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Oil palm trees play a crucial role in the economies of Southeast Asian countries, 
providing palm oil that is essential for various products and consumption. However, 
the Basal Stem Rot (BSR) disease caused by the white-rot fungus Ganoderma spp. 
poses a significant challenge, leading to wilting and death of the trees. This study 
proposes a practical and accessible approach for the routine detection of Basal Stem 
Rot (BSR) disease in oil palm trees caused by Ganoderma spp. A prototype system for 
initial disease diagnosis is developed by utilizing the local wisdom technique of tapping 
and assessing knocking sounds based on stem density in oil palm trunks. Three 
algorithms, Convolutional Neural Network (CNN), Support Vector Machine Classifier 
(SVC), and Multi-Layer Perceptron (MLP) models are compared for accuracy in two 
sound recognition experiments. The first experiment involves a three-class 
classification model (healthy, boundary, and infected areas), while the second excludes 
the boundary area. Results demonstrate that the CNN model outperforms SVC and 
MLP, achieving the highest accuracy of 90.73% in the two-class scenario and 84.97% in 
the three-class scenario, along with superior precision, recall, and F1 score. The CNN 
model proves to be the most effective in accurately classifying the data in both 
scenarios compared to the other models. This prototype system offers promising 
implications for the early detection and proactive management of Ganoderma spp. 
disease, contributing to the preservation and sustainability of oil palm plantations in 
Southeast Asia. 
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1. Introduction 
 

The palm oil industry holds significant importance as an agro-industry in Southeast Asia, 
particularly in countries such as Indonesia, Malaysia, and Thailand. It plays a vital role in boosting the 
economy and contributing to the GDP of these tropical-climate nations. In Thailand, a substantial 
portion, approximately 30 percent, of the agricultural land is dedicated to oil palm cultivation. The 
global market exhibits a growing demand for palm oil production. This increased demand can be 
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attributed to the high-quality oil produced by oil palm trees, which finds extensive application in 
healthy cooking due to its rich content of vitamins and antioxidants. Additionally, from Asian Agri’s 
research [1]. Palm oil serves as a raw material for the production of various products, including 
biofuel, butter, ice cream, detergents, soaps, cosmetics, etc. 

Oil palm trees are generally defenceless to various fungal infections, and one of the most 
destructive diseases they face is known as basal stem rot (BSR) caused by Ganoderma spp. as shown 
in Figure 1(a) from [2].  BSR significantly impacts oil palm trees, leading to direct stand loss, reduced 
palm yields, and ultimately, tree death (as shown in Figure 1(b)). Technically, the disease’s effect 
penetrates the palm tree from the root to the top. Symptoms of BSR include pale leaves, rotting 
leaflets, and decay of the stem. This extensive damage to the stem results in the formation of cavities 
within the palm trunk, further damaging the structural integrity of the oil palm tree. 

Several methods have been employed for the identification of BSR disease. As extensively 
documented [3,4], infected oil palm trees can be diagnosed through field observation and visual 
assessment. Regular inspections are conducted to detect symptoms such as leaf yellowing and 
wilting. Moreover, careful examination of Ganoderma's basidiocarp on the tree trunk's base is 
essential. The initial appearance of Ganoderma spp. is characterized by the presence of brown or 
decaying tissue. However, it is crucial to emphasize that once oil palm trees reach the stage of internal 
decay, treatment becomes much more challenging. In such cases, farmers often resort to the removal 
of infected trees to prevent the further spread of the disease through wind-dispersed spores. 

 

 
                                                                             (a)                                                                            (b) 

Fig. 1. (a) Full-growth pathogen (b) Infected oil palm tree 
 

In the field of agricultural research, innovative methods for diagnosing the health of oil palm trees 
have been explored with notable success. A significant contribution in this area was made by 
Khairunniza et al., [4] who experimented with differentiating between healthy and diseased oil palm 
trees. Moreover, they advanced their study by categorizing the stages of the disease into four distinct 
levels. By utilizing Terrestrial Laser Scanning (TLS), they captured high-angle images of the trees, and 
combined this with measurements of the Diameter at Breast Height (DBH) - the diameter of the tree 
trunk measured at approximately 1.3 meters from the ground. This ground-breaking approach not 
only provided a novel method for diagnosing the health of oil palm trees but also paved the way for 
more detailed and accurate disease staging, offering valuable insights for the management and 
treatment of these vital agricultural assets. 

An advanced diagnostic tool, Polymerase Chain Reaction (PCR). Amiri et al., [5] has been 
developed for early detection. PCR is a molecular biology technique invented by Kary Mullis in 1983, 
used to amplify specific DNA sequences in a sample. This technique works by repeatedly separating 
the DNA strands and binding specific primers to the Ganoderma spp. DNA sequence if pathogens are 
present in the tested sample. After detection, the amplified DNA can be visualized through gel 
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electrophoresis, where the presence of Ganoderma spp. is indicated by a visible band corresponding 
to the DNA sequence. Nevertheless, PCR is a powerful technique that requires specialized knowledge, 
equipment and laboratory facilities to perform accurately. For farmers, PCR might not be easily 
accessible or practical for their routine detection of plant diseases such as BSR disease, since it 
involves a certain level of expertise in molecular biology. Therefore, while the PCR technique is a 
powerful diagnostic tool, its widespread implementation among farmers may be challenging. 

Researchers have widely made significant advancements in the development of smart tools for 
diagnosing BSR disease. One notable advancement is the utilization of Electrical Resistance 
Tomography (ERT) for early detection. It was also conducted by Elliott et al., [6] and Hamidon and 
Mukhlisin [7]. ERT is a geophysical technique employed to image sub-surface structures within 
affected palm trunks by measuring electrical resistivity. The objective of the study was to identify 
internal decay and structural abnormalities in infected oil palm trees at an early stage. The 
experiment and subsequent analysis demonstrated the potential of ERT as a viable device for primary 
detection of Ganoderma spp. disease.   

However, In Thailand, the widespread implementation of TLS, PCR or ERT methods faces 
significant challenges due to limited availability and budgetary constraints. Technically, Thai farmers 
resort to a local wisdom technique called sound classification for detecting Ganoderma spp. disease. 
Following folk wisdom, experts proficiently knock on the tree trunk and classify the resulting knocking 
sound to distinguish between infected and healthy oil palm trees affected by BSR disease. Similarly, 
Mr. Prasert [8] employed local wisdom to categorize fruit ripeness through sound analysis. The 
knocking sounds produced by different trees vary, depending on their health status. In addition, 
Kharamat et al., [9] introduced a method for classifying the ripeness of durian fruit based on the 
knocking sounds using a Convolutional Neural Network (CNN). The study demonstrates the successful 
application of CNN in accurately categorizing durian fruit ripeness based on the sound produced 
when tapped. This research contributes to the development of automated techniques for fruit 
ripeness classification, offering potential benefits for the agricultural industry. 

In this method mentioned above, experts carefully tap the fruit and assess the resulting knocking 
sound. This method offers a practical solution by utilizing simple equipment, effectively solving 
limitations related to restricted availability and budget constraints. However, due to varying levels of 
experience and listening capability, not all farmers can use this method. Consequently, only a limited 
number of farmers can effectively detect BSR disease. Several farmers can start identifying BSR 
disease when it has reached a severe stage. This is characterized by observable symptoms such as 
yellowing and wilting of the leaves, undersized leaves, as well as the presence of brown or decaying 
tissue. Additionally, the detection of Ganoderma spp. root rot or butt rot further confirms the 
presence of the disease. The recovery of the tree at the severe stage becomes significantly 
challenging and necessitates substantial financial investment. 

After an extensive review [9-11], it has been observed that there is a lack of research studies on 
detecting BSR disease utilizing the local wisdom technique of tapping and assessing the resulting 
knocking sound. To address the notable research gap, this paper consequently proposes a novel 
approach to diagnose BSR disease in oil palm trees by emulating the sound-based classification 
derived from local wisdom. To replicate the expertise of local wisdom, machine learning techniques 
are employed, utilizing data and algorithms to mimic the human learning process. The integration of 
machine learning technology enables the establishment of a new, simplified technique for diagnosing 
BSR disease in oil palm trees. 

The subsequent sections of the research present the finer details of the proposed study. These 
sections encompass various aspects, including the development of a prototype algorithm, the 
integration of local wisdom and machine learning, the recording and extraction of knocking sounds, 
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the transformation of sounds into frequency-domain spectrograms, and a comparative analysis of 
machine learning models. These detailed sections contribute to a comprehensive understanding of 
the research methodology and its potential implications. 
 
2. Methodology  
 

As extensively reviewed, it has been identified that the density within the trunks is a key 
distinguishing characteristic between healthy and unhealthy oil palm trees. Ganoderma spp. disease 
initially develops inside the trunk and progresses outward, causing decay and brown rot within the 
trunk. The study by Najmie et al., [10] significantly contributes to the understanding of how 
Ganoderma spp. disease impacts the density and ultrasonic properties of oil palm trunks. The 
research findings have important implications for the detection and monitoring of Ganoderma spp. 
disease in oil palm plantations, enabling the implementation of timely disease management 
strategies. Abu-zanona et al., [11] demonstrates a substantial 50% reduction in stem density in oil 
palm trunks infected by Ganoderma spp. disease compared to healthy trunks. However, the 
technique employed in the study may not be easily accessible or practical for routine detection of 
BSR disease among Thai farmers due to the reliance on a bulky ultrasonic measurement system that 
requires collaboration with an external microsecond timer device and an AC signal. Thus, its 
applicability in oil palm fields may be limited. 

In addition, Tan et al., [12] propose a non-destructive and efficient method for detecting 
Ganoderma spp. disease in oil palm trees using near-infrared spectroscopy (NIRS) classification. This 
review paper enhances our understanding of the potential of NIRS for disease detection in oil palm 
plantations. However, it is important to note that NIRS classification may not be suitable for Thai 
farmers due to their bulky systems and the need for multiple components that are difficult to 
transport.  

Furthermore, Koh et al., [13] have discovered that electrical impedance can be effective in 
measuring the density of fruits. However, when applied to palm trees, which exhibit high impedance, 
significant challenges emerge. These challenges include the necessity for amplification circuits to 
address low electrical currents and the requirement for oscilloscopes to measure the modified 
current. Consequently, this method becomes expensive and impractical, particularly when used by 
Thai farmers to identify Ganoderma spp. disease. 

Therefore, to address the limitations above, this research aims to develop a sound classification 
system for detecting Ganoderma spp. disease in oil palm trees. By analyzing and classifying specific 
sounds, this system offers a potential solution for early detection and proactive management of 
Ganoderma spp. disease. Machine learning techniques are utilized to replicate the expertise of local 
wisdom, enabling the establishment of a simplified technique for diagnosing stem density in oil palm 
trunks. The following sub-topics cover data acquisition, system design, signal processing, machine 
learning algorithms, parameter selection, and evaluation indicators, respectively, for oil palm disease 
detection.  

Machine learning was invented to make the computing system of the computer replicate human 
intelligence by putting the input data and answers to gain rules. From the literature review, some 
studies have explored the use of machine learning techniques to classify oil palm disease based on 
spectrum reflection from the leaves. Abu-zanona et al, [11] created a diagnosis model to classify four 
common diseases threatening palms, Bacterial leaf blight, Brown spots, Leaf smut, and white scale 
by importing labelled pictures to Convolutional Neural Network (CNN), which gives 99.10% accuracy. 
Not only those four common diseases but also the BSR has been used to create a diagnosis model.   
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Tan et al., [12] investigate the use of machine learning techniques to classify Ganoderma spp. 
using near-infrared spectral data. K-Nearest Neighbor (KNN), Naïve Bayes (NB), Support Vector 
Machine Classifier (SVC), and Decision Tree (DT) approaches were used to diagnose BSR disease by 
measuring spectrum reflection from the leaves. The study demonstrates the potential of this 
approach for accurate identification of the fungus responsible for BSR disease in oil palm trees. The 
research contributes to improved disease management strategies in oil palm plantations. Lee et al., 
[14] also proposed a method for early detection of BSR disease in oil palm trees using hyperspectral 
images, which were captured from a top-down perspective. The approach utilizes a Multi-Layer 
Perceptron (MLP) model trained on hyperspectral image data to classify healthy and diseased oil 
palm trees. The study highlights the potential of machine learning in achieving more accurate and 
efficient detection of BSR disease. To complete the aim of this research, three supervised machine 
learning algorithms were selected: CNN, SVC, and MLP approaches. 
 
2.1 Data Acquisition 

 
The knocking sound data collected from both healthy and unhealthy oil palm trees have been 

divided into in-sample and out-sample groups. To collect this data, the palm trunk was repeatedly 
tapped using a rubber mallet measuring 6.5 cm in diameter and weighing a total of 715g. For its 
durability, versatility, and capability to handle high sound pressure levels, the Apple AirPods Pro was 
selected as the recording device for capturing the knocking sounds. Prior to recording the sound, it 
is essential to remove any dead palm fronds and clean the tree trunk.  

The experimental apparatus was set up, as depicted in Figure 2. In case, a variety of magnitudes 
of hitting sounds is allowed to design the machine learning system with a diverse range of knocking 
sound inputs. This approach ensures that the machine algorithms can effectively classify and identify 
Ganoderma spp. disease in oil palm trees, accommodating different intensities of knocking sounds 
commonly encountered in real-world scenarios. 

In this research, the data were collected from three different southern provinces in Thailand, 
including Satun and Nakhon Si Thammarat, respectively. The dataset comprises 2075 knocking 
sounds obtained from approximately 60 oil palm trees, divided equally between 30 trees in Satun 
and 30 in Nakhon Si Thammarat. Each tree yielded approximately 30 to 40 distinct knocking sound 
files. These recordings are categorized into three classes: 748 files from the healthy class, 717 files 
from the infected class, and 610 files from the boundary class. From 2075 sound files is our dataset, 
the cross-validation process involves partitioning it into three separate segments: 60% for training, 
15% for validation, and 25% for testing purposes. 

 

 
(a)                                                                                 (b) 

Fig. 2. The experimental setup when collecting the knocking sound data from (a) 
healthy area (b) the infected area 
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The expert categorized the BSR disease into three types:  
 

i. Healthy: Represents the healthy area with a solid trunk density, producing a distinct 
knocking sound when hit;  

ii. Infected: Represents the area that has been damaged by the disease, resulting in a softer 
trunk compared to other areas;  

iii. Boundary: Represents the borderline between Healthy and Infected areas. The boundary 
area has a similar solidness to the healthy area, but the knocking sound is more similar to 
the infected area. 

This diverse dataset allows the machine learning system to learn and differentiate the various 
knocking sounds associated with different stages of Ganoderma spp. disease, improving the accuracy 
and effectiveness of disease detection. 

 
2.2 System Design 

 
Designing the sound classification system for detecting Ganoderma spp. disease in oil palm trees 

involves several key steps that can be illustrated in Figure 3. This research paper focuses on 
constructing prototype machine-learning models that replicate human sound perception, similar to 
the local wisdom mentioned in the introduction. The knocking sound data captured from healthy and 
unhealthy oil palm trees can be separated into two groups, i.e., in-sample and out-sample groups.  
To achieve durability, versatility, and ability to handle high sound pressure levels, making them 
suitable for capturing knocking sounds, a dynamic microphone is generally a good choice for 
recording knocking sounds was used. Before analysis, the dataset undergoes noise cancellation to 
ensure accuracy and make the model more corrected. The transformed data, converted into MFCCs 
(Mel frequency cepstral coefficient), is then subjected to three different algorithms (CNN, SVC, and 
MLP) for efficiency comparison, elaborated in the next section. Additionally, continuous 
improvement and validation processes ensure that the system remains accurate and reliable in real-
world scenarios. 
 

 
Fig. 3. System block diagram of the sound classification of basal stem rot disease based on stem density 
in oil palm trunks 

 
2.3 Noise Cancellation & MFCCs Extraction 
 
 Integrating noise cancellation in machine learning-based sound classification enhances the 
Signal-to-Noise Ratio (SNR), crucial for extracting meaningful features and achieving accurate 
classification. This approach, valuable in preprocessing, also mitigates overfitting risks and improves 
model interpretability by removing irrelevant noise. In recent developments, Audacity, an open-
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source audio editing software, effectively employs noise cancellation by combining the SNR method 
with the Noise Gate function. The SNR method enhances signal clarity by improving the ratio between 
the relevant signal and background noise. The Noise Gate function complements this by reducing 
sounds below a certain threshold, thus minimizing ambient noise. This combined approach creates 
cleaner audio inputs, crucial for machine learning models. Raja et al., [15] utilized this technique in 
Audacity, optimizing the Noise Gate function to match the specific noise characteristics of their 
recorded area, aiming to obtain the cleanest sound files for their models. This demonstrates the 
importance of tailored noise reduction in preparing high-quality datasets for machine learning 
applications. 

Mel-Frequency Cepstral Coefficients (MFCCs) are feature extraction techniques employed in 
speech and sound signal processing to extract relevant information from a sound signal. They are 
based on the Mel-frequency scale, a nonlinear scale approximating the human auditory system's 
frequency response. The process of extracting MFCCs involves dividing the sound signal into short 
frames and applying a filter bank to transform the magnitude spectrum into the Mel-frequency scale. 
Then it takes the inverse Discrete Fourier Transform (DFT) of the logarithm of the Mel-frequency 
spectrum to obtain the cepstral coefficients. These resulting MFCCs offer a concise representation of 
the sound signal's spectral characteristics, making them valuable input features for machine learning 
models and other signal processing algorithms.  

The transformation of all DFT coefficients into MFCCs is accomplished using Eq. (1). Subsequently, 
the Mel-scale coefficients undergo logarithmic compression, followed by the application of the 
discrete cosine transform to obtain the cepstral coefficients. In this study, the selection of 13 cepstral 
coefficients was influenced by extensive research [16-18], where a range from 12 to 20 coefficients 
was considered. Given that the complexity of our signals is not as high as in speech recognition tasks, 
13 coefficients were deemed appropriate for our research. The number of coefficients has a 
significant impact on a model's ability to capture the complexity of the signals. Higher numbers of 
coefficients can provide more detailed information and enable more precise feature extraction. 
However, excessively high numbers may lead to overfitting and result in performance issues for the 
model. 
 

𝑀𝑀(𝑘𝑘) =  2595 ∗  𝑙𝑙𝑙𝑙𝑙𝑙10 �1 +
𝑓𝑓(𝑘𝑘)
700

�                                                                                                              (1) 

 
2.4 Machine Learning Algorithms 
  
 This research employs supervised machine learning algorithms, which are computational 
statistical models enabling computers to learn from provided data and establish relationships for 
predictions or decision-making in various tasks. Through experience and feedback, these algorithms 
can enhance their performance over time. Specifically, the study focuses on classifying the BSR 
disease in oil palm trees using sound classification. Supervised machine learning involves training the 
algorithm on labelled data, where input features (knocking sounds) are paired with corresponding 
target outputs (healthy, infected, and boundary classes). The algorithm learns from these labelled 
examples to recognize patterns and classify new or unseen data. For this purpose, three supervised 
machine learning algorithms were selected: CNN, SVC, and MLP approaches.  
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2.4.1 Convolution Neural Network (CNN) 
 
 CNN is a deep learning algorithm comprising convolutional layers that apply filters to input data, 
capturing relevant features. To reduce dimensionality, extracted features are then processed 
through pooling layers. It was initially developed by Yann LeCun et al., [19]. The CNN algorithm is a 
type of neural network consisting of multiple layers called deep learning, including convolutional 
layers, pooling layers, and fully connected layers. Convolutional layers utilize learnable filters or 
kernels to extract local features such as edges, corners, and textures from the input image, as 
represented by Eq. (2). This process enables CNNs to effectively recognize and interpret visual 
patterns, making them highly suitable for tasks like image classification and computer vision. 
 

𝑦𝑦𝑚𝑚,𝑛𝑛 = 𝑥𝑥𝑚𝑚,𝑛𝑛 ∗ ℎ𝑚𝑚,𝑛𝑛 =  � � 𝑥𝑥𝑖𝑖,𝑗𝑗

∞

𝑖𝑖=−∞

∞

𝑗𝑗=−∞

· ℎ𝑚𝑚−𝑖𝑖,𝑛𝑛−𝑗𝑗                                                                                           (2) 

 
From Eq. (2), convolved matrix y position [m,n] is calculated by the sum of kernel x multiplied by 

the input matrix h, while “i” and “j” sequentially vary from -∞ to the size of row and column in kernel 
x. However, the pooling layers downsample the feature maps produced by the convolutional layers 
to reduce the spatial resolution and extract the most salient features. 

 
2.4.2 Multilayer Perceptron (MLP) 

 
The definition of MLP is a type of neural network that comprises at least three layers: the input 

layer, the hidden layer(s), and the output layer (Goodfellow et al., [20]). Unlike CNN, MLPs focus on 
direct data processing without involving specialized data extraction techniques. This process enables 
the MLP to learn and represent complex relationships within the data, making it capable of solving 
various tasks such as classification, regression, and other machine-learning problems. The input data 
undergoes a series of operations within the hidden layers, where each node multiplies the input data 
by weight and adds a bias term, as represented by Eq. (3) Below: 

 

ℎ𝑖𝑖 = 𝑎𝑎 ��𝑥𝑥𝑖𝑖𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=1

+ 𝑏𝑏�                                                                                                                                        (3) 

 
where hi is the weighted values computed by the sum of input xi multiply by the weight value from 
each node in the hidden layer plus bias. Then the values of this summation will pass to the activation 
function in the hidden layer. The softmax function is used in the output layer to obtain probabilities 
for class labels. The network adjusts weights and biases to minimize the loss and improve predictions 
through iterative iterations and epochs. 

 
2.4.3 Support Vector Machine Classifier (SVC) 
 

SVC is a supervised learning algorithm invented by Vladimir Vapnik and Alexey Chervonenkis in 
the 1960s and 1970s. It is a variant of the Support Vector Machine (SVM) algorithm and is widely 
used for classification tasks. SVC aims to find the best hyperplane that separates data points into 
different classes based on their features. It achieves this by transforming the input features into a 
higher-dimensional space using kernel functions like linear, polynomial, or radial basis function (RBF) 
kernels. SVC has advantages such as handling non-linearly separable data, performing well with high-
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dimensional features, and having good generalization performance. However, SVC can be sensitive 
to the choice of kernel function and its parameters and can be computationally intensive for large 
datasets. Based on the information, SVC is regarded as one of the most popular machine learning 
algorithms. Therefore, we intend to include this algorithm in our study for comparison with CNNs 
and MLPs. The key SVC equation used to find the optimal hyperplane for classification can be 
expressed as: 

 
𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠(𝑤𝑤𝑥𝑥 + 𝑏𝑏)                                                                                                                                        (4) 
 
where f(x) is the predicted class label for the input data point x; w is the weight vector, representing 
the orientation of the hyperplane; x is the feature vector of the input data point; b is the bias term, 
which shifts the hyperplane from the origin; sign() is the sign function, which returns +1 if the 
argument is positive or zero, and -1 if it is negative (Long et al., [21]). During the training process, SVC 
aims to find the optimal values for the weight vector w and bias term b that define the hyperplane, 
separating the data points of different classes with the maximum margin. 

 
2.5 Machine Learning Parameters Selection 
 

Machine learning parameter selection is key to achieving optimal model performance and 
generalization. Different machine learning algorithms have parameters that need to be suitably set 
before training the model. The selection of these parameters directly influences how the model 
learns and represents the underlying patterns in the data. In this study, we conducted a pilot 
experiment to optimize the three machine-learning parameter selections. The pilot experiment 
aimed to find the best combination of parameter values for each machine-learning model. By 
conducting this preliminary experiment, we aimed to identify the optimal configurations that would 
yield improved performance and generalization in the subsequent phases of the study. In addition, 
optimizing or tuning hyperparameters in machine learning tasks was employed in controlling the 
learning process to achieve an optimized model. 

In the experiments, we utilized BayesianSearchCV for Architecture and Hyperparameter 
selection. This powerful approach leverages probabilistic predictions to identify the set of 
hyperparameter values that yield the highest accuracy among the numerous architectures and 
hyperparameter options specified. Technically, BayesianSearchCV is utilized for architecture and 
hyperparameter selection in machine learning models. The Bayesian optimization technique 
efficiently searches the hyperparameter space, helping to identify the optimal architecture and 
hyperparameters for enhanced model performance. The selection of the architecture and 
hyperparameters for BayesianSearchCV was guided by insights from various reviews [22-29]. These 
reviews provided valuable information on best practices and trends in model design, enabling the 
researchers to define a comprehensive and promising scope for the optimization process. 
BayesianSearchCV for architecture and hyperparameter selection involves defining the search space, 
initializing the optimization, performing cross-validation, updating the Bayesian model, suggesting 
new hyperparameters, and repeating the process to find the best configuration for improved model 
performance. 

 
2.6 Performance Evaluation 
 

Data splitting involves dividing a knocking sound dataset into subsets for training, validation, and 
testing sessions. The training set is used to teach the model, the validation set to fine-tune it, and the 
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testing set to assess its performance on unseen data. BaysiensearchCV, incorporating cross-
validation in its process, was used for model development. Machine Learning Evaluation Indicator 
refers to the metrics used to assess the performance of machine learning models. These indicators 
provide valuable insights into the model's accuracy, precision, recall, F1 score, and other measures, 
helping to evaluate and compare the model's effectiveness in solving specific tasks. Various machine 
learning techniques were designed for specific purposes, and each one has a unique technique to 
generate human decisions. Consequently, the machine-learning model scoring indication must serve 
as the benchmark for comparing each model's score. For more detail, accuracy represents the 
proportion of correctly classified instances out of the total instances in the dataset.  

Precision is the ratio of true positive predictions to total positive predictions. In other words, it 
measures how many predicted positive instances were true positives. Higher precision indicates 
fewer false positives. Recall, also known as sensitivity or true positive rate, is the ratio of true positive 
predictions to the total number of actual positive instances. It measures the model's ability to 
correctly identify positive instances. Higher recall indicates fewer false negatives. The F1 score is the 
harmonic mean of precision and recall and provides a balance between the two metrics. It is a useful 
metric when there is an imbalanced class distribution. It can evaluate the performance of a model 
more comprehensively and consider the trade-off between false positives and false negatives. The 
evaluation metrics made up of Accuracy, Precision, Recall, and F1 score can be calculated by Eq. (5)–
Eq. (8) (Hastie et al., [30]), whereas true (T) and false (F) represent labelled data, and positive (P) and 
negative (N) represent the validity of label data, respectively.   
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑎𝑎𝐴𝐴𝑦𝑦 =  
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
                                                                                                               (5) 

 

𝑅𝑅𝑅𝑅𝐴𝐴𝑎𝑎𝑙𝑙𝑙𝑙 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
                                                                                                                                            (6) 

 

𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇
                                                                                                                                      (7) 

 

𝐹𝐹1 𝑠𝑠𝐴𝐴𝑙𝑙𝐴𝐴𝑅𝑅 =  
2 × 𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 × 𝑅𝑅𝑅𝑅𝐴𝐴𝑎𝑎𝑙𝑙𝑙𝑙
𝑇𝑇𝐴𝐴𝑅𝑅𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠𝑙𝑙𝑠𝑠 + 𝑅𝑅𝑅𝑅𝐴𝐴𝑎𝑎𝑙𝑙𝑙𝑙

                                                                                                          (8) 

 
3. Experimental Results and Discussion 
 

This section presents the study's outcomes, evaluating the performance of machine learning 
models in sound classification based on stem density in oil palm trunks. It discusses the experimental 
results, and analysis, which draws discussion on the models' effectiveness and potential applications. 
According to the experiment, each model building, training, and testing step was performed using 
Google Colaboratory as the computational resource. The system utilized was equipped with a 2vCPU 
with a clock speed of 2.2GHz and 13GB of RAM. For the machine learning process, no pre-trained 
models were employed. Instead, all models were developed from scratch using PyTorch 2.0.1. The 
key purpose of this approach was to gain insights into the dataset's nature and characteristics, paving 
the way for future enhancements and improvements.  

The experimental results can be categorized into two main groups: sound characteristics (section 
3.1) and performance comparison (section 3.2). In the Sound Characteristic section, we analyze the 
sound features extracted from the oil palm trunks, providing insights into the sound characteristics 
relevant to disease detection. In the Performance Comparison section, we compare the accuracy, 
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precision, recall, and F1 score of the machine learning models used, evaluating their effectiveness in 
classifying healthy and infected areas based on sound data. 

 
3.1. Sound Characteristics 
 

The experimental result of sound characteristics provides an analysis of the sound features 
extracted from the oil palm trunks, revealing key sound characteristics relevant to disease detection. 
This section presents three key results: (1) noise cancellation results: producing the outcomes of 
noise cancellation techniques and demonstrating the effectiveness of reducing unwanted noise and 
enhancing the signal quality; (2) classification power spectrum results: providing insights into the 
frequency distribution and spectral characteristics of the sound data; and finally (3) transformed 
knocking sound data to MFCCs: transforming the knocking sound data to MFCCs, which allows for 
further analysis. 

The dataset used in the experiment was recorded at a sample rate of 24 kHz, capturing various 
sounds, including the knocking sound along with background noise from unrelated sources such as 
people chatting, footsteps, and wind blowing. In Figure 4(a), the power spectrum of the signals clearly 
shows the presence of this noise, which can interfere with the accurate detection of the knocking 
sound. To enhance the quality of the knocking sound and remove the unwanted noise, noise 
cancellation techniques were applied, as shown in Figure 4(b). The cleaned knocking signal is now 
ready for further processing, ensuring a more accurate representation of the original knocking sound. 

 

 
(a) 

 
(b) 

Fig. 4. result of sound characteristic (a) a knocking sound signal before using noise 
cancellation (b) a knocking sound signal after using noise cancellation 

 
After obtaining the cleaned sound signals, each sound was split into 0.5-second intervals to 

prepare them as inputs for the machine-learning models. The 0.5-second interval time was chosen 
to precisely locate the knocking sound within each signal. Overall, these steps in data preprocessing 
and cleaning are crucial for providing the machine learning models with accurate and relevant input 
data, enabling them to perform sound classification more effectively and accurately. 

The power spectrum is a Fourier transform tool used to analyze the frequency content of a signal. 
It shows how the power or energy of the signal is distributed across different frequencies, revealing 
the strength of various frequency components. Figure 5 displays a recorded sound file capturing the 
sound of hitting an oil palm tree, which contains 100 instances of hitting. The dominant frequency 
components and their strengths are identified in a set of a hundred infected knocking sounds.  
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These signals were subjected to the Fourier transform, and the power spectrum of the results in 
which the analysis confirms that a diverse range of knocking sounds with varying magnitudes produce 
similar spectrum profiles. The pattern in the knocking sound spectrum in Figure 5 appears consistent, 
with minor differences in the amplitudes of the curve. If the spectral patterns of the impact sounds 
are alike, it follows that controlling the force of impact is unnecessary for this project. Additionally, 
based on the findings of Kaiming et al., [31] 's studies, the CNN machine learning algorithm 
demonstrates accurate sound classification even when the sounds have varying amplitudes since the 
CNN algorithm's performance remains unaffected by the amplitude of the signals. 

Based on the characteristics of the knocking sound signals, the choice of 13 coefficients strikes a 
balance between capturing relevant information and mitigating potential overfitting. In Figure 6, we 
visualize examples of the knocking sound signals transformed into MFCCs for each class: healthy, 
infected, and boundary. The MFCC representations provide a concise and informative representation 
of the knocking sound, allowing for easy visual comparison between the different classes. This helps 
in understanding the distinctive features and patterns present in each class of knocking sounds.  

Additionally, to ensure the MFCC representations are more robust and comparable, cepstral 
mean normalization is applied. This normalization process centres the MFCC coefficients on zero, 
reducing the impact of differences in amplitude or volume among the sound signals. It standardizes 
the coefficients, making them more suitable for feeding into the machine learning models. Once the 
dataset is transformed into MFCCs with 13 coefficients and normalized, it is ready for the machine 
learning model-building process in the subsequent section. 
 

 
Fig. 5. The plot displays the power spectrum characteristic of the 
infected knocking sound signals which are not control the 
amplitudes, obtained from a dataset of 100 files 

  
3.2. Performance Comparison 

 
The primary objective of this study is to compare the performance of three classifiers: CNN, MLP, 

and SVC, in classifying knocking sounds based on the density within oil palm trunks. This density 
serves as a crucial distinguishing characteristic between healthy and unhealthy oil palm trees. 
Additionally, the study aims to compare the classifiers' performance using different input features: 
one scenario involving all classes and another scenario involving two classes. To achieve this, the 
experiments were conducted and divided into two main sessions: 1) the experiment capable of 
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classifying all classes (Healthy, Boundary, Infected scenarios) and 2) the experiment capable of 
classifying two classes (Healthy, Infected scenarios).  
 

 
Fig. 6. Three Examples of transformed data to MFCCs from each class (Healthy, Infected, and 
Boundary) 

 
In the context of machine-learning parameter selection, preliminary pilot experiments were 

initially conducted to identify the optimal combination of parameter values for each machine-
learning model. The findings from these initial experiments revealed that the CNN model exhibits 
superior performance and is composed of multiple layers, including convolutional and max pooling 
layers. As shown in Figure 7, it starts with two convolutional layers, each consisting of 32 filters with 
a kernel size of 3x3. Subsequently, a max pooling layer with a pool size of 2x2 follows. The model 
then continues with two more convolutional layers, each containing 64 filters with a 3x3 kernel size. 
Afterwards, the model has a dense layer with 128 neurons using the ReLU activation function, and 
another dense layer with 3 neurons using the softmax activation function. The model utilizes the 
Adam optimizer and employs categorical_crossentropy as the loss function. 

 

Input image 1st node

128th node

Flatten 2D to 1D

Softmax

Healthy

Boundary

Infected

Convolution Layer+ReLU

Max Pooling Layer
Zero Pooling + Convolution + ReLU  
Fig. 7. CNN’s Architecture 

 
Figure 8 displaying the MLP’s Architecture that consists of two hidden layers. Each layer 

comprises 256 neurons with the ReLU activation function. Softmax is the activation function for the 
output layer. The model's alpha value is set to 0.01, and the initial learning rate is 0.001. The model 
incorporates a warm start. The BaysiensearchCV utilized Adam as the solver, which has 
categorical_crossentropy to be the loss function. The SVC model employs the Radial basis function 
(RBF) as the kernel with a regularization parameter (C) set to 10. Scaling gamma was chosen in the 
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model. The stopping criterion for the model is determined by a tolerance value of 1e-3. The decision 
function follows the one-vs-rest shape for multiclass classification. 

 

Input image 

Size 13x24

Flatten 2D to 1D

Size 1x312

312 nodes 256 nodes 256 nodes

1stHidden layerInput layer 2ndHidden layer Output layer

Healthy

Infected

Boundary

 
Fig. 8. MLP’s Architecture 

 
After completing the parameter selection for CNN, MLP, and SVC models, we proceeded to utilize 

the optimized machine learning models to evaluate their effectiveness in the task of knocking sound 
classification in oil palm trees. The objective was to identify the most suitable approach for accurate 
classification. The evaluation was conducted based on metrics such as accuracy, precision, recall, and 
F1 score in all the given scenarios. These results provided insights into the performance of each 
classifier, enabling us to make informed conclusions about their efficacy for the specific classification 
task as presented in Table 1. 
 

Table 1   
Accuracy, Precision, Recall and F1-score for every model 
Model evaluation 2 classes (Boundary excluded) 3 classes 

CNN MLP SVC CNN MLP SVC 
Accuracy 90.73% 83.38% 84.21% 84.97% 72.25% 69.64% 
Precision 0.908 0.847 0.843 0.851 0.760 0.699 
Recall 0.907 0.837 0.842 0.848 0.750 0.692 
F1 score 0.908 0.842 0.843 0.849 0.755 0.696 

 
According to the test results, in the two-class (boundary excluded) scenario, the CNN model 

achieved the highest accuracy of 90.73% (its confusion matrix is shown in Figure 9(a)), followed by 
the MLP model with 83.38% and the SVC model with 84.21%. The CNN model also obtained the 
highest precision, recall, and F1 score, indicating its overall better performance in distinguishing 
between the two classes. In the three-class scenario, the CNN model again obtained the highest 
accuracy of 84.97% (its confusion matrix is shown in Figure 9(b)), while the MLP and SVC models 
achieved lower accuracies of 72.25% and 69.64%, respectively. However, the precision, recall, and F1 
score for the three-class scenario were highest for the CNN model, suggesting its superiority in 
classifying all three classes compared to the other models. 
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Fig. 9. (a) CNN confusion matrix from 2-classes scenario (b) CNN confusion matrix from 3-
classes scenario 

 
In summary, the table provides a comprehensive overview of the model's performance in both 

the two-class and three-class scenarios, utilizing various evaluation metrics. These metrics offer 
valuable insights into the models' accuracy, precision, recall, and F1 score for the respective 
classification tasks. Notably, the CNN model consistently exhibited superior performance in both 
scenarios, surpassing the MLP and SVC models in terms of accuracy, precision, recall, and F1 score. 
However, it is essential to note that the accuracy was higher in the two-class scenario compared to 
the three-class scenario. The subsequent section will discuss the reasons behind the observed 
decrease in accuracy for the three-class scenario. 
 
3.3 Discussion 

 
Based on the performance comparison, it is evident that the primary reason for lower accuracy 

in the three-class scenario for all algorithms is the presence of the boundary class. The sound 
characteristics of the boundary class are similar to both the healthy and infected classes, causing 
confusion during the classification process. The MFCC spectrogram of the boundary class becomes 
entangled with the healthy and infected classes, leading to misclassification and adversely affecting 
the algorithms' performance. Despite the visual reparability, the boundary class presents challenges 
for accurate classification, impacting the performance of the algorithms significantly. 

In Figure 10, the mean power spectrum of each class is displayed, providing insights into the 
frequency characteristics of the knocking sound signals. The power spectrum density is represented 
by the magnitude of the peaks at different frequencies. Three classes are considered: infected, 
healthy, and boundary. The infected dataset exhibits the highest peak in power spectrum density, 
with a magnitude of approximately 7,000 at a frequency of around 750 Hz. On the other hand, the 
healthy dataset displays another prominent peak with a magnitude level of around 6,000 at a 
frequency of approximately 1250 Hz.  The boundary dataset, representing the area between healthy 
and infected classes, shows an interesting characteristic. Its power spectrum overlaps between the 
infected and healthy datasets, with energy concentrations at frequencies close to both 1000 Hz and 
1200 Hz. This overlapping feature makes the boundary dataset more challenging to classify 
accurately, as its sound characteristics share similarities with both healthy and infected classes. 

 



Journal of Advanced Research in Applied Mechanics 
Volume 124, Issue 1 (2024) 19-38 

 

34 
 

 
Fig. 10 The mean power-spectrum plot 

 
Figure 11 further corroborates our findings, highlighting the influential role of the boundary class 

in the observed inaccuracies. The box plot of the mean frequency power spectrum vividly illustrates 
the distinct characteristics of each class. The healthy class demonstrates a prominent cluster lying 
between 1200 – 1450 Hz, while the infected class exhibits another distinct cluster spanning 
approximately 700-1100 Hz, positioned below the healthy class. However, the presence of the 
boundary class introduces a perplexing scenario, with its distribution chaotically overlapping both 
the healthy and infected classes, spanning approximately 900 – 1300 Hz. This intricate overlap 
significantly contributes to the classification errors, as the boundary class exhibits sound and signal 
properties akin to both healthy and infected data. The visual evidence presented in Figure 11 
reinforces our assertion that the accurate differentiation of the boundary class from the other two 
classes poses considerable challenges for classification algorithms, thereby impacting overall 
accuracy and performance. 
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Fig. 11. The box plot of the mean frequency power spectrum for all classes 
(Healthy, Boundary, Infected scenarios) 

 
In order to improve the performance of classification or decrease the misclassification made by 

the boundary data. Expanding the dataset by acquiring more samples for the boundary class can 
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significantly improve classification performance. A larger and more diverse dataset would enable the 
algorithm to better capture the distinctive features of the boundary class and reduce the 
entanglement with healthy and infected classes. Therefore, collecting additional boundary class data 
from various environments and conditions will help the model generalize better and improve its 
ability to differentiate between classes. 

To confirm this, the inclusion of 311 additional sound files collected from Trang province 
significantly enhanced the model's performance, as indicated by the results showcased in Figure 12, 
illustrating the post-improvement confusion matrix of the model. These new files are distributed 
among the three classes, with 101 in the healthy class, 110 in the boundary class, and 100 in the 
infected class. The presence of the confusion matrix in Figure 12 underscores the advantages of this 
expanded dataset. It clearly demonstrates the improved capability of the model to accurately classify 
sounds into their respective categories. With a more balanced distribution of data across healthy, 
boundary, and infected classes, the model displays reduced bias and heightened precision in 
distinguishing among these categories.  
 

 
Fig. 12. The performance of the model with the additional dataset 
from Trang province 

 
This diverse exposure to various sound samples, including the unique features from the Trang 

province, enhances the model's capacity to handle real-world variations. Consequently, the model 
showcases increased accuracy and resilience, establishing itself as a more dependable tool for 
practical applications like detecting diseases in oil palm trees. The inclusion of additional data not 
only enriches the training environment but also substantially elevates the model's overall predictive 
performance. 

In the context of the algorithm selection literature [32-36] and in consideration of the preceding 
discussion, it is notable that a majority of the works examined make use of pre-trained models. These 
models necessitate substantial computational resources for the construction of an effective 
classification system. To address the imperative of cost minimization in the domain of BSR diagnosis, 
we outline the next phase of our research efforts. In this upcoming stage, we aim to seamlessly 
integrate our developed system into an affordable hardware platform, such as the Raspberry Pi. In 
alignment with this objective, our commitment lies in developing models that do not rely on pre-
existing counterparts, thereby aligning our approach with the parameters of resource frugality and 
self-sufficiency. 
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4. Conclusion 
 

In this research, we developed a sound classification system aimed at leveraging local wisdom to 
diagnose BSR disease in oil palm trees through a non-destructive method: knocking on the tree trunk 
with a rubber mallet. The system leverages local wisdom and considers two output class setups: one 
with three classes (healthy, boundary, and infected), and the other with two classes (healthy and 
infected), excluding the boundary class to investigate the potential improvement in model accuracy 
by removing an ambiguous class. Among the tested models, the CNN model proved to be the most 
effective, achieving an accuracy of 90.73% for the two-class model and 84.98% for the three-class 
model. The precision, recall, and F1-score for both models also demonstrated excellent performance. 

In conclusion, our research demonstrates the potential of using local wisdom for BSR disease 
diagnosis in oil palm trees. While the CNN model showed promising results, continued efforts in data 
collection and model refinement will further improve the system's accuracy and prevent overfitting 
situations to be more applicable in real-world settings. However, it is important to acknowledge the 
limitations of this study. The model's generalizability may be constrained due to the relative dataset 
of 2,075 sound files from 60 oil palm trees in three different southern provinces of Thailand. To 
enhance the system's performance and applicability, future research will focus on expanding the 
dataset with a more diverse and extensive collection of sound files, encompassing a broader range 
of oil palm trees and environments. This will enable the model to better generalize and adapt to 
various scenarios in real-world settings. 
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