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Among the top 10 leading causes of mortality, tuberculosis (TB) is a chronic lung illness 
caused by a bacterial infection. Due to its efficiency and performance, using deep 
learning technology with FPGA as an accelerator has become a standard application in 
this work. However, considering the vast amount of data collected for medical 
diagnosis, the average inference speed is inadequate. In this scenario, the FPGA speeds 
the deep learning inference process enabling the real-time deployment of TB 
classification with low latency. This paper summarizes the findings of model 
deployment across various computing devices in inferencing deep learning technology 
with FPGA. The study includes model performance evaluation, throughput, and latency 
comparison with different batch sizes to the extent of expected delay for real-world 
deployment. The result concludes that FPGA is the most suitable to act as a deep 
learning inference accelerator with a high throughput-to-latency ratio and fast parallel 
inference. The FPGA inferencing demonstrated an increment of 21.8% in throughput 
while maintaining a 31% lower latency than GPU inferencing and 6x more energy 
efficiency. The proposed inferencing also delivered over 90% accuracy and selectivity to 
detect and localize the TB. 
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1. Introduction 

 
Tuberculosis (TB) is a significant public health concern in some parts, particularly in 

underdeveloped nations. While most people have tuberculosis in their lungs, others may have an 
infection in other bodily organs [1]. As a result, diagnosing tuberculosis is significantly more complex 
than other infectious illnesses, necessitating many tests [2, 3]. Significant intra- and inter-observer 
variability in chest X-ray (CXR) readings, on the other hand, might result in over-or under-diagnosis 
of TB [4, 5]. Although the CXR is an effective tool for tuberculosis screening, a suspected individual 
requires clinical, biochemical, and genetic studies before diagnosing and administering treatments. 
CXR is a primary tool for triaging and screening for tuberculosis as part of the World Health 
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Organization's (WHO) systematic screening strategy to ensure early and accurate diagnosis for all 
people with tuberculosis due to its relatively high sensitivity, depending on how the CXR is 
interpreted [6]. 

Deep learning has made it easier for convolutional neural networks (CNNs) to outperform other 
recognition algorithms regarding image-based classification and recognition problems. CNN is the 
best choice for complex medical problem solving because it can automatically find valuable features 
from the data itself. In the past, CAD systems with deep-learning algorithms have been very good at 
detecting medical diseases. They have generated a wide range of high-quality diagnostic solutions 
while highlighting suspicious features [7].  

FPGAs have gained favor as hardware accelerators for improving the computation efficiency of 
CNN models due to recent advancements in FPGA technology. Current FPGAs have been reported to 
have performance equivalent to GPUs, with 9.2 TFLOPS for the Intel Stratix 10 FPGA and up to 40 
TFLOPS for the Intel Agilex FPGA [8]. Additionally, the efficiency of data transfer between the FPGA 
and external memory is frequently the most significant shortcoming of FPGA-based accelerators. It 
has been improved by integrating High Bandwidth Memory (HBM2) into the FPGA die in the same 
package, such as the Intel Stratix 10 MX FPGA and Xilinx Virtex UltraScale+ with HBM2. As a result, 
academia and business have shown considerable interest in FPGA-based CNN accelerators. PipeCNN 
[9], hls4ml [10] from Fermilab, and Intel's OpenVINO toolkit [11] are successful examples. The deep 
neural network has demonstrated its efficacy in medical fields such as tuberculosis [12, 13]. Using an 
FPGA in conjunction with a deep neural network accelerates the complicated computations occurring 
within the neurons. Apart from its quick calculation speed, the FPGA's adequate computing power 
and low latency induction significantly benefit from low latency and high throughput [14]. 

This work aims to demonstrate the performances of accelerated deep learning using FPGA 
inference for tuberculosis classification across many devices using Intel DevCloud for the Edge 
Computing, more precisely, an FPGA. The inference platforms include the Intel® Xeon® Gold 6258R 
and the Intel® UHD Graphics 620. Each device was chosen because of its outstanding performance in 
its specific architecture. The accuracy of model inference across many devices will be evaluated using 
the same batch of photos and their associated accuracy, specificity, sensitivity, and inference time 
per image. This value indicates which device processes data quicker in synchronous mode. The 
second section deploys the model asynchronously over several machines to compute their 
processing power in a single second and the resulting delay. Model reading and loading times are 
supplied to help visualize the expected delay while distributing a model across devices. 
 
2. Background Study 
2.1 Deep Learning in Medical Diagnosis 
 

One of the most challenging challenges in medical image processing is providing vital information 
about the organs' shapes and sizes. There is no deep learning algorithm capable of doing this task 
flawlessly. CNN is a subset of deep learning algorithms most frequently used to analyze visual data. 
A CNN's structure consists of a single input layer, a single output layer, and numerous hidden layers, 
as shown in Figure 1. Convolutional, pooling, and wholly linked layers are examples of hidden layers. 
Convolutional layers collect critical information from pictures and convert it to a feature map; pooling 
layers lower the input dimension; fully connected levels connect every neuron in one layer to every 
neuron in another, producing classifications. 

A convolutional layer's fundamental component is the convolution kernels, a collection of 
matrices representing specific target patterns within the input picture. The example in Figure 2 uses 
a black and white image with an X in the center as the input image. While the two slashes and one 
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cross are the specific patterns we are looking for, these features are decomposed into convolution 
kernels. After multiplying the original image by the convolution kernels and pooling, we may obtain 
three outputs corresponding to various regions of the original image. Thus, CNN extracts essential 
aspects from the input image and judgments based on these retrieved features. CNN has been 
applied to feature classification in various fields and consistently outperforms people and other 
algorithms in classification accuracy. When CNN is used for medical diagnosis, medical pictures serve 
as the network's input, and the network generates models that enable the identification of specific 
diseases. Thus, physicians may use CNN to double-check their diagnosis results. 

Additionally, deep learning is computationally costly. Since neural networks must typically deal 
with big datasets with sophisticated layer designs, training a model from the start might take many 
weeks. In contrast, standard algorithms usually require only a few minutes, hours, or days. 
Additionally, this degree of data processing is very hardware-dependent since it necessitates parallel 
processing capability. CNN provides one answer in the form of pooling layers, which lower the 
dimensionality of the parameters and significantly reduce the amount of data. Despite the difficulties 
described above, deep learning outperforms other learning algorithms if the amount of data 
collected reaches a particular threshold. Algorithms are trained to make choices by examining data 
sets and commenting on matching events. This feature enables the machine to do far more 
complicated tasks and reduces repetitive labor.  

 

 
Fig. 1. CNN Architecture 

 

 
Fig. 2. Example of convolution kernels 
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2.2 Deep Learning in Medical Diagnosis 
 
The OpenCL heterogeneous platform based on FPGA employs a heterogeneous mode in which 

the CPU acts as the host, and the FPGA acts as the device. The FPGA acts as a parallel acceleration 
device, significantly increasing the processing capability of the CPU. The network creation process 
consists of four steps: reading the network structure file, reading the weight file, defining the 
parameters of each network layer, assigning storage space, and reading the data configuration file. 
When the FPGA-side kernel program is ready to process this data, it will read them in batches or all 
at once from global memory. After the FPGA processes this data, it writes them back to the off-chip 
global memory, either at once or in batches. Finally, the host-side application will read the processed 
data from the off-chip global memory to the host-side storage. The CPU should execute specific 
processes with low parallelism. A balanced weight pruning strategy for hardware efficiency design is 
required to eliminate local imbalances and maximize resource consumption [15]. Then, using the 
same calculation method, propagate forward to obtain the output of neurons in each layer, and 
lastly, get the production of neurons in all output layers. The output feature map is calculated using 
the maximum or average value of the input feature map data in the local perception window. As a 
result, if the FPGA is assigned an excessive number of tasks, the proportion of work performed by 
the host and FPGA devices in the acceleration system must be modified. 

 
3. Experimental Setup  

 
This section discusses the dataset, model, model conversion, inference, and hardware computing 

devices as the platform for FPGA-based inferencing utilized in this work.  
 

3.1 Dataset and Model 
3.1.1 National library of medicine dataset 

The TB classification challenge was solved using a publicly accessible dataset. The National Library 
of Medicine (NLM) in the United States [16] has made two lung X-ray datasets public: the 
Montgomery County (MC) and Shenzhen, China (CHN) datasets. Both databases contain 138 and 660 
posterior-anterior (PA) chest X-ray images. The photos in the MC database had a resolution of 4,020 
x 4.892 or 4,892 x 4.020 pixels, but the photographs in the CHN database had a resolution of varied 
but about 3000 x 3000 pixels. Out of 138 chest X-ray pictures in the MC database, 58 were collected 
from various tuberculosis patients, and 80 were taken from healthy participants. Three hundred 
thirty-six (336) photos were collected from multiple tuberculosis patients in the CHN database, 
whereas 324 images were taken from everyday people. As a result, this NLM database contains 406 
healthy and 394 tuberculosis-infected X-ray pictures.  

 
3.1.2 ResNet-50 binary 

ResNet-50 is a deep learning model for image classification that allows applications to 
characterize a picture with a maximum error rate of 3.57% [17]. The model contains input, output, 
and hidden layers that define its underlying method via a network of linked neurons. Information is 
transmitted from one layer to the next, as shown in Figure 3. FPGAs are perfectly positioned to 
incorporate new research in deep learning architectures and models into hardware without requiring 
a new silicon spin. Intel has significantly refined the ResNet-50 model for low-bit (FP11) precision 
inferencing, allowing vision applications to operate more efficiently. Additionally, this new model's 
hardware-level optimization and numerous software-level improvements allow smooth application 
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integration while greatly enhancing performance. The ResNet-50 model consists of 150,528 input 
neurons, 1,000 output neurons, and 50 layers for 3,8 billion operations. With recent enhancements 
to the OpenVINO SDK, the Intel PAC with Arria 10 FPGA can run the ResNet-50 model at higher 
performance than previously reported. 
 

 
Fig. 3. ResNet-50 Architecture 

 
3.2 Model Conversion and Inference 

 
As shown in Figure 4, the Model Optimizer and Inference Engine are the two components of Open 

Visual Inference and Neural Network Optimization (OpenVINO). The OpenVINO toolbox distributes 
the workload across Intel devices to optimize performance. The Model Optimizer is a command-line, 
cross-platform utility that helps transition the training and deployment environment on a target 
inference engine. A network model trained with a supported framework serves as the Model 
Optimizer's input. It executes static model analysis and optimizes the input of deep learning models 
for optimal execution on endpoint target devices, which can be a CPU, GPU, FPGA, or a mix thereof 
(HETERO). The result of the Model Optimizer is an Intermediate Representation (IR) that may be 
utilized as input by the specified target Inference Engine. The Inference Engine is a C++ library 
comprising a set of C++ classes that infer data (images) to provide a result. The C++ library offers an 
API for reading IR, setting input and output formats, and executing models on devices. In our 
research, the objective of the Deployment and Inference phase is to deploy the trained model on an 
FPGA to speed up the classification process. 
 

 
Fig. 4. Deep learning with FPGA inferencing 
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3.3 Computing Devices for Inference 
 
Table 1 below illustrates the computing device's name and abbreviation used in this section. Their 

respective device type is shown together to understand the device type better. The alias of each 
computing device will be brought into the discussion in the next section. 

 
Table 1 
Computing device and abbreviation. 

Computing Device Alias Type 

Intel® Xeon® Gold 6230R XEON CPU 
Intel® UHD Graphics 620 GPU GPU 
Intel® Arria® 10 GX 1150 FPGA with Mustang-F100-A10 FPGA FPGA 

 
4. Result, Comparison, and Analysis 

 
We configured the Intel PAC on a Dell Precision 7920 Tower Workstation with an Intel Xeon Gold 

6230R processor operating at 2.10 GHz and CentOS Linux (release 7.6). We compare the performance 
of FPGAs to that of CPUs, highlighting both devices' throughput, latency, energy efficiency, and model 
performance. 

 
4.1 Throughput and Latency 
 

Throughput is the rate at which a set of images are processed per second. This unit is denoted as 
frames per second (FPS). One or more images can be processed in batches, often known as batch 
size. Figure 5 depicts the throughput of the CPU, FPGA, and batch sizes of 1 and 16 for various CPU 
configurations, i.e., thread count. As stated, the FPGA performance is consistent regardless of the 
number of threads for a particular batch size, suggesting that the FPGA delivers predictable 
performance. The FPGA also shows 21.8% more throughput than GPU at 64 thread count for a single 
batch. In contrast, as illustrated by the horizontal dashed lines, Both CPU and GPU surpass the FPGA 
at 9.7% and 3.8%, respectively, in FPS only when the batch size is 16 and the thread count is 64. In 
conclusion, increasing the number of CPU threads from 32 to 64 increases throughput by just 24.3%. 

The inference is another name for latency, which refers to the amount of time needed to process 
a request. A request in this context can have a batch size of 1 or 16, as shown in Figure 6. Compared 
to the CPU, the FPGA produces a lesser latency while processing with higher FPS. On batch inference, 
FPGA achieves a 0.6:1 throughput-to-latency trade-off compared to GPU, 0.3:1. 
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(a) 

 
(b) 

Fig. 5. Throughput comparisons (a) batch size of 1 (b) batch size of 16 

 
(a) 

 
(b) 

Fig. 6. Latency comparison (a) batch size of 1 (b) batch of 16 

 
4.2 Efficiency  

 
Performance efficiency is the throughput achieved, normalized by the power consumed. The 

price of this rather sublinear performance increase is reduced performance efficiency: by a factor of 
0.4, as in Figure 7(a). The measured system power of the CPU execution reached a maximum of 416 
W. With an estimated board power of 50W on the PAC, the FPGA achieves a much higher 
performance efficiency - a factor of 6x - compared to the CPU, with only a 20% increase in the server' 
power budget. 
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(a) 

 
(b) 

Fig. 7. (a) Energy Efficiency (b) Accuracy and specificity performance 

 
4.3 Performance 

 
Figure 7(b) shows the model performance evaluation on different computing devices. All the 

devices' performance evaluated is above 90% accuracy, indicating that the deployed model can 
classify the given tuberculosis images with above 90% of accurateness, with the GPU having a 1.2% 
and higher precision over the FPGA and CPU, respectively. The specificity shows how well the model 
can localize tuberculosis from the x-ray images. As shown in Figure 7(b), the FPGA inference can 
deliver nearly the same specificity performance of GPU with only 0.4% differences. Nevertheless, the 
performance differences are insignificant. The change in the model performance is a phenomenon 
obtained through the changes in the execution plugin when running inference on a different 
platform. The performance is expected to change when tested with other images. 

 
5. Discussion  

 
Based on the experiment's observation, FPGA inferencing offers several advantages, including 

high performance, low latency, and power efficiency. The hardware can be optimized specifically for 
deep learning computations, providing faster and more efficient inference than traditional CPUs or 
GPUs. Additionally, FPGAs can be customized to meet specific requirements, such as low latency or 
high throughput. However, FPGA inferencing has disadvantages, such as complexity, cost, and 
flexibility. The development of FPGA-based inference solutions can be more complex and costly, and 
updating the solution to accommodate new deep learning models or changes in requirements can 
take more work. Additionally, the transfer of large amounts of data to and from an FPGA can be 
slower, impacting overall performance. 
 
6. Conclusions 

 
This work describes the Intel Programmable Accelerator Card (PAC) with Arria 10 FPGA for deep 

learning inference. Incorporating the Intel PAC on an x86-based Dell Precision 7920 Tower 
Workstation enhances ResNet-50 performance compared to the previously available ResNet-50 
model. Specifically, we studied the implemented model's throughput, latency, and efficiency. While 
the quad-socket CPU arrangement produced 330 FPS at 0.79 FPS/Watt (a 60 percent efficiency drop 
compared to the dual-socket configuration), the FPGAs obtained 1,251 FPS at 6 FPS/Watt with a 20 
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percent power increase per PAC to the server's power budget. Ongoing hardware and software 
system stack enhancements are anticipated to increase these performance metrics. Overall, using 
FPGAs for deep learning inferencing can provide significant benefits. Still, it is essential to carefully 
consider the trade-offs and choose the right approach for a given use case. 
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