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Currently, the use of non-linear loads and equipment, as well as renewable energy 
sources injected into the power system, tends to increase. As a result, the waveform 
of the electrical signal changes, and distortion occurs in the distribution system, which 
affects the quality and reliability of the electrical system. Importantly, sometimes this 
leads to malfunctions in protection equipment. This paper presents the algorithm for 
power quality disturbance (PQD) identification in electrical distribution systems, which 
involves three main steps: (1) Generating simulated waveforms using a signal 
processing approach; (2) extracting features using the Fast Fourier Transforms (FFT) 
technique; and (3) identifying the type of PQD using Super Learner Ensembles (SLE), 
which employs cross-validation to assess the performance of multiple machine 
learning models. Subsequently, the model’s efficiency is verified and tested using data 
from electronic energy meters installed in the distribution system of the Provincial 
Electricity Authority (PEA). The accuracy resulting from synthetic and experimental 
data sets is 99.90% and 99.69%, respectively. The results indicate that the model 
performs well in identifying power quality disturbances and achieves high accuracy. 
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1. Introduction 
 

Power quality disturbances (PQDs) refer to deviations or variations in the standard electrical 
characteristics of the power supply, which have the potential to negatively impact the functionality 
of electrical and electronic equipment [1]. The origins of these disturbances can be diverse, and their 
severity varies depending on the type of equipment and the sensitivity of the connected loads. 
Additionally, the integration of renewable energy sources, such as solar photovoltaic systems and 
wind turbines, into the electrical grid is becoming increasingly significant, which can introduce 
various interference problems concerning power quality for utilities [2]. These issues arise due to the 
intermittent and variable nature of renewable energy sources and their interactions with the existing 
power grid. 
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The examination of causes and effects contributing to PQD reveals a multitude of sources. PQD 
can arise from various factors, including faults within the electricity grid, disruptions caused by the 
integration of renewable energy sources, and distortion and flow back into the distribution system 
due to customer load behavior. The specific details pertaining to single PQD instances are 
summarized and presented in Table 1.  

As shown in Table 1, some of the potential PQD issues that may arise include voltage fluctuations, 
voltage sags and swells, harmonics, transients, and power interruptions. Voltage fluctuations 
manifest as variations in voltage levels due to changes in load demand. Voltage sags and swells are 
brief reductions or increases in voltage levels that can be caused by faults or sudden load changes. 
Harmonics, on the other hand, result from non-linear loads, such as variable speed drives and specific 
lighting systems, introducing additional frequencies into the system. Transients are characterized by 
short-duration voltage spikes or surges arising from lightning strikes, switching operations, or other 
rapid changes in the electrical system. Lastly, power interruptions encompass unplanned power 
outages, equipment failures, or disruptions in electricity supply. 

The Provincial Electricity Authority (PEA) is entrusted with the responsibility of electricity 
distribution in various provinces of Thailand [3]. As with any power distribution utility, the PEA may 
encounter PQD problems within its electrical distribution network [4]. To ensure the reliability and 
stability of the electrical system and the connected equipment, regular power quality monitoring and 
analysis are of paramount importance. Therefore, this research project proposes to develop a 
machine learning system for the detection and classification of power quality disturbances. By 
proactively identifying and mitigating potential PQD issues, adverse consequences and disruptions 
can be mitigated before they escalate into significant damage or disturbances to the electrical 
network. 
 

Table 1 
Causes and effects of a single PQD instance 
Causes Effects PQD 
Renewable energy integration: the 
intermittent nature of sources 

Data loss and corruption 
Power system instability 

Voltage fluctuations 
Frequency variations 
Power imbalances 

Faults and equipment failures: short 
circuits or equipment failures within the 
distribution network 

Equipment damage and 
malfunction 
Electrical fires 

Voltage sags 
Interruptions 
Transient/Impulse/Spike 

Load variations: rapid changes in load 
demand due to industrial processes, 
commercial activities, or weather 
conditions 

Flickering lights 
Voltage fluctuations and 
unbalanced currents 

Voltage swells 
Flicker 

Harmonics: non-linear loads, such as 
electronic devices and lighting with 
power electronics  

Customer dissatisfaction 
Leading to voltage distortions  
Increased heating in 
transformers and conductors 

Harmonics 

Poor power factor: low power factor due 
to reactive power consumption by 
certain loads 

Reduced efficiency 
Leading to increased losses 

Oscillatory 

 
2. Related Work 
 

Power quality disturbances (PQDs) have been categorized according to the IEEE standard 1159-
2019 [5]. The presence of voltage and current distortions has led to ongoing research in the field of 
electric power quality disturbances, focusing on their detection and classification. These disturbances 
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can be divided into two primary groups based on their waveform-time statistical characteristics [6]: 
stationary waveform disturbances, wherein the waveform’s nature remains unchanged over time, 
and non-stationary disturbances, where the waveform’s nature changes with time. Both groups are 
crucial for researchers to comprehend the underlying phenomena. 

The development of an automatic power quality classifier for identifying PQD involves a two-step 
approach [7]. Firstly, modern signal processing techniques are employed, which encompass 
segmentation and feature extraction in the pre-processing step. For instance, during segmentation, 
the non-stationary component is isolated from the waveform components. The root mean square 
values of the distorted and pure signals are compared to identify the disturbed segment [8]. Feature 
extraction involves extracting relevant information from the raw signal to facilitate more effective 
processing. This process transforms the data into a new format, making it easier to extract pertinent 
and critical data. Numerous signal processing techniques are employed in feature extraction. 

The Fourier transform stands as a fundamental signal processing tool employed in the 
characterization of steady-state phenomena. To address and alleviate the limitations stemming from 
slow constraint dynamics and sensitivity, Liu et al., introduced the generalized discrete Fourier 
transform [9]. While the Fourier transform serves as a frequency transform, the short-time Fourier 
transform (STFT) is utilized to explore the time-frequency domain. 

The wavelet transform (WT) offers insights into both the frequency components of a signal and 
its time resolution. Through a process of decomposition, a given signal is split into multiple signals 
with varying resolutions, which proves especially beneficial for analyzing non-stationary signals [10]. 
The decomposition is achieved through the application of discrete wavelet transforms and second-
generation wavelet transforms across four hierarchical levels. Comparative evaluations reveal that 
the second-generation wavelet transform outperforms the discrete wavelet transform in terms of 
speed and efficiency [11]. 

The S transform (ST) capitalizes on the multi-resolution analysis of WT and effectively 
incorporates frequency variables akin to STFT, which reside between STFT and WT in the signal 
processing domain [12]. For the non-stationary voltage flicker, separating the flicker signal from the 
voltage signal poses a computational challenge due to its high complexity [13]. In light of this, 
Shamachurn et al., conducted a comparative study between ST and a modified version called the 
modified S transform (MST), employing diverse classifiers to assess the obtained results. The results 
demonstrate that MST, as a modified variant of ST, exhibits superior accuracy when compared to 
conventional ST [14]. Moreover, MST serves as a valuable tool for evaluating power quality in utility 
systems integrated with renewable energy sources [15]. 

In the Hilbert Huang transform (HHT), the energy signal is initially subjected to empirical mode 
decomposition to obtain intrinsic mode functions, which are subsequently analyzed through the 
Hilbert transform to determine the signal’s frequency and amplitude characteristics [16]. 
Additionally, an improved version of the ST was integrated into the HHT, leading to the proposal of 
the Iterative Hilbert-Huang Transform. This enhancement effectively addresses the challenge of 
detecting neighboring frequency components and amplitudes within waveforms obtained from PQD 
events [17]. In the work presented by Sahani and Dash [18], real-time PQD detection and 
classification were accomplished using HHT combined with a weighted bidirectional extreme 
machine learning approach. Similarly, Hemapriya et al., [19] employed HHT in conjunction with 
support vector machines (SVM) for classification purposes. In both instances, HHT played a crucial 
role in extracting relevant features prior to input into the respective learning models. 

The subsequent step in identifying PQD involves the adoption of artificial intelligence techniques 
encompassing classification and recognition. To address the classification of multiple classes of PQD, 
the directed acyclic graph SVM approach was implemented [20]. For receiving and classifying PQD 
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signals, an event-driven A/D converter was utilized in conjunction with SVM and Naive Bayes 
classifiers [21], which is similar to a previous study [22] that employed the decision tree algorithm. 
The latter yielded superior results compared to the other two techniques. Zhu et al., proposed the 
utilization of a Global Deep-Shuffle Convolutional Neural Network (GSCNN) to enhance performance 
and reduce the number of parameters [23]. However, it should be noted that the GSCNN was notably 
deep and complex and did not involve the extraction of features. For real-time PQD monitoring 
systems, fuzzy logic and criterion-based classifiers were integrated [24]. Unfortunately, the paper did 
not provide a comprehensive description of the various classifier parameters utilized in this context. 

Despite the successful outcomes of numerous studies in the field, there are still certain gaps that 
warrant improvement in the real-world application of PQD identification. These gaps are highlighted 
as follows: 

 
i. Firstly, a significant portion of current research concentrates on combinations of feature 

extractors, which can introduce complexities in the extraction process. As a consequence, 
more time and processing resources are consumed. 

ii. Secondly, the focus of research primarily revolves around classifier design, leading to a 
deficiency in comprehensive investigations concerning eigenvalue extraction. This 
oversight results in the neglect of relationships between key features, leading to the 
inclusion of more information than necessary. 

iii. Thirdly, a majority of research has opted for machine learning techniques to classify PQD, 
yet the appropriateness and rationale for the adoption of specific machine learning 
methods have not been thoroughly evaluated. Given that each type of machine learning 
algorithm possesses distinct functionalities, it is essential to consider their suitability for 
distinct PQD classification tasks. 

iv. Fourthly, the generation of PQD data using mathematical models tends to be somewhat 
idealistic, even though these models are based on the IEEE standard 1159-2019. 
Consequently, the performance of the model in terms of learning and classification might 
be superior to that achieved with real-world data, which is influenced by various factors 
beyond the mathematical models’ considerations. 

This study presents an efficient algorithm for identifying single PQD in electrical distribution 
systems, employing fast Fourier transform (FFT) and super learner ensemble (SLE). The key 
contributions of this research can be summarized as follows: 

 
i. Firstly, in order to streamline the extraction process and enhance processing speed, FFT 

is utilized as the fundamental technique for transforming signals into the frequency 
domain. 

ii. Secondly, to optimize model performance, SLE is adopted, which employs cross-validation 
to evaluate the efficacy of multiple machine learning models. This approach proves to be 
superior in prediction and achieving overall better model performance compared to other 
participatory models. 

iii. Thirdly, in addition to assess the trained and validated model using generated data, a real 
dataset obtained from electronic meters (Elec-meters) installed in the Provincial 
Electricity Authority (PEA) is utilized to evaluate the model’s performance. 

iv. Fourthly, to ensure minimal complexity and resource consumption, the generated model 
takes the form of a feed-forward architecture, which enables rapid and accurate 
processing. 
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The rest of this paper is organized as follows: Section 3 describes the generation of PQD datasets 
and the proposed methodology. Section 4 presents the results compared with previous studies, the 
discussion, and the limitations. Finally, Section 5 summarizes the research and gives future work 
prospects. 
 
3. Materials and Methods 
 

In this section, the generation of PQD data sets consisting of synthetic and experimental data sets 
is described. Then, the proposed methodology consisting of signal preprocessing, feature extraction, 
and classification is given. Finally, performance evaluation methods are provided. The details of each 
subsection are as follows:   

 
3.1 PQD Datasets 
 

There are two PQD data sets used in this paper, namely synthetic and experimental data sets. 
Details of each data set are given as follows: 

 
3.1.1 Synthetic dataset 

 
In the analysis of PQD to accurately represent real-time signals, the utilization of mathematical 

equations becomes necessary for generating synthetic PQD signals. It is imperative for the generated 
synthetic signal to encompass all the properties of the real-time signal and closely match it in all 
aspects. The present study encompasses eight types of single disturbances, namely sag, swell, 
oscillatory, flicker, harmonics, interruption, transient/impulse/spike, and notch. The mathematical 
model of each single disturbance and its corresponding parametric configuration are provided in 
Table 2, with the parameters being based on the IEEE standard 1159-2019 [25]. Examples of the eight 
generated signals are shown in Figure 1. The period of complete disturbance consists of other 
disturbance events. 
 

 
Fig. 1. Waveform of voltage signal with disturbance events 

 
Table 2 presents a mathematical framework delineating PQD in accordance with IEEE 1159-2019 

guidelines, wherein nine distinct configurations are formulated to synthesize data using MATLAB. 
The synthesized signal employed for simulation purposes is generated in a stochastic manner, 
adhering to parameters as stipulated in Table 3. These parameters encompass characteristics such 
as disturbance onset time, duration, and amplitude. The synthesis process yielded a total of 2,700 
disturbance signal instances, each characterized by specific attributes, including a sampling rate of 
12,800 Hz, a fundamental frequency of 50 Hz, and a frame duration of 100 ms were used. Then, a 
parameter value from Table 2 was randomly selected. For example, in the case of sag or swell, a 
number in the given range shown in the last column of Table 2 was randomly chosen. A windowing 
function of type Rectangular Window which is a simple window where all data points within the 
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window have the same weight. The simulation encompassed a duration spanning five cycles. All 
simulations were conducted on an Intel Core i7-12700H 2.30 GHz CPU accompanied by 16 GB of RAM. 

 
Table 2 
Mathematical model and parameter setting of PQD 

No. PQDs Equations Parameters 
1 Pure ( ) sin( )v t A tω=  1( ), 2 / , 50A pu f rad s f Hzω π= = =  
2 Sag 

1 2( ) (1 ( ( ) ( )))sin( )v t A u t t u t t tα ω= − − − −  2 10.1 0.8, ( ) 9T t t Tα≤ ≤ ≤ − ≤  
3 Swell 

1 2( ) (1 ( ( ) ( )))sin( )v t A u t t u t t tα ω= + − − −  2 10.1 0.8, ( ) 9T t t Tα≤ ≤ ≤ − ≤  
4 Oscillatory ( )/

1

2

( ) [sin( ) ( )
( )sin(2 )]

It t

n

v t A t e u t t
u t t f t

τω β
π

− −= + −
− −

 
2 10.1 0.8,0.5 ( ) 3

8 30 ,300 900n

T t t T
ms ms f Hz

β
τ

≤ ≤ ≤ − ≤
≤ ≤ ≤ ≤

 

5 Flicker ( ) [1 sin( )]sin( )v t A t tλ κω ω= +  0.1 0.2,5 10λ κ≤ ≤ ≤ ≤  
6 Harmonics 

1 3

5 7

( ) [ sin( ) sin(3 )
sin(5 ) sin(7 )]

v t A t t
t t
α ω α ω

α ω α ω
= + +

+
 3 5 7 10.1 , , 0.15, 1α α α α≤ ≤ =  

7 Interruption 
1 2( ) (1 ( ( ) ( )))sin( )v t A u t t u t t tα ω= − − − −  2 10.9 1, ( ) 9T t t Tα≤ ≤ ≤ − ≤  

8 Transient/  
Impulse/ 
Spike 

1
1 2( ) sin( ) exp( )( ( ) ( ))t

t tv t t u t t u t tω α
τ
−

= + − − − −  2 13 4,0.5 ( ) 3
8 30

t T t t T
ms ms
α

τ
≤ ≤ ≤ − ≤

≤ ≤
 

9 Notching 
9

1 2
0

( ) sin( ) (sin( ))

( [ { ( 0.02 )} { ( 0.02 )}])
n

v t t sign t

K u t t n u t t n

ω ω

=

= −

× − − − − −∑
 

1 2

2 1

0.1 0.4,0 , 0.5 ,
0.01 0.5

K t t T
T t t T
≤ ≤ ≤ ≤

≤ − ≤
 

 
Table 3 
Simulated characteristics of PQD 
Simulation 
Events 

Type of PQD Time duration Voltage  
magnitude 

Switching of large loads 
(ON many air conditioners) 
 

Sag > 0.5 cycles 0.1–0.9 pu 

Switching of large loads 
(OFF many air conditioners) 

Swell > 0.5 cycles 1.1–1.8 pu 

Circuit breaker operation  
(At MDB) 

Interruption > 0.5 cycles < 0.1 pu 

Non-linear loads (ON) 
(LED, UPS, computers, 
printers) 

Harmonics > 50 ms 0.0–0.2 pu 

Load switching 
(At MDB) 

Oscillatory 5 < t < 50 ms 0–8 pu 

Motor starting 
(Pump motor) 

Flicker Steady state - 

Switching of heavy load Notching Steady state - 
Capacitor bank switching Transients > 50 ms - 

 
We can observe an illustrative PQD signal in Table 4. The table is divided into two sections: on the 

left, we have the original amplitude-time (s) waveform, and on the right, the data from the left side 
is transformed into the frequency domain using FFT (Power Spectrum). In this representation, the 
sample spacing is measured in seconds, while the frequency unit is given in cycles per second. The 
transformed outcomes provide an alternate perspective on the data’s transformation. The table 
encompasses nine distinct waveform categories: pure, sag, swell, oscillatory, flicker, harmonics, 
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interruption, transient, and notching. The distinct pattern that emerges is more noticeable when 
compared to the waveform in the time domain. 

 
Table 4 
Visualization between raw data and FFT 
 Raw data FFT 
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3.1.2 Experimental dataset 

 
Within the distribution system of PEA, a variety of meter types have been installed, including 

electromechanical meters (kilowatt-hour meters), electronic meters (Elec-meters), automatic meter 
reading, and smart meters [28]. Each meter type possesses distinct functionalities and data recording 
capabilities. Kilowatt-hour meters lack the ability to record historical data, while Elec-meters can 
store Bluetooth reading data for up to 90 days. On the other hand, automatic meter reading and 
smart meters, integrated into advanced metering infrastructure systems, enable the storage of load 
profiles in a database for backup purposes. 

Experimental or real data acquisition in this study is acquired from Elec-meters, as they are widely 
deployed across all areas and cater to various customer types, including residential houses, 
businesses, and industries. Due to the inherent limitations of Elec-meters in terms of online 
communication, data collection necessitates on-field visits to the meter installations. In the 
experiment, a 3-phase, 4-wire Elec-meter (EDMI product meter, GENIUS model) was used to collect 
real data. The complete details and specifications of the electronic meter are: a voltage rating of 
3x220/380 volts, a current rating of 5 (6) amps, class 0.5, double protection, a constant value per 
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1000 cycles/kilowatt-hour, and 1,000 cycles/kilovar-hour. The main components inside the meter 
include:  

 
i. A current sensor, which is a sensor installed on the power supply line to measure the 

amount of current flowing through it;  
ii. A voltage sensor, which is a sensor connected to a wiring harness to measure the voltage 

of the power supply;  
iii. A processor, which is a microprocessor used to calculate the amount of electricity used 

and store the information in the meter's memory;  
iv. A display, which is a digital display that shows the amount of electricity and other 

information such as the current time and the rate of electricity consumption;  
v. A communication module, which is a module that allows the meter to communicate. Here, 

communication is possible via the Port RS-232 module and optical probes. 
Figure 2 shows the process involves retrieving load profile data and capturing all recorded 

information on events, which is then subjected to analysis. The real data acquired from Elec-Meters 
used for testing the model was taken from the simulated event shown in Table 3. A record of the 
voltage was collected at a sampling rate of 12,800 Hz, a fundamental frequency of 50 Hz with a frame 
duration of 100 ms and a duration of 5 cycles. The meter installed at the office was connected to a 
laptop to keep records. Then, the events were simulated using the office's existing load. This 
simulation strategy ensured the correspondence of each PQD pattern with a distinct time interval. 
 

 
Fig. 2. Load profile retrieval process 

 
The information was gathered from meters installed at the PEA office. To facilitate data retrieval, 

an optical probe is interfaced with a laptop computer, employing the EziView program specifically 
designed for the Elec-meters. Communication is established through the connection of the optical 
probe to a USB port. Throughout the experimental procedure, voltage and current measurements 
were acquired, as illustrated in Figure 3. Phase voltage (230V to 220V) was recorded, and a segment 
of the current was subjected to conversion through a 250/5 A current transformer (CT) in instances 
where meter-detected distortions were encountered (Figure 4).  
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Fig. 3. Voltage and current signals read from Elec-meter 

 

 
Fig. 4. Parameters measured by Elec-meters 

 
The display window in Figure 3 showed three sets of voltage and current waveforms, where red 

represented phase A, white represented phase B, and blue represented phase C. Volts/Div was set 
to 50, which meant that the scale in each channel was a voltage of 50 volts. Amps/Div was set to 2, 
which meant that the scale in each channel was a current of 2 amps. Cycles were set at five. The 
capture section consisted of Continuous and Remove the DC Offset modes. The waveform image was 
updated all the time in Continuous mode. Remove DC Offset was used to remove the DC offset in 
order to view the value of alternating current only. In the experiment, data were recorded via 
Memory Map by selecting Load Survey mode. All the data was exported as text files and then 
imported to Excel for filtering. In this experiment, only voltage and current values were chosen to be 
analyzed. 
 
3.2 Proposed Methodology 

 
The machine learning system for the detection and classification of PQD events in this study 

consists of three steps: signal preprocessing, feature extraction, and classification. The details of each 
step are as follows: 
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3.2.1 Signal preprocessing 
 

The synthesized data will be normalized according to Eq. (1)- Eq. (3) because machine learning 
models are sensitive to numerical data. Bias can occur if the data ranges are very different. 
 

Standardization; n i t
std

t

xX µ
σ
−

=                                                                        (1) 

 

Mean;   
1

1 ( )
N

t i
i

x
N

µ
=

= ∑                                                                              (2) 

 

Standard deviation;  2

1

1 ( )
N

t i t
i

x
N

σ µ
=

= −∑                                                          (3) 

 
where: ix is the sample of all values obtained from signal generation. tµ is the mean and tσ is 
standard deviation in one cycle t , respectively. 
 
3.2.2 Feature extraction 
 

The FFT feature is extracted from the normalized data described in the last section. FFT is a widely 
used algorithm for efficiently computing the discrete Fourier transform and its inverse, the inverse 
discrete Fourier transform [26]. In the context of PQD, FFT is employed to analyse the frequency 
components of voltage and current waveforms to identify and characterize various disturbances, 
such as sag, swell, interruption, harmonics, interharmonics, flicker, etc. The discrete Fourier 
transform equation for a discrete time-domain signal of samples is given by: 

 
1

( 2 / )

1
( ) [ ]

N
n j kn N
std

n
X k X e π

−
−

=

=∑                                                                         (4) 

 
where ( )X k is the complex-valued frequency-domain representation at bin k, and j is the imaginary 
unit. To obtain the magnitude spectrum (amplitude) of the frequency components, we use: 
 

2 2( ) (Re[ ( )] Im[ ( )] )X k X k X k= +                                                                  (5) 
 
where Re[ ( )]X k  and Im[ ( )]X k  are the real and imaginary parts of ( )X k , respectively. The phase 
angle spectrum can be calculated as: 
 

( ) ( ) ( )( )1k   tan Im ,  ReX k X kϕ −=                                                                  (6) 

 
In the context of power quality disturbances, analysts often use the magnitude spectrum to 

identify the presence and magnitude of harmonics, interharmonics, and other disturbances. The 
phase angle spectrum is useful for determining the phase relationships between different harmonic 
components. By analysing the FFT results, PQD experts can pinpoint the frequencies and magnitudes 
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of disturbances in the electrical system, enabling them to take appropriate corrective actions to 
mitigate PQD issues and ensure a more reliable and efficient power supply. 

For achieving optimal attributes, the FFT method was employed to extract the pertinent data, as 
shown in Algorithm 1. This approach incorporates a windowing function to mitigate spectral leakage, 
thereby enhancing the overall fidelity of the outcome. In our experiment, we use a rectangular 
window, which is a simple window where all data points within the window have the same weight. 
The calculation of corresponding frequency values was accomplished for the discrete FFT bins. 
Notably, the frequency resolution (designated as delta_f) was derived by dividing the sampling rate 
by the total number of samples (N). The obtained results were visualized through the depiction of 
spectral magnitude using a graphical representation. Subsequent analysis of frequency components 
enabled the identification of PQD. The process of FFT feature extraction was facilitated using the 
scipy.fft library [30]. 

 
Algorithm 1: Feature Extraction Using FFT for PQD signals 
Input: V(t) signal waveform 
Parameters: Sampling_rate = 12,800 
Output: fft_result, frequencies 
 # Define FFT 

   def fft_analysis(signal, sampling_rate): 
# Apply a windowing function  
        windowed_signal = apply_window(signal) 
# Compute FFT 
        fft_result = np.fft.fft(signal) 
# Compute Frequency  
    N = len(signal) 
    delta_f = sampling_rate / N 
    frequencies = np.arange(0, N) * delta_f 
    return fft_result, frequencies 
# Plotting magnitude spectrum 
   Plot(frequencies, np.abs(fft_result)) 
 

 
3.2.3 Classification 
 

The FFT features from nine PQD signals are classified using a super learner ensemble (SLE). The 
SLE is an ensemble learning method used to improve the accuracy and performance of predictive 
models by combining multiple base learners [27]. In the context of PQD, the SLE can be applied to 
analyse and predict the occurrence and characteristics of PQD events based on various features 
extracted from voltage and current waveforms. The SLE is constructed by combining the predictions 
of multiple base learners, typically represented as follows: 

 

1

ˆ ˆ*
n

SLE i i
i

y W y
=

=∑                                                                                        (7) 

 
where ˆSLEy is the super learner ensemble’s prediction, ˆiy  is the prediction of the i th− base learner, 
and iW  is the weight assigned to the i th− base learner’s prediction. 

The weights iW  are often determined using cross-validation. The algorithm searches for the 
combination of weights that minimizes the overall prediction error, optimizing the ensemble's 
performance. The SLE method allows for flexibility and adaptability, as it can incorporate various base 



Journal of Advanced Research in Applied Mechanics 
Volume 124, Issue 1 (2024) 39-60 

 

51 
 

learners and adjust their contributions based on their performance. This makes it a powerful tool for 
accurately predicting PQD and identifying the most influential features in the analysis. 
 

Algorithm 2: Using SLE to identify for PQD signals 
Input: fft_signals = a dataset (fft_result) containing features 

class = pure(C1), sag(C2), swell(C3), oscillatory(C4), flicker(C5), harmonics(C6), 
interruption(C7), transient/impulse/spike(C8), notching(C9) 
base_learners = kNN(L1), LR(L2), DT(L3), SVM(L4), GB(L5), AdaBoost(L6), 
RF(L7), ET(L8), NN(L9) 

Parameters: n_estimators=10 
n_splits=10 

Output: ensemble_prediction 
evaluate_acc 

 # Ensemble Creation and Training  
  def super_learner_ensemble(fft_signals, class, base_learners): 
    # Initialize an empty list from base learners 
           predictions = [ ] 
    # Loop over each base learner  
           for learner in base_learners: 
               learner.fit(fft_signals, class 
    # Make predictions on the training data 
           pred = learner.predict(fft_signals) 
           predictions.append(pred) 
    # Create a matrix with base learner predictions  
    predictions_matrix = np.column_stack(predictions) 
    # Initialize an array to store the weights  
    weights = np.zeros(len(base_learners)) 
 
# Cross-Validation and Weight Calculation 
    # Use cross-validation to determine the weights 
    for i in range(len(base_learners)): 
    # Exclude the i-th base learner from the ensemble 
        sub_ensemble = np.delete(predictions_matrix, i, axis=1) 
    # Train a meta-learner on the sub-ensemble 
        meta_learner = MetaLearner() 
        meta_learner.fit(sub_ensemble, class) 
    # Calculate the weight for the i-th base learner 
        weights[i] = meta_learner.coef_[i] 
    # Normalize the weights to sum to 1 
    weights /= np.sum(weights) 
   
# Ensemble Prediction 
    # Combine predictions of base learners  
    ensemble_prediction = np.dot (predictions_matrix, weights)  
    return ensemble_prediction 
 
# Evaluate SLE using a performance metric 
   # Accuracy 
   evaluate_acc = accuracy(ensemble_prediction) 
 

 
The acquired features were employed in the training of data using a SLE mechanism, specifically 

instantiated by a MetaLearner class. This MetaLearner class is instrumental in computing the weights 
assigned to baseline learners. It operates with three primary inputs: the FFT transform outcome, the 
PQD class designation, and a list of base learners. Through the utilization of cross-validation, the 
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weights associated with each baseline learner are ascertained and subsequently normalized to yield 
a cumulative sum of 1. This procedure culminates in the amalgamation of baseline learner 
predictions, incorporating their respective weights, which collectively furnish the resultant 
predictions. The final step entails the assessment of outcomes through performance metrics, 
encompassing accuracy. A brief depiction of these steps is summarized in algorithmic form within 
Algorithm 2 where nine base learners are used, namely k-nearest neighbors (KNN), logistic regression 
(LR), decision tree (DT), support vector machine (SVM), gradient boosting (GB), adaptive boosting 
(AdaBoost), random forest (RF), extra-trees (ET), and neural network (NN). The model fitting was 
accomplished through the utilization of the Python API within the Scikit-learn library, Numpy and 
Pandas for learning of classifier. [31]. The data input was split into a training set (2,025 sets:75%) and 
a testing set (675 sets:25%). Meanwhile, another data set from collecting actual (experimental) data 
was tested with 900 datasets (100 dataset per disturbance). The details of parameter settings used 
for computational experiments are shown in Table 5. 

 
Table 5 
Details on the computational settings used of classifier 
Classifier Parameters setting 
KNeighbors n_neighbors= 5 
LogisticRegression solver= liblinear 
DecisionTree criterion=gini 
C-Support Vector gamma=scale, probability=True 
GaussianNB var_smoothing=1e-09 
AdaBoost n_estimators=10 
RandomForest n_estimators=10 
ExtraTrees n_estimators=10 
NeuralNetwork activation = relu ,  L2 regularization 
Super Learner Ensembles n_splits=10, shuffle=True, n_samples_train=2,700, n_samples_test=900, 

centers=2, n_features=256, cluster_std=20 
 

A schematic depiction of the proposed process is illustrated in Figure 5, comprising five principal 
stages:  

 
i. Signal generation employing mathematical formulations;  

ii. Normalization of individual datasets;  
iii. FFT computation;  
iv. Characterization of PQD utilizing SLE; 
v. Empirical assessment of the model’s performance through testing from Elec-meter data 

of PEA. 
 

 
Fig. 5. Block diagram for the proposed method 
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3.2.4 Performance evaluation 
 

Accuracy is a prevalent metric for assessing the effectiveness of classification models. This metric 
quantifies the percentage of correctly predicted labels, thereby measuring the overall success of the 
model’s predictions [29]. The evaluation framework for accuracy is based on the interplay between 
key values denoted as TP (true positive), TN (true negative), FP (false positive), and FN (false 
negative), as elucidated by the following equation: 

 
TP TNAccuracy

TP TN FP FN
+

=
+ + +

                                                                       (8) 

 
Within this evaluation, a confusion matrix is meticulously constructed with the overarching 

objective of discerning PQD events, encompassing a diverse matrix of 9 distinct classes. As an 
illustrative example, the process of computing the true positive rate and positive predictive rate for 
C7 is visually explained in Figure 6. 
 

 
Fig. 6. Confusion matrix for 9 classes 

 
4. Results and Discussion  
 

Five subsections, namely classification results from synthetic data sets, validation of the method 
with experimental data sets, comparison with other recent publications, discussion, and limitations 
are presented in this section. The details of each subsection are as follows. 

 
4.1 Classification Results from Synthetic Datasets 
 

The transformed power spectrum is selected as an input to be utilized within the SLE model. The 
input data undergoes an iterative process across each base learner to predict values for the various 
classes outlined in the training. The output is presented in metric format. Importantly, the default 
weight value is maintained for each array, followed by the execution of cross-validation. This process 
involves the utilization of nine weights for each base learner: kNN, LR, DT, SVM, GB, AdaBoost, RF, 
ET, and NN, which employ default parameters. Subsequently, the weight values for each base learner 
are calculated and incorporated into SLE. The results of training and validation within the SLE 
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framework are depicted in Figure 7. Our data set was partitioned into 27 batch-sizes, each subjected 
to 100 iterations, where we set a total of 100 epochs. Remarkably, by the 20th iteration, both training 
and validation approaches exhibited remarkable accuracy, underscoring the model’s proficiency in 
accurate prediction. Figure 8 showcases the validation outcomes for each base learner, evidencing 
the model’s precise and comprehensive predictive ability, which in turn refines the weights and 
enhances the SLE’s overall performance to its peak potential. 

 

 
Fig. 7. Training and validation accuracy 

 

 
Fig. 8. Validation performance of base learners 
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4.2 Validation of the Method with Experimental Datasets 
 

After analysing the training-validation outcomes, it was evident that the SLE model exhibited a 
commendable accuracy of 99.90%. Subsequently, the model was subjected to a distinct dataset 
derived from Elec-meters. Due to constraints posed by the meter’s operational limits, a real-time 
characterization experiment was unfeasible. Consequently, the data was synthetically simulated in 
accordance with the specifications outlined in Table 3. The meter was programmed to display the 
corresponding real-time signals during this simulation. To elucidate, Figures 9 and 10 showcase 
captured signals: the upper figure depicts three-phase voltage, while the lower figure illustrates 
three-phase current values (with A-phase in red, B-phase in white, and C-phase in blue). These 
recorded values were stored and subsequently employed as inputs for the pre-established model. 

In Figure 9, we simulate turn-on multiple air conditioners in a PEA office, leading to discernible 
changes in the signal that cause sag in A-phase and harmonics in C-phase current. Another case, 
Figure 10 demonstrates an occurrence of load switching at the Main Distribution Board (MDB), 
manifesting as oscillatory A-phase current and harmonics in the C-phase. The experiments conducted 
encompassed simulations of each of the nine PQD event types, facilitating comprehensive record-
keeping of their respective occurrences. 

Using the amassed data encompassing all distinct events, we input it into the model to make 
predictions concerning PQD characteristics. The accuracy of these predictions was subsequently 
assessed through an evaluation process involving a confusion matrix, as visually depicted in Figure 
11. In this matrix, the diagonal (indicated by the green box) showcases the instances where the 
predicted outcomes align with the target values. Notably, for pure waveform events, the model 
exhibited an exceptionally high accuracy of 99.98%. However, for the flicker waveform, the 
predictions were comparatively less accurate, at 99.31%. The occurrences of mispredictions are 
represented within the orange box, reflecting instances where the model provided incorrect 
predictions. Upon closer examination, the flicker erroneously classified it as notching, with an error 
rate of 0.68%. 

 

 
Fig. 9. Waveform read from Elec-meter (sag (Ia), harmonics(Ic)) 
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Fig. 10. Waveform read from Elec-meter (oscillatory (Ia), harmonics (Ic)) 

 

 
Fig. 11. Confusion matrix of testing dataset (% accuracy) 
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4.3 Comparison with Other Recent Publications  
 

Table 6 provides a quantitative comparison between the proposed methodology and previously 
published approaches. This comparison encompasses various parameters, including event number, 
feature extraction, classification method, utilization of synthetic signals, and real signals for 
identification, to show the strengths of modelling and testing the model on real data. 

 
Table 6 
Performances comparison with other proposed methods 
Reference Event 

number 
Feature 
extraction 

Classification 
method 

Accuracy (%) 
(Synthetic data) 

Accuracy (%) 
(Real data) 

(Shen et al., 2017) [32] 8 CT SVM 99.75 99.80 
(Buduru et al., 2023) [24] 5 HT Fuzzy rules 99.27 97.17 
(Amirou et al., 2022) [33] 9 ST-CSK XGboost 99.72 No 
(Golla et al., 2019) [34] 14 CWT SVM 97.00 No 
(Rodriguez et al., 2021) [35] 9 HHT LSTM-RNN 98.85 No 
(Xu et al., 2022) [36] 8 ADN SVM 99.73 No 
Proposed method 9 FFT SLE 99.90 99.69 

 
4.4 Discussion 
 

In summary, the experimental findings, when considered with the conceptual framework 
depicted in Figure 5, have revealed four noteworthy insights. First, the observation pertains to the 
data generation process, which is grounded in a mathematical model, thereby endowing it with an 
idealization. While experimental instances employed randomized commands to generate PQD 
characteristic data, accounting for noise and incidental factors played a pivotal role in fostering the 
model's adaptability and versatility. Second, the insight emanates from the utilization of FFT for data 
extraction. Notably, the sequencing of X[k] for k = 0,...,N-1 significantly influences the power 
spectrum, leading to more distinct plots. Third, the revelation centres around the modelling approach 
adopted for learning and validation through SLE. This technique harnesses the synergy of various 
conventional machine learning algorithms, amalgamating them into an ensemble that optimizes 
diverse learning algorithms. This collaborative strategy enhances the efficacy of the resulting model. 
Fourth, it pertains to the assessment of the model’s performance using real data from Elec-meters. 
There are several limitations, such as the inability to conduct real-time testing, the necessity to 
simulate loads to store data, and dealing with relatively low data resolution. However, we are still 
able to test the functionality of the preliminary model. 

In our discussion of the experimental outcomes, we have organized them into two distinct points 
for clarity. First, for the training and validation outcomes, as illustrated in Figure 7, a convergence in 
training accuracy is noticeable around the 25th iteration, while the validation accuracy converges 
around the 68th iteration, indicating a marginal disparity of 0.2%, underscoring the need for further 
refinement. When contrasting multiple traditional machine learning algorithms, a trend toward high 
accuracy becomes evident across various types. This range spans from a minimum of 99.45% in kNN 
to a maximum of 99.84% in ET. This diversity in accuracy can be attributed to the distinctive 
functionalities encoded within the algorithmic structures. For instance, parameters such as the 
number of neighbours (k) in kNN, the kernel function in SVM, and the count of trees in decision tree. 
In total, the integration of nine types plays a pivotal role in fine-tuning weights for SLE, thereby 
facilitating effective learning and predictive capabilities. 

Second point of consideration, our examination of the model’s performance against real data has 
discovered errors across all classes, as indicated in Figure 11. To illustrate, let’s consider the example 
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of class C4 (oscillatory). The model correctly predicts instances of oscillatory events (TP) at a rate of 
99.66%, while a minor fraction is misclassified as C2 (sag) or C6 (swell), contributing to FP at 0.15% 
and 0.2%, respectively. Conversely, instances where oscillatory events were missed (FN) including C2 
at 0.12%, C6 at 0.08%, and C8 (transient) at 0.14%, amounting to a cumulative 0.34%. Notably, the 
consideration of TN is disregarded in scenarios where false predictions align with actual non-events. 

The complex nature of PQD patterns gives rise to infrequent occurrences or instances where 
multiple patterns intersect. For instance, during periods of diminished waveform oscillations, the 
simultaneous manifestation of sag, swell, and oscillatory events may confound predictions. 
Furthermore, situations where transients are only partially captured by the meter contribute to 
prediction inaccuracies. These complexities collectively contribute to erroneous predictions by the 
model. 
 
4.5 Limitations 
 

In the above experiment, the results were satisfactory. However, there are still some issues that 
limit this experiment, including: 

 
i. Real-time testing is not possible due to limitations in the capabilities of meters designed 

to focus on energy measurement and data acquisition. 
ii. In some situations, the resulting PQD model is complex. Due to splitting multiple PQDs 

using FFT, which converts time-domain discrete signals into frequency-domain discrete 
spectra in this experiment, we are still unable to differentiate. 

These limitations will be used as a guide for future research, and the results will be reported in 
the near future. 
 
5. Conclusion  
 

The increase in non-linear loads and the infiltration of renewable energy into the power system 
exacerbate power quality issues. This paper proposes a simple and efficient algorithm to identify nine 
types of single PQDs. The proposed algorithm consists of three main steps: (1) data normalization; 
(2) FFT-based feature extraction; and (3) classification with SLE. The resultant outcomes from data 
generated by mathematical equations are utilized for both training and validation within the SLE 
framework, culminating in a remarkable accuracy rate of 99.90%. This accuracy level significantly 
surpasses conventional machine learning methods. The developed algorithms are further subjected 
to evaluation using real-world data. Through the simulation of events and the recording of 
corresponding values via Elec-meters, the algorithms are thoroughly tested. The outcomes affirm the 
model’s proficiency in accurately characterizing all nine types of PQDs with a high degree of precision. 

For further study in the future, we plan to collect PQD data using a method that can capture more 
detailed values including the installation of equipment in the PEA system to collect events for 
analysis. Other research directions include the study of 1D, 2D, and 3D extraction methods and the 
application of deep learning for PQD classification, which is an interesting and popular technique 
nowadays. 
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