the nonlinearity present in wind speed data. A comparison research was conducted due to the 
nonlinearity observed in the residuals of the fitted ARIMA model. The presence of heteroscedasticity 
in the fitted ARIMA model was also accounted for by incorporating the GARCH and MLP models, 
resulting in the creation of the ARIMA-GARCH model and ARIMA-MLP model. The model's superiority 
was confirmed by comparing the predicting performance measures of these two models, with the 
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ARIMA-MLP models showing the lowest error measurements. In summary, the ARIMA-MLP model 
offers a valuable contribution to the field of wind energy by presenting a wind speed model that 
accurately represents both the linear and nonlinear aspects of the wind speed data series.  

Developing a precise wind speed forecast model, specifically for Malaysian authorities, would aid 
in minimising the likelihood of choosing a suboptimal site for wind farm installation. Hence, future 
research might involve utilising the ARIMA-MLP model to compute the wind power density. This 
would offer a precise assessment of the wind energy potential at various wind stations throughout 
Peninsular Malaysia. 
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