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Cooling-slope (CS) casting parameters optimization is very challenging due to the 
uncertainties of parameter values that are influenced by many factors. Therefore, a 
combination of estimation and optimization models that can solve multi-objective 
problems using limited data is proposed to reduce the real casting operational cost and 
time. In casting optimization, modeling and optimization of CS parameters have been 
considered to identify optimal CS parameters that would lead to better feedstock 
performance. Computational techniques have been suggested by previous researchers 
to solve the optimization in the manufacturing process. The study assessed the CS 
process to determine the feedstock's quality by evaluating its mechanical qualities, 
namely Tensile strength and Impact strength. Hence, computational methods namely 
the MOJaya algorithm are utilized to model and optimize the parameters of CS to 
address the CS problem and forecast the performance of the feedstock. This work 
conducted a thorough analysis of the impact of CS process parameters on the tensile 
strength and impact strength using an experimental design. The experiment was 
conducted using a three-level full factorial design (FFD) of the experiment (DOE), for the 
parameters of pouring temperature, slanting angle, and pouring distance. The modeling 
technique involved the development of multiple polynomial regression (MPR) as an 
objective function in the MOJaya Algorithm. The outcome of the optimization 
procedure revealed that the optimal solutions obtained from MOJaya were projected 
to surpass both the initial experimental data and the MOJaya algorithm in terms of the 
highest values of tensile strength and impact strength. The difference between the two 
sets of values is 10.92% and 15.76%, respectively.  Subsequently, this technique may be 
employed by a caster to forecast the performance of the feedstock without using 
repeated experiments that are costly and time-consuming.  
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1. Introduction 
 

Semi-solid metal processing (SSMP) is a metal processing technology that harnesses the benefits 
of both liquid metal casting and solid metal forging. The SSMP technique has been utilized to produce 
near-net-shape goods, often referred to as feedstock, with microstructures that are globular and free 
from dendrites. The feedstock, billet, bloom, slab, and ingot are raw materials produced by the 
continuous casting process, forming various forms (such as round, square, and rectangular) according 
on their purpose [1]. A widely used technique in SSMP is known as cooling-slope (CS) casting. This 
method guarantees a seamless casting procedure by subjecting the metal to a consistently low level 
of overheating, maintaining a constant temperature that is either close to or slightly over the point 
at which it becomes fully liquid. The flow of molten metal can be achieved by pouring it into a cool 
slope where it collects in a mold, or it can be employed directly in conjunction with a shaping process 
like rolling [2]. 

The primary objective in today's manufacturing industry is to enhance product productivity by 
achieving optimal quality while minimizing costs and time. The quality assessment of feedstock 
generated by the CS process commonly relies on the evaluation of its microstructure and mechanical 
properties [3]. Tensile strength (TS) and impact strength (IS) are examples of mechanical qualities. 
Producing feedstock with the intended mechanical qualities using the CS casting process is difficult 
due to common issues such as oxidation, porosity, and fast solidification (where the molten metal 
solidifies before fully filling the mold). Multiple research has revealed that the processing parameters 
of CS have a noteworthy influence on the quality of the feedstock [4,5].To get superior feedstock, 
the process parameters must align with their optimal values. The CS casting process typically takes 
into account many key factors, including pouring temperature, pouring distance, and slanting tilt.  

The choice of CS casting process parameters is commonly determined by experience, iterative 
experimentation, a well-established processing plant guide, trial and error, or a manufacturing 
handbook [6]. Choosing CS casting parameters to achieve optimal feedstock performance is a 
complex and expensive task, since the ideal combination of parameters does not necessarily ensure 
the best performance in the CS process. Altawabeyeh et al., [7] elucidated that the absence of a well-
defined theoretical framework typically leads to the adoption of a trial-and-error approach in the 
parameter selection phase of the design process. 

 Due to the laborious nature of manually selecting parameters, researchers have employed 
several computer methods to determine the most appropriate values for process parameters [8]. 
During the early stage of the computational method, the relationship between the selection of 
parameter values and the performance of the output is analyzed by mathematical modeling. A 
correlation study or mathematical model is developed in accordance with the experimental work. 
Subsequently, the suggested mathematical model was used in conjunction with the chosen 
optimization procedure to acquire the ideal value parameters [9]. Prior investigations included 
several mathematical modeling approaches, including the regression model [10], response surface 
methodology (RSM) [11], and numerical simulation [12]. The regression model, whether it is single 
or multiple regression, has been extensively utilized to evaluate the linear or non-linear relationship 
between one independent variable and multiple independent variables [13,14]. 

For instance, in this study, linear regression was used to create a model for CS parameters such 
as pouring temperature, pouring distance, and slanting slope angle [15]. In another study, a 
polynomial regression model was used to describe the relationship between casting performance 
and casting process parameters [16]. Manjunath et al., [19] employed a non-linear regression model 
to establish a correlation between squeeze cast process parameters and squeeze cast performance. 
They further enhanced the model's performance by utilizing genetic algorithm optimization [17]. 
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Regression analysis was employed in an experimental investigation to construct a mathematical 
model that accurately depicts the considerable correlation between process parameters and output 
responses.  

Once the suitable mathematical model is constructed, it is subsequently employed as the 
objective function in the chosen optimization procedure. The complexities of casting production 
become increasingly apparent when the number of variables involved rises and there is a restricted 
timeframe for finding a solution. Therefore, we are actively seeking a feasible approach to address 
the issues. In this context, it is necessary to employ adaptable optimization methods to aid the 
decision-maker in choosing the most favorable parameters that will result in the best possible 
outcome. Due to the presence of several mechanical property parameters and other parameters with 
changing values, the multi-objective optimization (MOO) technique produces more favorable 
outcomes compared to a single optimization method. This study examined how various process 
parameters (such as pouring temperature, slanting angle, and pouring distance) affect the 
performance of multiple feedstocks (TS and IS) using experimental design. The study found that the 
multi-objective optimization (MOO) approach was more appropriate than the single objective 
optimization approach. 

Prior research has demonstrated the application of optimization algorithms, specifically 
metaheuristic algorithms (MAs), in a variety of fields. These include the utilization of the multi-
objective genetic algorithm (MOGA) [18], multi-objective particle swarm optimization (MOPSO) [19], 
multi-objective whale optimization algorithm (MOWOA) [20], multi-objective artificial bee colony 
(MOABC) [21], Cubature Kalman Optimizer [22], Firefly algorithm [23], Ant Colony algorithm [24], and 
others. The majority of MOO techniques have algorithm-specific parameters that serve distinct tasks 
inside the algorithm, which might impact the efficiency performance of the algorithm. Improper 
adjustment of algorithm-specific parameters can have a negative impact on the algorithm's 
performance, including its convergence rate, diversity, efficiency, scalability, and capacity to explore 
and exploit the solution space [25]. 

Roa et al., [26] proposed a novel approach called multi-objective Jaya (MOJaya) that incorporates 
particular parameters. MOJaya is an extension of the Jaya algorithm, which is a parameter-free 
algorithm. The unique parameters in MOJaya include the population size and the maximum number 
of iterations. The Jaya technique was originally developed to address both limited and unconstrained 
optimization problems. The MOJaya algorithm employs a search strategy that aims to approach 
optimal solutions by seeking the global best solutions. Additionally, it endeavors to avoid suboptimal 
answers by utilizing the MOJaya equation [26]. 

The MOJaya algorithm has been extensively applied in several domains to solve manufacturing 
problems, including plate-fin heat exchangers, knapsack problems, and optimum power flow [27]. 
Researchers have suggested other MOO ways to address the challenges encountered in the casting 
process. However, the majority of these approaches are derived from the use of different metals in 
other casting processes. Furthermore, there have been few studies that have taken into account the 
use of MOO to enhance industrial processes especially optimization of CS parameter process using a 
computational approach which has not yet been done by any researcher. The current work created 
a mathematical regression model and applied the MOJaya algorithm to estimate optimized CS casting 
process parameters. This was done to forecast the mechanical characteristics of two feedstocks: 
tensile strength and impact strength. 
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2. Methodology  
 

The present study focused on the analysis of the materials employed, the process of modeling 
and optimizing, and the prediction of feedstock performances. The objective was to evaluate the 
most favourable machining conditions in CS casting. In summary, this study consisted of three main 
stages, which are outlined below. The flow of the investigation is illustrated in Figure 1. 

 
i. Experimental and casting data collection: During this phase, data on the performance of 

the feedstock, as well as the parameters and limits, were gathered through 
experimentation. The mechanical parameters of tensile strength and impact strength 
were evaluated as indicators of feedstock performance. The variables considered were 
Pouring temperature (Pt), Pouring distance (Pd), and Slanting angle (Sa).  

ii. Modelling: In the second phase of this investigation, polynomial regression models were 
created and used to measure the performance of the feedstock. These models were then 
employed as an objective function for optimization. Before optimization, statistical 
studies were conducted to assess the validity of the models.  

iii. Optimization and Prediction: The last stage involves optimizing the CS parameters and 
forecasting the feedstock performance using the MOJaya algorithm. The obtained findings 
were compared to the experimental results, which were regarded as standards. 

 

 
Fig. 1. The flow of the study 

 
2.1 The CS Casting Process 
 

The experiment pertained to the CS casting process. The experiment was conducted following a 
three-level factorial design. Figure 2 depicts the schematic representation of cooling-slope casting, 
while Figure 3 showcases the construction of an instrument used for cooling-slope casting. 800 grams 
of AZ91D magnesium ingot were introduced into a stainless-steel melting crucible within a heating 
furnace and subsequently liquefied at temperatures of 680 °C, 700 °C, and 720 °C. Subsequently, the 
liquefied metal was discharged onto a chilled surface and subsequently directed into a metallic cavity 
according to the established parameters. Multiple K-type Thermocouples were positioned on the CS 
to gauge the temperature. The experimental method in the field of computer science was conducted 
by systematically altering the values of pouring temperature, slanting angle, and pouring distance by 
referring to previous researchers, as indicated in Table 1. Ultimately, the liquid metal that completely 
occupied the mold was designated as "as-cast”.  
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Table  1 
             The range CS parameter values 

Casting parameters Unit Level 
Pouring temperature Degree Celsius 680 700 720 
Pouring Distance Mm 300 400 500 
Slanting angle Degree 30 45 60 

 

 
Fig. 2. A schematic illustration of cooling-slope casting 
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Fig. 3. A cooling-slope casting apparatus setup 

 
A total of 27 experiment runs were done, following a three-level factorial design, which was 

mirrored in the experimental arrangement as Table 2. The architecture was configured to 
accommodate all potential input factors at every level. Figure 4 display the appearance of the 
material after the CS procedure experiment namely as-cast, that obtained from the cooling-slope 
experiment.  Subsequently, the as-cast material underwent machining using a designated machine 
to achieve a specified form for conducting TS (tensile strength) and IS (impact strength) tests. The as-
cast was machined by adhering to the standard (ASTM – B557M – 10). The TS for as-cast was 
measured by using the Universal Tensile Machine Instron 5982 , whereas the impact strength (IS) test 
performed using Ceast 9050 Test Machine  was deployed to evaluate the absorption energy of the 
as-cast. Figure 5 (a) and (b) depict the form of the TS specimen and the form of the IS specimen. 

 
Table 2 
Experimental results for Tensile strength 

Order 
CS parameters Response 

Pouring temperature Slanting angle Pouring distance Tensile strength Impact Strength 

1 680 30 300 90.6208 4.013 
2 680 45 300 104.06 3.276 
3 680 60 300 100.527 4.521 
. . . . … … 
. . . . … … 
. . . . … … 

25 720 30 500 126.499 4.112 
26 720 45 500 131.116 4.581 
27 720 60 500 129.1 4.578 
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Fig. 4. As-cast after Cooling-slope experiment 

 

 

 

(a) (b) 
Fig. 5. Specimen shape for (a) Tensile strength test (b) Impact strength test 

 
2.2 Developing the Regression Model and Conducting Statistical Analysis 

 
Regression modeling has been developed to evaluate the correlation between input factors, such 

as pouring temperature, slanting angle, and pouring distance, and output variables, namely TS and 
IS.This project involved the development of multi polynomial regression models. The model's fitness 
and appropriateness were assessed by the use of ANOVA and p-value. The normal  plot residual  was 
utilized to determine the distribution of the data. Subsequently, the precision of the regression model 
was evaluated using statistical error metrics, namely Mean Square Error (MSE), Root Mean Square 
Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). To assess 
the relevance of the model, many statistical measures were utilized, including R-square (R2), adjusted 
R-square (Adj-R2), predicted R-square (Pred-R2), normal probability plot, and residual and predicted 
plots. Figure 6 illustrates the procedural steps involved in the modeling of the CS casting process. 
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Process 
Input 

Control factors 

Uncontrol factors 

Output 

Full Factorial 
Design (FFD)   

                

Fig. 6. The step for modelling of CS casting process 
 

2.3 Optimization of CS Process using MOJaya Algorithm 
 

The MOJaya algorithm developed in this study was employed to optimise the CS parameters for 
predicting optimal feedstock performance in terms of mechanical properties (tensile and impact 
strengths) via the MOO approach. 

 
The following steps describe the MOJaya algorithm to solve the multi-objective optimization in CS 
process: 

Step 1  Define the input process parameters (Pt, Pd, and Sa) and objective functions (tensile and 
impact strengths). 

Step 2    Identify the population size, number of variables, and stopping criteria. 
Step 3    Generate Initial population size (P) randomly. 

 
 
 

Experiment Setup 
 
   
 
 

Define Input and output 
experiment 

 

 
 
 

 
 
 

 
 
 
 
 
 
 

Experimental design for 
modelling 
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the matrix design 

Run 
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Step 4 Evaluate objective function which is  the the mathematical models for Tensile strength and 
Impact strength expressed as Eq. (1) and (2), respectively as a function for MOJaya 
algorithm. The process parameters bounds are expresses by Eq. (3). 

 
   Maximize: 

 
PRMTS = 6845.35299 19.1798* Pt 2.85782* Sa - 0.253892* Pd

+0.001288* Pt * Sa +0.000804* Sa* Pd +0.013738* Pt * Pt
+0.022938* Sa* Sa +0.000508* Sd * Sd

+ −

 

 (1) 

 
Maximize 
 

PRMIS = 141.50016 0.404600* Pt +0.018684* Sa +0.008372* Pd
- 0.000031* Pt * Sa - 0.000017* Pt * Pd - 0.000050* Sa* Pd +
0.000297* Pt * Pt+0.000372* Sa* Sa +0.000012* Sd * Sd

+

 

(2) 

 
Parameter  
 
680 ≤ 𝐴𝐴 ≤ 720 
300 ≤ B ≤ 500 
30 ≤ C ≤ 60 

(3) 

 
Step 5 Identify the best and worst candidates among the population in terms of identified objective 

functions generated from Eq. (1) and Eq. (2). The parameter boundaries from Eq. (3) 
Step 6    Based on the best and worst solutions from step 5 , substitute the value to modify all   
                Candidate solutions using expressed as Eq. (4): 
 

* *1 2( 1, , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )x x r x x r x xi j k i j k i j b i j k i j w i j k= + − − −+
   
        

(4) 

       
Step 7    Combine modified solution with initial solutions. Calculate the Crowding distance and  
                ranking using non-dominated sorting considering both functions.  
Step 8    If the termination criterion satisfied then exit proceed step 11, if not Go back to step 5; 
Step 9 The stopping criteria is applied in the algorithm; if the solutions satisfy the condition, the 

algorithm will stop, and otherwise, return to Step 4. 
 
3. Results and Discussion 
 

The present study utilized a mathematical regression model to evaluate the Tensile strength in 
Eq. (1) and impact strength in Eq. (2) (feedstock performance) as objective functions in the MOJaya 
algorithms. Prior to utilizing the models in the optimization process, it is necessary to confirm the 
importance of these models. Firstly, the normal plots of residuals for TS and IS in the PRM model are 
portrayed in Figures 7 (a) and (b) accordingly The normal probability plots of the PRM models for TS 
and IS showed all points forming a straight line. When all the points are normally distributed, it means 
that the errors cumulated are small during performing the experiments. Overall, it can be 
summarized that the developed for both models tensile strength and impact strength was signified 
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the adequacy and validity.  Next, the ANOVA table for the models is presented in Tables 3 and 4, 
respectively. The models were subsequently employed to optimize the CS process parameters. 
 

  
(a) (b) 

Fig. 7. Normal plot of residuals for tensile strength  and impact strength 
 

Table 3  
ANOVA of Tensile strength  
Source Sum of Squares df Mean Square p-value 
Model 8154.20  1019.28 < 0.0001 
A-Pouring Temperature 89.29 1 89.29 0.010594 
B-Slanting Angle 748.01 1 748.01 0.0004 
C-Pouring distance 6418.20 1 6418.20 < 0.0001 
AB 1.79 1 1.79 0.008385 
BC 17.45 1 17.45 0.005264 
A² 212.02 1 212.02 0.0352 
B² 187.02 1 187.02 0.0467 
C² 181.33 1 181.33 0.0499 
Residual 926.26 22 42.10  
Total 9080.46 30   

 
The ANOVA table for tensile strength indicates that the factors “Pouring Temperature”, “Slanting 

Angle”, and “Pouring Distance”, along with their interactions “AB”, “BC”, and all the squared term 
“A2 ,B2 , and C2”, significantly influence the model, as evidenced by their p-values being less than 0.05. 
This suggests that changes in these factors will have a statistically significant impact on tensile 
strength. However, the high residual sum of squares suggests that there is still a substantial amount 
of variation in tensile strength that the model does not account for. This could be due to 
measurement errors, other unconsidered factors, or inherent randomness in the data. Therefore, 
while the model provides valuable insights, there may be a need for further refinement or additional 
research. 
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                      Table 4 
                      ANOVA of Impact strength  

Source Sum of Squares df Mean Square p -value 
Model 3.22  0.3582 < 0.0001 
A-Pouring Temperature 0.0578 1 0.0578 0.02117 
B-Slanting Angle 0.4128 1 0.4128 0.0024 
C-Pouring distance 2.29 1 2.29 < 0.0001 
AC 0.0144 1 0.0144 0.05269 
BC 0.0684 1 0.0684 0.01757 
A² 0.0991 1 0.0991 0.01064 
C² 0.1010 1 0.1010 0.01033 
Residual 0.7313 21 0.0348  
Total 3.95 30   

 
Referring to Table 3 and 4, the outcomes retrieved from ANOVA revealed that the impact strength 

model for 95% confidence interval was statistically significant with a p-value less than 0.0001. All the 
parameters emerged as significant to the model with a p-value less than 0.05.  

 
Table 5 
Summary of Correlation Analysis 
Model R2  Adj-R2 Pred-R2 
Tensile Strength 0.8959 0.8698 0.8849 
Impact strength 0.8112 0.7537 0.6315 

 
In Table 5, the MPR model summary of correlation analysis for TS and IS is shown. These statistics 

are derived from the values of R2, Adj-R2, and Pred-R2. TS and IS both had R2 values of 89.80% and 
81.12%, respectively, in their respective scores. The value of the Adj-R2 for a model shows whether 
or not the interaction variables ought to be included in order to improve the model's fit 
characteristics. Taking into consideration the data shown in Table 5, the TS and IS in the MPR model 
received adjusted R2 values of 86.80% and 74.58%, respectively. On the basis of Pred-R2, the 
subsequent phase involved determining the degree to which the model accurately projected 
feedstock performances for fresh data. It was clear from the Pred-R2 values of both TS and IS that 
the model was able to provide better predictions. For prediction, the models were deemed 
acceptable and significant because the difference between Adj-R2 and Pred-R2 was less than 0.2 for 
each of the models. 

In the following Table 6, the optimal values for the CS parameters that were produced by MOJaya 
algorithms are as follows: Pouring Temperature = 700.23 degrees Celsius, Slanting angle = 45.02 
degrees, and Pouring distance = 399.95 centimetres. After that, the MOJaya algorithm was used to 
provide the prediction of feedstock performance, which was then tabulated in Table 4. The tensile 
strength was calculated to be 145.08, and the impact strength was calculated to be 4.70. The 
following step is to determine by contrasting the result that was optimum by MOJaya with the first 
experiment. The findings indicated that the discrepancy between the results of the experiment and 
the results obtained by MOJaya algorithm is 10.92% for tensile strength and 15.76% for impact 
strength. the findings are presented in Table 7, which illustrates the findings. Since there is a minor 
percentage improvement, the findings of MOJaya are regarded to be acceptable. Because of this, 
MOJaya may be utilized to assist casters in resolving actual issues that arise throughout the CS casting 
process in order to achieve the desired level of feedstock performance without the need for repeated 
experiments that are both expensive and time-consuming. 
                        
 



Journal of Advanced Research in Applied Mechanics 
Volume XX, Issue X (2024) 13-26 

 

24 
 

              Table 6 
              Optimal value for CS parameters  

Model Method Pouring Temperature (Pt) Slanting angle (Sa) Pouring Distance (Pd) 
MPR MOJAYA 700.2302 45.0184 399.9518 

Experiment 700 45 400 
 

Table 7 
Comparison of the Prediction value  and initial experiment for Feedstock performance  
Feedstock Performance Method Value Percentage difference(%) 
Tensile strength MOJaya 145.08 10.92% 

Experiment 130.72 
Impact strength MOJaya 4.70 15.76% 

Experiment 4.06 
 
4. Conclusions 
 

In light of the results of the CS casting optimization with MOJaya algorithm that was carried out 
in the present investigation, the following findings were ascertained:  

 
i. A prediction model for feedstock performance (tensile and impact strengths) was 

effectively constructed through the use of regression analysis. In addition, the projected 
values were in good agreement with the measured output responses, and the R2 adjusted 
values were high (more than 80 percent), which indicates that the models had a superior 
capacity to forecast. 

ii. The optimal parameters for CS casting were the pouring temperature of 700.23 oC, the 
slanting angle of 45.02 o, and the pouring distance of 399.95mm .  

iii. When compared to the initial experimental data, the values prediction for tensile and 
impact strengths from MOJaya are superior to the values obtained from the first 
experiment. The difference between the two sets of values is 10.92% and 15.76%, 
respectively. Through the utilization of this technique, feedstock performance was 
achieved without the need for repeated experiments, which are both expensive and time-
consuming.  

 
The limitation of casting optimization with the MOJaya algorithm may be its sensitivity to the 

choice of parameters. The performance of the algorithm could heavily depend on the specific settings 
chosen for factors such as population size, mutation rate, and convergence criteria. Inaccurate 
parameter tuning may lead to suboptimal results or hinder the convergence of the algorithm. This 
limitation could affect the robustness and general applicability of MOJaya for different casting 
scenarios. Additionally, a potential avenue for future research in casting optimization is integration 
of MOJaya with other optimization algorithms or techniques to create hybrid approaches. Combining 
the strengths of MOJaya with complementary optimization methods could result in more powerful 
and versatile optimization tools for casting processes. Hybrid approaches might provide better 
convergence, improved exploitation of the search space, and increased efficiency in finding optimal 
casting solutions. 
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