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Conventionally, researchers have primarily focused on developing gravity-
compensation robots without considering the voluntary resistant force in continuous 
passive motion (CPM) therapy. This leads to critical limitations in robot-assisted 
therapy compared to conventional therapy administered by therapists, particularly in 
terms of generating natural behavioural responses in patients. To address this 
limitation, our proposed technique aims to investigate model-based dynamic force 
estimation specifically related to intrinsic muscular force in order to develop a robotic-
human-like controller for CPM therapy. We conducted an estimation of the muscular 
force based on surface electromyography (sEMG) signals using Ridge Polynomial, 
Artificial Neural Network (ANN), and Support Vector Machine (SVM) approaches. 
Strategic preprocessing and model optimization procedures were implemented. The 
optimized results demonstrate that ANN exhibits slightly superior performance 
enhancing the accuracy and precision with its quicker testing time. Moreover, the 
substantive results demonstrate a notable comparison between the use of 
conventional gravity compensation and our novel technique which integrates both 
intrinsic muscular force and gravity compensation. It reveals that our approach yields 
calculated voluntary forces that more closely approximate to the actual values in 
comparison to the conventional method. In conclusion, this research makes a 
significant contribution to the development of a smart robotic controller offering high-
accuracy measurement of voluntary forces for CPM therapy, thereby facilitating 
natural behavioural responses.  
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1. Introduction 

 
Currently, Stroke is a significant contributor to severe disability among adults all over the world 

[1]. This condition arises from reduced blood that flows to the brain, which prevents brain tissue from 
obtaining oxygen and nutrients. Consequently, the affected regions of the brain may experience 
cellular death, leading to decreased functionality. The stroke symptom may affect movement 
disorders in patients. To enhance a patient’s quality of life for such individuals, exercise-based 
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therapy is necessary to facilitate the rewiring of neurological pathways associated with motor 
function. Subsequently, the muscle functionalities are able to be gradually better restored. This 
procedure strictly is under supervision by medical professionals and therapists [2,3]. 

Moreover, the global trend towards an aging population may consequently increase the demand 
for therapists to aid patients. Therefore, in response to this impending burden in the future, ongoing 
research studies have introduced various advanced physical rehabilitation-assisted devices. Robotic 
devices employed for the rehabilitation of upper limbs can be typically classified into many groups 
for specific movements such as systems assisting shoulder, elbow, forearm, wrist, finger, or whole 
arm movements etc. [2–5]. Among these devices, Continuous Passive Motion (CPM) devices, which 
are relatively simple exoskeleton robots, are particularly used to facilitate significant recovery of 
forearm and elbow movements in patients [6,7]. Numerous scientific studies provide evidence of the 
effectiveness of CPM training and it demonstrates significant improvements in muscle strength and 
overall recovery [1,4,7]. 

Throughout the treatment course, therapists typically perform to gradually increase the range of 
motion by approximately 5-7 degrees per day in both active and passive flexion and extension [1–4]. 
During the treatment process, therapists have the capability to apply naturally suitable force in 
accordance with the resistant force generated by patients in the presence of high intensity of pain. 
It can be said that during the treatment process when patients experience intense pain, they may 
instinctively apply ‘voluntary force’ to resist the rehabilitation movement, aiming to protect 
themselves from potential physical harm. In response, it is crucial for the therapist to promptly react 
by adjusting the lower range or lower speed of motion.  

Contrastingly, a variety of robotic researchers [8–13] have primarily focused on developing 
gravity-compensation robots without considering the voluntary resistant force exerted by patients in 
CPM therapy. Therefore, compared to conventional therapy administered by therapists, robot-
assisted therapy consequently shows critical limitations in generating natural behavioural responses 
in patients [8]. 

Our research team was initially driven by the challenge to develop naturally behavioural 
responses in assistive robots during the treatment. Therefore, a series of experiments using a one-
degree-of-freedom CPM robot shown in Figure 1 was carried out. To measure the force applied by 
the subject perpendicular to the test rig, a multi-axis force sensor was attached to the robot's arm 
link. Through our experimental procedures, which involved instructing subjects to apply resistant 
force against the movement and not to apply force, we have significantly observed that the test rig 
is affected by various factors, including the ‘voluntary resistant force’ exerted by the patient, the 
‘gravitational force’ acting on the forearm [9–15], and the opposing ‘intrinsic muscular force’ of the 
forearm. The intrinsic muscular force is the dynamic force generated by the internal muscles 
themselves during muscle fibre contraction, irrespective of voluntary effort.  
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Fig. 1. The design CPM assisting robot 

 
After an extensive review [8–15], it has been determined that there is a notable research gap 

concerning the topic of intrinsic muscular force in CPM therapy. Model-based dynamic force 
estimation regarding intrinsic muscular force during exercise-based therapy is scarce. The primary 
objective of this research is to emphasize the necessity for further examination to expand our 
understanding of intrinsic muscular force. By doing so, we aim to enhance the accuracy and precision 
in measuring the voluntary effort exerted by patients during the CPM tests.  

The subsequent sections of the research present the details of the proposed study.  To begin, the 
design of a robot and controller is capable of executing force-position control. Subsequently, the 
force estimation model is carefully developed, following a step-by-step process to create the machine 
learning model. This is accompanied by a thorough comparison of algorithms in the pre-processing 
stage, followed by training and testing to retune the model until optimal performance is achieved. 
Lastly, the integration of the proposed model with the robot control system is executed, culminating 
in comprehensive performance testing to validate its functionality and effectiveness. 
 
2. The CPM Robotic System Identification 
 

An upper-limb CPM rehabilitation machine is a device that helps a therapist actively manipulate 
the elbow and forearm in a rotational manner, aiming to restore joint movement [1–5]. The repetitive 
movements can significantly enhance the stroke patient’s muscle functionality or reduce bleeding 
and increase synovial fluid around the joint for postoperative patients [16–19]. In addition, robotic 
devices are capable of performing passive and continuous training exercises to rehabilitate joint 
limitations or joint stiffness who have undergone joint surgery or stroke patients [8,9]. Gao, et al., 
[20] stated that the outcomes of the CMP therapy demonstrated stroke patients’ joint muscles 
stronger. Driscoll et al., [14] also recommended that it is important to immediately apply passive 
continuous motion after injury or operation to avoid the cause of the patient’s undue pain. 
Technically, passive therapy requires no patient effort. In the clinical session, an effective training 
period is around 30-40 minutes and the maximum range of motion is around 125° with the moving 
velocity between 0.5-5°/s as suggested by Kaewboon et al., [21].   

A designed CPM robot has been strategically researched based on a conceptual guideline for a 
robotic human-like controller for natural, behaviour-based, CPM rehabilitation. This motivates the 
design of gravity and dynamic intrinsic muscular force compensation to produce the required tracking 
accuracy of the voluntary resistant effort in real-time interaction. That means if a patient’s 
fatigability, discomfort or pain of skeletal muscles occurs during the therapy process, the intelligent 
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CPM robot’s movement will be reasonably responsive according to the voluntary resistant force 
applied to the motorized machine against the training movement.  

However, this is a crucial challenge in the development of seamless human-robot interaction 
(HRI), since the robotic control system is further complicated by the dynamic force nature of the 
muscle contraction and active patient intention response [16–19]. Thus, this study necessitates a very 
careful design of the behavioural control strategy in order to conduct an effective HRI and strictly 
protect the human subject from the risk of harm or injury by the CPM robot. 
 
2.1 Design of a Rotational CPM Robotic System 
 

In order to be able to significantly modify its real-time path according to the patient’s voluntary 
effort, an appropriate human-like control strategy for the CPM robot has to be therefore developed. 
This requires first understanding how the therapist naturally reacts to a patient serving a unique 
purpose in helping the human from the risk of injury by the robot. The initial study and observation 
in healthcare were carried out. This process was strictly supervised by the doctors of physical therapy 
and expert therapists in the rehabilitation centre. Our research team had to strictly follow the 
guidelines of the WMA Declaration of Helsinki-ethical principles for medical research involving 
human subjects [22].  

After clearly understanding the detail of the rehabilitation context from the Southern Medical 
Rehabilitation Centre at the Songklanakarin Hospital, Songkhla, Thailand, a conceptual guideline for 
robotic behaviour-based control can be strategically designed. Additionally, understanding the 
musculoskeletal system leads to benefits for the development of the robot control architecture of 
the CPM device.  

The designed CPM device can be illustrated in Figure 1. A single rotational DOF offers circular-
path-based therapy movement. The test rig provides a mechanical link with an armed supporter to 
support and rotates the patient’s forearm with a pivot point at the elbow joint. The main links were 
fabricated using aluminium profile and ABS plastic materials since this makes a more lightweight 
robotic platform and ensures durability and robustness. As the difference of physical lengths of the 
human arms, firstly the pivot point and length of the rotating link can be effortlessly adjustable for 
individual suitable positions of a patient. 

A smart servo actuator, namely Dynamixel MX-106, can control its velocity precisely as a speed 
tracking system with a high-resolution contact-less encoder of 4096 pulses per revolution (PPR). The 
maximum power of the motor is approximately 90 Watts with a torque of 10 Nm. Proportional 
Integral Derivative (PID) control [23] can be directly used into its servo's built-in microcontroller. This 
allows a programmer to control the speed and strength of the motor's response using the Robot 
Operating System (ROS) along with a sampling rate of 50Hz through serial communication.  

The human-applied force acting on the robot’s rotating mechanism is initially collected in real-
time by an ATI Mini40 force/torque sensor. The sensor is associated with an ATI net box and 
communicates to the PC running ROS via TCP/IP communication with an update rate of 100Hz. The 
measuring spans of the ATI force and torque are ±80N with 0.02N resolution and ±4Nm with 
0.0005Nm resolution, respectively. To improve accuracy of force measurement, the force sensor has 
to be initially calibrated using a transducer stiffness matrix according to the default sensor reference 
frame.  

Surface electromyography (sEMG) signals reflect the electrical activity of skeletal muscles and 
contain information about the structure and function of muscles which particularly make different 
parts of the body move [5,24]. Therefore, sEMG can be used to predict human muscle force in HRI 
with strong probability. A MYO armband with 8-channel electrode sensors was chosen to detect the 
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sEMG signals around the human arm in real-time. The sampling rate of the electrodes is 
approximately 200 Hz which is suitable to measure the human sEMG signals [25]. This was confirmed 
by Liang et al., [26] in which the frequency of the sEMG signals captured from the human arm is 
generally around 20–500 Hz. Moreover, a safety system is a crucial issue in haptic HRI. This facilitates 
an effective human-machine interaction (HMI) as it involved control software and a stand-alone 
emergency stop button, which can immediately activate once a fail-safe mode occurs.  

The overall control block diagram of the robot-assisted rehabilitation system will be expressed in 
Section C. The next section describes the kinetic and kinematic characteristics of the HMI while 
performing elbow joint CPM rehabilitation. 

 
2.2 Impedance Characteristic of The Human Arm in CPM 

 
The human arm impedance can be investigated based on the study of Raman et al., [27,28] using 

dynamic modelling analysis. The human arm is mechanically presented as a spring-dashpot-and-mass 
system. The HMI system can be schematically depicted in Figure 2. Frictionless assumptions are often 
made to simplify complex mechanical systems, making mathematical analysis and modelling more 
controllable. It allows for easier calculations and theoretical predictions. In this study, the friction 
levels are significantly lower compared to the torque generated by the motor; consequently, it can 
be assumed that the frictionless pin joint was undertaken.  
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Fig. 2. Schematic of human arm impedance on the HMI system (a) Free body diagram of the 
force interaction with the robot (b) Free body diagram of the human arm with the robot 

 
According to the key abbreviations used in Figure 2, their terminology and definitions of the 

relevant parameters can be expressed as the patient’s voluntary resistant force ( ) which is defined 
as a force directly applied against the circular movement of CPM (when the patient feels any 
restriction or pain during the therapy). The corresponding torque is represented by . Forearm 
intrinsic muscular force ( ) is defined as the dynamic force naturally generated by internal muscles 
themselves during muscle fibre contraction. The corresponding torque is . Measured force ( ) is 
defined as the tangential force directly measured by the multi-axis ATI force sensor based on its 
coordinate frame.  

Forearm gravitational force ( ) is defined as the force of the gravity of the human forearm and 
its direction is toward the ground. Its corresponding torque is . Similarly, the gravitational force 
of the robot link attached by the force sensor ( ) is also defined as the force of the gravity of the 
CPM rotating link. The corresponding torque can be written as , respectively. The net arm torque 
( ) is generally developed by shortened or lengthened muscles, which can be calculated by 
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summing  and  together. Finally, the external torque produced by the smart Dynamixel motor 
can be presented as , which can smoothly actuate and rotate the human arm.  

By considering all force acting to the force sensor attached to the tip of the link, thus the 
measured force  as shown in Figure 2(a) can be derived as: . This voluntary 
resistant force which will is undertaken in the robotic position-based force control to offer the 
compliant-behavioural-based motion in the HRI task can be estimated as the following equation. 

 
𝐹𝐹𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐹𝐹𝑆𝑆 − [𝐹𝐹𝐻𝐻𝐻𝐻𝐻𝐻 + 𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼] (1) 

 
where, can be computed by . The human forearm can be represented as  

and the gravitational acceleration is approximately 9.83 m/s2, and is the rotational angle of the 
human forearm, respectively. 

According to the interaction between the human subject and the motorized CPM rehabilitation 
machine as depicted in Figure 2(b), using the direct equivalent to Newton’s second law based on 
rotational kinematic analysis offers the following equation. 

 
𝜏𝜏(𝑛𝑛) − 𝜏𝜏𝐻𝐻𝐻𝐻(𝑛𝑛) − 𝜏𝜏𝐻𝐻𝐻𝐻𝐻𝐻(𝑛𝑛) − 𝜏𝜏𝑅𝑅𝑅𝑅(𝑛𝑛) = 𝐼𝐼𝜃̈𝜃, (2) 

 
where the arm’s angular position and its corresponding velocity and acceleration are represented by 

, and , respectively.  
The elbow torque  is regulated regarding the contraction of muscles related to muscle flexion 

and extension while interacting with a HRI task. Subsequently, an overall simple second-order 
equation in the time domain was used as the model for the arm dynamics and arm moment can be 
mathematically expressed by the following equations.  

 
𝜏𝜏𝐻𝐻𝐻𝐻(𝑡𝑡) = [𝑐𝑐𝐵𝐵(𝑡𝑡) + 𝑐𝑐𝑇𝑇(𝑡𝑡)]𝜃̇𝜃(𝑡𝑡) + [𝑘𝑘𝐵𝐵(𝑡𝑡) + 𝑘𝑘𝑇𝑇(𝑡𝑡)]𝜃𝜃(𝑡𝑡) (3) 

 
The arm impedance consists of , ,  and  representing damping factors and stiffness 

parameters of biceps brachii, and triceps brachii, respectively. Substituting Eq. (3) to Eq. (2) gives: 
 

  𝜏𝜏(𝑛𝑛) − [𝑐𝑐𝐻𝐻(𝑛𝑛)]𝜃̇𝜃(𝑡𝑡) − [𝑘𝑘𝐻𝐻(𝑛𝑛)]𝜃𝜃(𝑛𝑛) − 𝜏𝜏𝐻𝐻𝐻𝐻𝐻𝐻(𝑛𝑛) − 𝜏𝜏𝑅𝑅𝑅𝑅(𝑛𝑛) = 𝐼𝐼𝜃̈𝜃 (4) 
 
The next step is to transform the continuous-time domain  into a discrete-time domain at every 

sampling time with the individual discrete number samples represented by n. It is initially assumed. 
  

 𝜃̇𝜃(𝑛𝑛) = 𝜃𝜃(𝑛𝑛)−𝜃𝜃(𝑛𝑛−1)
𝑇𝑇

 and 𝜃̈𝜃(𝑛𝑛) = 𝜃̇𝜃(𝑛𝑛)−𝜃̇𝜃(𝑛𝑛−1)
𝑇𝑇

 provide: 
 

 

𝜏𝜏(𝑛𝑛) = 𝑎𝑎1𝜃𝜃(𝑛𝑛) + 𝑎𝑎2𝜃𝜃(𝑛𝑛 − 1) + 𝑎𝑎3𝜃𝜃(𝑛𝑛 − 2) + 𝜏𝜏𝐻𝐻𝐻𝐻𝐻𝐻(𝑛𝑛) + 𝜏𝜏𝑅𝑅𝑅𝑅(𝑛𝑛) (5) 
 

where, 𝑎𝑎1 = (𝐼𝐼+𝑐𝑐𝐻𝐻(𝑛𝑛)𝑇𝑇+𝑘𝑘𝐻𝐻(𝑛𝑛)𝑇𝑇2

𝑇𝑇2
), 𝑎𝑎2 = (2𝐼𝐼+𝑐𝑐𝐻𝐻(𝑛𝑛)𝑇𝑇

𝑇𝑇2
) and 𝑎𝑎3 = ( 𝐼𝐼

𝑇𝑇2
), respectively. 

 

 
According to the equations derived above, one of the most challenges is to estimate unknown 

impedances in the human dynamic model while performing flexion or extension. Then, to address 
this challenge, it becomes necessary to strategically estimate model-based dynamic force specifically 
related to intrinsic muscular and gravitational forces. 
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2.3 Real-Time Force Control for the Robotic CPM System 
 

A conceptual control block diagram of the robot-assisted elbow rehabilitation system can be 
demonstrated in Figure 3. This was designed based on the studies by Neranon and his colleagues 
[16–19]. The ROS system is running on a host computer and serves as robotic control-based data 
processing, in which position-based force control [18,19,29] was adopted to deal with the 
unconstrained moving path of the assistant robot. This type of control is composed of two important 
control loops, which refer to the inner PID position control and outer PI force control systems as 
suggested by Neranon [16,29]. In the meantime, the control algorithm is directly modified by a pre-
defined trajectory, simultaneously to update a new point of the robot’s moving path.  
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Fig. 3. Control block diagram of the CPM robot system 

 
The robotic control system for elbow rehabilitation, as shown in Figure 3, was initially inspired by 

the work conducted by Neranon and collaborators [16-19]. To ensure smooth human-robot 
interaction, the system adopts position-based force control. This control strategy consists of two 
loops: an inner loop for PID position control and an outer loop utilizing PI control for managing forces 
during operation. It operates via the ROS system on a host computer, handling both robotic control 
and data processing aspects. ROS provides an array of packages and tools facilitating seamless 
communication between sensors and actuators.  

Additionally, it offers a visual interface, enhancing the system's real-time monitoring capabilities. 
The system employs a Dynamixel MX-106 smart servo actuator known for its precise velocity control. 
This actuator interfaces with ROS, allowing PID control implementation. Operating at a 20Hz sampling 
rate, it delivers a maximum power of around 90 Watts and offers a stall torque of 10 Nm. Real-time 
collection of human-applied force is facilitated by an ATI Mini40 force/torque sensor, communicating 
with ROS via TCP/IP at 1000Hz. To estimate muscle force using sEMG signals, data is gathered at a 
fitting 200 Hz sampling rate through an MYO armband containing 8-channel sEMG sensors. Ensuring 
safety, the system includes emergency stop buttons. These buttons allow external devices to trigger 
context-based safety stops swiftly in emergency situations. 

The next section will describe how to apply machine learning in a historical-data-based algorithm 
computation that can provide more accuracy of predicted outcomes. The estimation of model-based 
dynamic force in HMI can be accomplished by using Machine Learning (ML) [30,31], whereas in this 
context, sEMG [32] serves as a promising approach for predicting these internal forces. Due to the 
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complexity of the sEMG investigation in human muscles, the Ridge regression model [33,34], Artificial 
Neuron Network (ANN) [24,35,36] and Support Vector Machine (SVM) approaches [24,37] were 
utilized in this study.  These will be fully detailed in Section III. These supervised learning algorithms 
are capable of facilitating the robotic system which can completely compensate for gravity and 
dynamic intrinsic muscular forces to produce the required tracking accuracy of the voluntary resistant 
effort in real-time HRI. 
 
3. Development of Machine Learning Model Approaches Used in Human Muscle Force Estimation 
 

As extensively reviewed, there are several research studies on sEMG-based force estimation 
approaches using different algorithm models such as Ridge regression model, ANN and SVM 
approaches. Technically, there are three main steps [38] in the machine learning process used for 
sEMG-based force estimation, namely data collection, data preprocessing, and regression model and 
hyperparameters tuning method [39]. Details of each step are as follows. 
 
3.1 Data Collection System 
 
 There are three different types of relevant data used in this study i.e. 1) eight channels of sEMG 
signals captured from the human arm muscles, 2) acting force applied by a patient, and 3) angular 
positions of the CPM test rig. The sEMG and force signals were synchronously detected at 200 Hz, 
whereas the rotational angle parameter was measured at the lower rate of 20 Hz. The experimental 
apparatus was set up, as depicted in Figure 4, and the research study was strictly conducted according 
to the guidelines of the Declaration of Helsinki [22].  

A total of twenty healthy participants, consisting of 10 males and 10 females, were involved in 
the CPM forearm therapy test. It ensured that the test results were statistically significant as 
suggested by a set of pilot studies. All subjects had to become familiar with the test rig with 5 
repetition sets to avoid the effects of human learning. To identify relevant internal forces, each 
participant was then instructed to perform all assigned tasks without any voluntary effort at all times. 
Pulling, pushing, twisting or bending the handle was not allowed. Initially, the human subjects were 
seated in comfortable positions and placed the forearm and elbow as the arm supporter as depicted 
in Figure 4(a). Figure 4(b) depicts the positions of the electrode channels.  

 

 
(a)      (b) 

Fig. 4. (a) The experimental setup for the robot-assisted CPM rehabilitation 
(b) the electrode positions of the eight channels of sEMG signals 
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In Figure 4(b), the electrode channels used were channels 3-6, which were placed on the biceps 
brachii muscles, and channels 1, 2, 7, and 8, which measured sEMG signals from the triceps brachii 
muscles. Once the timer trigger was activated, the CPM robot moved the human forearm at a 
constant angular velocity of 3 rpm. It started from the initial position of 0 degrees and moved towards 
the target position of 90 degrees. During the test cycle, we monitored and recorded a set of 
approximately 100,000 raw data samples in real-time. These samples were then divided into two 
main groups for the machine learning process. The first group, called the in-sample group, consisted 
of 80% of the data and was used for algorithm training and development. The second group, called 
the out-sample group, comprised 20% of the data and was used to evaluate the performance of the 
estimated algorithms. 
 
3.2 Preprocessing Process 

 
After gathering the relevant data, it becomes necessary to employ data mining techniques to 

transform all acquired information into desirable formats. In accordance with the feature extraction 
procedure [38], [40], the commonly used and highly regarded methods for estimating force based on 
sEMG signals [21], [32] are recommended, namely root mean square (RMS) and mean absolute value 
(MAV) [41]. To identify the selected features that significantly impact the performance of the model 
fitting, it is crucial to apply the statistical chi-square method. This method allows for the examination 
of significant differences among the relevant parameters obtained from a random sample. 
 
3.2.1 First preliminary: feature scoring analysis 
  
Consequently, the first preliminary has been carried out to identify whether each input feature is 
chiefly correlated to the target feature, namely applied force, or not. The feature scoring technique 
was employed to evaluate the comparisons among 8 RMS features, 8 MAV features derived from the 
sEMG signals, and an angular position feature in relation to the force feature. The technique utilizes 
statistical measures to assess the correlation between input and output parameters, making it 
valuable for force prediction. The results of the feature scoring technique, which are presented in 
Table 1, demonstrate the calculated scores.  
 The test results in Table 1 clearly indicate two distinct categories. The first group consists of 
selected features with high-rating scales, exceeding 2,300. These selected features include position 
features, the RMS and MAV features derived from channels 3, 4, 5, and 6 of the sEMG signals. On the 
other hand, the second group represents an unselected set of features from channels 1, 2, 7, and 8, 
with significantly lower rating scores. Notably, the significant electrodes are positioned directly on 
the biceps brachii muscles in an array configuration. To further reduce data variance, the next step 
involves implementing feature scaling techniques such as normalization and standardization. This 
ensures that the magnitudes of the selected features are scaled to the same range, resulting in 
improved performance of the fitting model. 
 
 
 
 
 
 
 
 



Journal of Advanced Research in Applied Mechanics 
Volume 124, Issue 1 (2024) 81-98 

 

90 
 

Table 1   
The comparative results of feature scoring with the chi-square method 
Descriptions Features Scores 
Selected Features Position 

RMS 5 
MAV 5 
RMS 6 
MAV 6 
RMS 4 
MAV 4 
RMS 3 
MAV 3 

621505.52 
8778.80 
7826.42 
6194.17 
5246.69 
4939.93 
4008.60 
3211.43 
2395.62 

Unselected Features RMS 7 
MAV 7 
RMS 2 
RMS 1 
MAV 2 
MAV 1 
RMS 8 
MAV 8 

604.98 
560.56 
166.80 
128.36 
128.00 
80.13 
40.29 
27.62 

 
3.3 Model Selection and Hyperparameter Tuning 
 

The development of machine learning algorithms involves constructing appropriate 
mathematical models to accurately predict the target variables. This process encloses three key 
procedures: training, validation, and testing. In this research, the regression model initially used was 
the Ridge polynomial model. The Ridge model is a method addressing multi-collinearity, which occurs 
when there are high intercorrelations among input variables in a multiple regression model. By 
employing this model, the researcher can effectively determine the optimal utilization of each input 
parameter for accurate predictions. The algorithm, derived from the linear Ridge model, is capable 
of predicting non-linear data. It offers advantages such as coefficient shrinkage, reduced model 
complexity, and decreased training and testing time. The pipelined technique was utilized to 
integrate the algorithm with the polynomial feature generation method, ensuring the assessment of 
dataset quality and distribution. 
 
3.3.1 Second preliminary: comparative performance analysis of model fitting tools using Ridge 
polynomial model 
 

The test involved utilizing the Ridge polynomial model to compare the performance of different 
model fitting tools. The normalization process was performed to reduce the range of the data to a 
fixed range, typically between 0 and 1 (or -1 to 1). It is particularly effective when the data distribution 
is non-Gaussian or when the standard deviation is small. This is normally useful when features have 
different scales and units. The normalization process follows a specific equation. 

 

. (6) 

 
Standardization or Z-score normalization involves rescaling the dataset’s feature to have the 

properties of a Gaussian distribution, where  and  are the mean and its corresponding standard 
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deviation, respectively. Standardization transforms data to have a mean of 0 and a standard deviation 
of 1. It can be calculated as follows: 

 

 (7) 
 
Hence, the tests were carried out and categorized into 3 groups as follows: (1) non-scaling feature 

or without normalising data, (2) normalization-based feature scaling, and (3) standardization-based 
feature scaling. The tests were repeatedly undertaken under several window sizes of 50, 100 and 150 
samples, respectively. 

A series of statistical forecasting tests were conducted under various preprocessing scenarios, 
and the results are presented in Table 2. The performance of the machine learning model in fitting 
the dataset was assessed based on the RMSE, with a lower magnitude indicating better performance. 
The results indicate that employing standardization-based feature scaling in conjunction with the 
Ridge polynomial model consistently yielded lower RMSE values, approximately 0.33 N, across all 
window sizes. Therefore, this preprocessing approach will be utilized in the subsequent experiments.  

The Ridge regression model was initially employed and tuned by adjusting the feature weights. 
However, after an extensive review of muscle force estimation using sEMG signals, it became evident 
that Artificial Neural Networks (ANN) and Support Vector Machines (SVM) have been widely 
recommended by numerous researchers [2,24,37].  
 

Table 2 
The comparison of the preprocessing results using the Ridge-Polynomial model 

Window size Case 1: Non-scaling Feature Case 2: Standardization Case 3: Normalization 
Selected Feature Selected Feature Selected Feature 
Train Test Train Test Train Test 
RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD RMSE SD 

50 
100 
150 

0.568 
0.535 
0.511 

0.019 
0.019 
0.022 

0.683 
0.673 
0.671 

0.070 
0.045 
0.055 

0.341 
0.337 
0.334 

0.011 
0.013 
0.011 

0.380 
0.386 
0.393 

0.034 
0.030 
0.019 

0.452 
0.439 
0.437 

0.023 
0.020 
0.019 

0.525 
0.559 
0.571 

0.063 
0.044 
0.045 

 
The model selection process involves choosing a suitable machine learning model that captures 

the relationship between the input and output training dataset. However, one challenge is effectively 
using different models with hyperparameters. For example, in SVM, exploring different kernels such 
as linear, nonlinear, polynomial, Gaussian, and Radial Basis Function (RBF) is crucial. The model 
parameter configuration greatly influences the predictive performance of the data. 

Optimizing or tuning hyperparameters in machine learning tasks plays a vital role in controlling 
the learning process to achieve an optimized model. Common techniques for hyperparameter 
optimization include grid search, random search, and Bayesian optimization [42]. However, grid 
search has limitations in terms of computational resources and processing time, while random search 
may not always yield the best optimization for each model. To overcome these limitations, this 
research successfully implemented a Bayesian optimizer using the scikit-optimizer, as recommended 
by previous researchers [9–11].  

 
3.3.2 Third preliminary: optimization of SVM and ANN models using Bayesian optimizer 

 
The third-preliminary tests were conducted to optimize SVM and ANN models using a Bayesian 

optimizer. The SVM models utilized various kernel functions including linear, nonlinear, polynomial, 
RBF, and sigmoid. The same set of sEMG signals and muscle force variables were repeatedly trained 
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to compare the forecasting performance of SVM models under different kernel conditions. By 
employing the optimizer to identify the global optimization point, it was determined that the RBF 
kernel function yielded the best performance, which aligns with the findings of Tanausavapol et al., 
[24]. This optimized RBF kernel will be further used in the subsequent tests in Session 4. 
 Optimizing the ANN model involves several steps, including (1) determining the optimal number 
of hidden layers, (2) selecting an appropriate activation function, and (3) choosing a suitable solver 
for weight optimization. The performance of the model is evaluated by comparing its predictive 
capabilities. This comparison is typically based on RMSE values, with lower variation indicating better 
performance in predicting force.The number of hidden layers in the ANN model was adjusted within 
the range of one to four layers, based on suggestions from various researchers [3,12,13]. Four 
different activation functions were tested, including (1) the identity function (no operation), (2) the 
logistic sigmoid function, (3) the hyperbolic tangent function, and (4) the rectified linear unit function. 
The main solvers used in the tests were quasi-Newton methods, stochastic gradient descent, and a 
stochastic gradient-based optimizer, which is typically employed in large datasets [14].  

The results of optimizing the ANN model using the Bayesian optimizer are shown in Table 3. The 
RMSE values indicate the accuracy of estimating muscle force based on sEMG signals. The results 
demonstrate that the RMSE values are consistently close, ranging from approximately 0.329 to 0.338 
N for data training and from 0.365 to 0.368 N for data testing. This confirms that all models accurately 
estimate muscle forces based on sEMG signals. Upon analysing the model tuning time, it was 
observed that the single-hidden layer configuration outperformed the multi-hidden layer 
configurations. The tuning process for this configuration took only 22 minutes. Consequently, the 
'Adam’ solver and 'logistic' activation functions were selected for the ANN model. During model 
testing, the optimized ANN model achieved an RMSE of 0.366 N, with a standard deviation of 0.031 
N. These optimized ANN and SVM models were then used in the subsequent experiments outlined 
in the following session. 

 
Table 3 
The results of comparing ANN parameters using hyperparameter tuning 
ANN parameters 1 Hidden layer size 2 Hidden layer size 3 Hidden layer size 
Node Sizes 
Activation 
Solver 
Alpha 
Batch Size 
Learning Rate 
Learning Rate Init 
Max iterations 
Tolerance 

95 
logistic 
adam 
1.00E-03  
auto 
constant 
1.00E-03  
2000 
1.00E-04  

11, 78 
logistic 
adam 
1.00E-03  
auto 
constant 
1.00E-03  
2000 
1.00E-04 

55, 56, 65 
logistic 
adam 
1.00E-03  
auto 
constant 
1.00E-03  
2000 
1.00E-04 

Tuning Time (minute) 
Train: RMSE, SD (N) 
Test: RMSE, SD (N) 

22 
0.338, 0.028 
0.366, 0.031 

38 
0.338, 0.031 
0.368, 0.037 

44 
0.329, 0.015 
0.365, 0.031 

 
3.3.3 Fourth preliminary: prediction accuracy performance of optimized models under various window 
sizes 
 
 According to Baig et al., [43], accurately predicting force based on sEMG is challenging due to the 
dynamic nature of the human environment. Using a fixed window size for data stream mining may 
not yield precise results, as it depends on specific models and system characteristics. Choosing an 
appropriate window size is crucial to avoid inaccurate estimations and maintain predictive 
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performance. A set of experiments were conducted to determine the appropriate window size for 
Ridge Polynomial, ANN, and SVM models in sEMG-based force estimation. The tests involved the 
same group of participants performing HMI tasks with varying sample sizes of 10, 50, 100, 150, 200, 
and 250. 
 Hyperparameter tuning was performed for all cases, and the qualitative performance of the 
model predictions was evaluated based on the RMSE values. A lower RMSE value indicates improved 
prediction accuracy. Table 4 presents the prediction accuracy performance of the optimized models 
(Ridge Polynomial, SVM, and ANN) under various window sizes. The results indicate that the choice 
of window size does not significantly impact the prediction capabilities, as the RMSE values are 
relatively similar. The RMSE values for the Ridge Polynomial, SVM, and ANN models range from 0.38 
to 0.40 N, 0.35 to 0.37 N, and 0.34 to 0.36 N, respectively.  
 All optimized models, with their respective hyperparameter tuning, demonstrate acceptable 
accuracy for sEMG-based force estimation and provide effective compensation for gravity and 
intrinsic muscular force. Upon careful observation, it can be concluded that the ANN model exhibits 
better overall performance and slightly outperforms the SVM and Ridge Polynomial techniques. 
Additionally, the SVM model exhibited certain disadvantages in terms of longer training and testing 
durations, ranging from 32 to 168 seconds for training and 24 to 28 seconds for testing. The window 
size of 10 resulted in the longest duration.  
 
Table 4 
The comparison results of machine learning optimize models under different window sizes of datasets  

ML 
Algorithm 

Window size 
10 50 100 150 200 250 

Ridge-Polynomial Train Test Train Test Train Test Train Test Train Test Train Test 
RMSE (N) 0.356 0.377 0.341 0.380 0.337 0.387 0.334 0.397 0.331 0.400 0.329 0.400 
SD (N) 0.009 0.029 0.011 0.034 0.013 0.030 0.011 0.012 0.009 0.014 0.009 0.018 
*Time (second) 0.045 0.025 0.046 0.027 0.048 0.031 0.045 0.026 0.044 0.025 0.052 0.027 
Support Vector 
Machine 

Train Test Train Test Train Test Train Test Train Test Train Test 

RMSE (N) 0.319 0.347 0.314 0.356 0.300 0.373 0.297 0.361 0.304 0.367 0.308 0.371 
SD (N) 0.014 0.040 0.014 0.035 0.013 0.019 0.013 0.020 0.011 0.013 0.010 0.018 
*Time (second) 168.1 26.38 35.73 28.64 44.16 28.05 32.81 26.54 33.36 25.72 31.66 24.38 
Neural Network Train Test Train Test Train Test Train Test Train Test Train Test 
RMSE (N) 0.325 0.344 0.323 0.353 0.318 0.356 0.318 0.348 0.321 0.348 0.317 0.354 
SD (N) 0.014 0.047 0.015 0.041 0.013 0.029 0.011 0.030 0.012 0.032 0.013 0.031 
*Time (second) 1.280 0.052 2.699 0.045 1.204 0.017 0.751 0.007 0.948 0.005 0.698 0.007 
*Note: The train time is second per 40,000 samples and the predict time is second per 10,000 samples. 
 

 On the other hand, the training and testing durations for the Ridge Polynomial model fluctuated 
slightly, ranging from 0.044 to 0.052 seconds and 0.025 to 0.031 seconds, respectively. In contrast, 
the window sizes had a significant impact on the training and testing durations in the ANN model. 
Smaller window sizes corresponded to quicker processing times. The best performance, as 
determined by the ANN model, was achieved with a window size of 200. It yielded an RMSE of 0.321 
N (with a corresponding standard deviation of 0.012) for training and 0.345 N (with an SD of 0.032) 
for testing.  
 In summary, the optimized ANN model, which exhibited superior performance in sEMG-based 
force estimation, was employed in a substantive experiment. The model's accuracy, with low RMSE 
values for training and testing, makes it a reliable choice for the experiment's objectives. 
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4. Substantive results and discussion 
4.1 Substantive Experiment: Comparison of Novel Technique with Conventional Method for Robot-
Assisted Upper-Limb Rehabilitation 
  
 To simulate a real-world upper-limb rehabilitation scenario, a substantive set of robot-assisted 
rehabilitation tests was conducted with the same group of participants. The ANN model was 
employed to facilitate the CPM robot with the compensation of gravity and time-varying intrinsic 
muscular force. The parameters for optimizing the ANN were configured as follows: a single hidden 
layer with 11 nodes, the logistic activation function, and the Adam optimizer as the solver. The 
objective was to measure the net force exerted on the test rig while the participant maintained a 
state of rest without applying any voluntary effort throughout the CPM process ( ).  
 In these tests, participants were familiarized with the test rig to minimize the influence of human 
learning factors. Each subject had to place the forearm and elbow at the arm supporter. It can be 
claimed that in the absence of voluntary force exerted on the test rig, the system should accurately 
measure the total external force, aiming for a value as close to zero as possible. Hence, the 
performance of the system's natural response was evaluated by analysing the variation in calculated 
voluntary forces acting on the test rig. A lower variation in calculated voluntary forces indicated a 
better performance of the system. 
 Figure 5 presents a comparison of the results obtained by employing only conventional gravity 
compensation and our novel technique, which integrates both intrinsic muscular force and gravity 
compensation. The performance of the system is indicated by the close approximation of calculated 
forces to zero throughout the process, aligning with the expected physical behaviour of patients who 
exert no voluntary power. The findings demonstrate that our technique yields a lower variation in 
calculated voluntary forces compared to the conventional method. Notably, our technique achieves 
an average RMSE of 0.43 N, surpassing the performance of the conventional method with an average 
RMSE of 1.48 N.   
 

 
Fig. 5. The compared results between the conventional 
gravity compensation and our novel technique using 
gravity and intrinsic muscular force compensation when 
patients exert no voluntary power 
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 A practical real experiment was further conducted to validate the effectiveness of the robotic-
human-like controller with high-accuracy measurement of voluntary forces for CPM. The same group 
of participants were instructed to simulate the experience of intense pain during CPM therapy by 
applying voluntary resistant force against the robotic movement.   Figure 6 depicts the behaviour of 
the CPM robotic movement throughout the treatment process. It can be clearly seen that in the 
absence of voluntary resistance, the single rotational DOF results in a consistent circular-path 
movement at a constant speed of 3 rpm. Once the participants simulate the experience of pain, they 
generate voluntary resistant force. In real-time response, the CPM robot promptly adjusts the motion 
speed, aiming to mimic natural behavioural responses. The graph demonstrates a decrease in speed 
towards zero while the resistant force steadily increases during severe pain.  
 

 
Fig. 6. The natural behavioral response of the developed 
CPM robot with prompt adjustments of lower speed of 
motion in response to the voluntary resistant exertion 

  
 In cases where the applied voluntary force exceeds a certain threshold, this adjustment prevents 
the occurrence of potential physical injuries by causing the CPM bar to move backwards, away from 
the participant. Once the situation returns to normal and the applied voluntary force approaches 
zero, the CPM system returns to its regular state and resumes manipulating the human forearm. It 
still maintains a constant angular velocity of 3 rpm to complete a CPM therapy cycle. 
 In summary, the ANN model successfully compensated for gravity and intrinsic muscular force in 
a robot-assisted rehabilitation scenario. It achieved accurate measurements of net force and 
demonstrated superior performance compared to conventional methods. The system effectively 
adjusted motion speed in response to voluntary resistance, providing high-accuracy measurement 
and appropriate adjustments during therapy. Nevertheless, when implemented in real-world 
scenarios, the device exhibits some limitations. Specifically, its response to voluntary resistance may 
require additional fine-tuning to adapt to the spectrum of patient effort levels. Moreover, when 
operational with real patients, the machine learning component should iteratively learn to remodel 
accurately based on real-time interactions. 
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5. Conclusion 
  
In conclusion, this research contributes to the development of a robotic-human-like controller with 
high-accuracy measurement of voluntary forces for CPM. This addresses a significant research gap 
related to natural behavioural responses in robotic CPM rehabilitation. The developed system 
effectively compensates for irrelevant forces, such as gravity and intrinsic muscular force, acting on 
the test rig. Careful preprocessing and model optimization techniques were applied, showcasing that 
the ANN method slightly outperforms others, enhancing accuracy and precision while boasting 
quicker testing times. The substantial findings also underscore a noteworthy comparison between 
traditional gravity compensation and our innovative approach, which integrates both intrinsic 
muscular force and gravity compensation. Notably, our method yields calculated voluntary forces 
that closely align with actual values, surpassing the accuracy of conventional methods. This allows 
the CPM robot to accurately track and respond to the voluntary resistant effort in real-time, even in 
the presence of intense pain during the therapy process. The developed control system ensures 
compliance with the patient's voluntary resistant force, enhancing the overall effectiveness and 
safety of the CPM rehabilitation process. 
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