

Journal of Advanced Research in Applied Sciences and Engineering Technology 30, Issue 1 (2023) 115-131

115

Journal of Advanced Research in Applied

Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Toward Adaptive and Scalable Topology in Distributed SDN Controller

Virakwan Hai Kelian1,*, Mohd Nazri Mohd Warip1,3,*, R. Badlishah Ahmad1,3, Phaklen Ehkan1,3,
Fazrul Faiz Zakaria2,3, Mohd Zaizu Ilyas1,3

1 Advanced Computing, Centre of Excellence, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
2 Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
3 Faculty of Electronic Engineering Technology, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia

ARTICLE INFO ABSTRACT

Article history:
Received 6 October 2022
Received in revised form 14 December 2022
Accepted 16 February 2023
Available online 10 March 2023

The increasing need for automated networking platforms like the Internet of Things, as
well as network services like cloud computing, big data applications, wireless networks,
mobile Internet, and virtualization, has driven existing networks to their limitations.
Software-defined network (SDN) is a new modern programmable network architectural
technology that allows network administrators to control the entire network
consistently and logically centralized in software-based controllers and network devices
become just simple packet forwarding devices. The controller that is the network's
brain, is mostly based on the OpenFlow protocol and has distinct characteristics that
vary depending on the programming language. Its function is to control network traffic
and increase network resource efficiency. Therefore, selecting the right controllers and
monitoring their performance to increase resource usage and enhance network
performance metrics is required. For network performance metrics analysis, the study
proposes an implementation of SDN architecture utilizing an open-source OpenDaylight
(ODL) distributed SDN controller. The proposed work evaluates the deployment of
distributed SDN controller performance on three distinct customized network
topologies based on SDN architecture for node-to-node performance metrics such as
delay, throughput, packet loss, and bandwidth use. The experiments are conducted
using the Mininet emulation tool. Wireshark is used to collect and analyse packets in
real-time. The results obtained from the comparison of networks are presented to
provide useful guidelines for SDN research and deployment initiatives.

Keywords:

Distributed SDN controller;
OpenDaylight; Controller performance;
Scalability

1. Introduction

The networking sector is being challenged with a new paradigm, which some consider extremely
transformational. This new paradigm seeks to transform the way networks are developed, requiring
networks to be flexible, secure, and keep the quality of service while still complying with policies and
standards. Due to the network issues that need different solutions and intention to overcome the
limitations in the conventional network, Software-defined networking (SDN) is presented. The main

* Corresponding author.
E-mail address: virakwan@studentmail.unimap.edu.my, nazriwarip@unimap.edu.my

https://doi.org/10.37934/araset.30.1.115131

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

116

idea behind the SDN is the "Stanford Clean Slate Project" in the year 2007 [1]. The project's primary
objective is to develop a new architecture for business networks that is both simple to use and secure.

1.1 SDN Architecture

The architecture is the key component of the existence of SDN as, through the design, SDN is
claimed to be able to overcome the constraint in the traditional networks [2]. SDN architecture
separates the network into three (3) different layers data plane, control plane, and management
plane [3] as shown in Figure 1.

Fig. 1. SDN architecture

As indicated in Figure 1, there are two (2) basic characteristics of SDN architecture. The first is the

isolation of data and control plane which is derived from the telephone network system, and the
second is the integration of network intelligence in a centralized controller [4-5]. The network control
is done by a controller that must have connectivity with all nodes in the network.

1.1.1 Data plane

The Data plane layer or also known as the infrastructure layer consists of network devices such
as a physical switch or virtual switch, router, gateway, server, and access point [6]. Generally, this
layer allows device connectivity and data transfer [7]. The data plane consists of hardware devices
that are responsible to handle the traffic following the rules set by the control plane. It is responsible
for the same functions as it is in the conventional network to forward the data, but routing decisions
are excluded from this layer [8]. The connection between the data plane and the control plane can
be performed through OpenFlow protocol and Southbound application programming interfaces
(APIs) [9]. Southbound APIs are used to send the instructions and receive the information from the

Firewall

InternetOpenFlow Switch

SDN Controller

APP APP APP APP

Network Application

Northbound API

Controller AgentController Agent

Controller Agent Controller Agent

Data Plane

OpenFlow Switch

Data Plane

OpenFlow Switch

Data Plane

OpenFlow Switch

Data Plane

D
a

ta
 P

la
n

e
C

o
n

tr
o

ll
e
r

P
la

n
e

M
a
n

a
g

e
m

e
n

t
P

la
n

e

Southbound API

SDN Controller SDN Controller

Eastbound API Westbound API

Network Infrastructure

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

117

data plane to the controller [10]. As a result, SDN switches are composed primarily of three
components, the OpenFlow protocol, a flow table, and a secure channel. For each OpenFlow switch
securely connected to the controller, the interface is responsible to become a secure channel and a
flow table is used to process the packets that are sent through them [11-12].

1.1.2 Control plane

The control plane consists of a controller that manages the data plane devices and establishes
traffic flows according to network rules. All the decision routing in the OpenFlow switch will be
controlled by the SDN controller. The controller serves as the network brain for decision routing at
switches based on the OpenFlow protocol [13]. Meanwhile, the SDN controller is an application to
the centralized control point. Due to the architecture of SDN consisting of three (3) layers and the
control plane being the middle layer, the connection between the control plane and data plane is
through Southbound API. While the connection between the control plane and management plane
can be performed using Northbound API. The control plane can be implemented as a centralized
controller, or distributed controller and integrated both centralized and distributed known as hybrid
centralization only one controller manages the flow table of all SDN switches [14]. In contrast, for the
distributed controller deployment, the control plane may consist of many controllers that may
interact with one another through the Westbound and eastbound interfaces [15].

1.1.3 Management plane

The management plane or known as the application layer is at the top layer in the SDN
architecture [16]. This layer covered the software-related operations and handle security applications
such as network virtualization, mobility management, firewall, Intrusion Prevention Systems (IPS),
and Intrusion Detection Systems (IDS) [17]. This layer interacts with the control layer using
Northbound API [18-19].

1.2 Distributed Controllers

The first concepts of the controller were introduced to allow network administrators to set flow-
based policies for their networks [1]. Further in the year 2008, the OpenFlow protocol and a program
software were proposed which served as the beginning point for network programmability to
accomplish a range of control applications [20]. OpenFlow is the most popular SDN protocol that
implemented SDN communication standards for communication between the controller and other
networking devices [21]. In recent years, numerous OpenFlow controllers have been created and
made available for research and commercial use. These can be separated into two categories:
centralized controllers and distributed controllers [22]. Ryu and Floodlight are the most well-known
centralized SDN controllers [22]. However, a single physically or logically centralized controller to
perform forwarding nodes presents a major bottleneck in a large-scale network [23]. It is a single
point of failure that can cause the network to lose intelligence, become inefficient, experience
unexpectedly long delays due to the controller's distance from the switches, lack scalability support
for big SDN networks, and have limited controller processing power [24]. To overcome these issues,
research has found that distributed SDN controllers can be used [25]. A variety of controllers has
been developed, but OpenDayLight (ODL) has gained the most attention among the distributed
controller platforms due to its excellent scalability, support for dependability, and ability to handle
consistency [26]. Numerous OpenFlow controllers have been developed and made available for

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

118

research and commercial usage in recent years. The following Figure 2 summarizes the various types
of OpenFlow SDN controllers based on their control plane architecture. The majority of SDN
controllers are based on the OpenFlow protocol that implemented SDN communication standards
for interacting between the controller and other networking devices. An example, NOX was the initial
release of an OpenFlow controller in early 2008 [37]. Afterward, various alternative OpenFlow
controllers have been launched with distinct characteristics in terms of high-performance,
multithreaded OpenFlow controllers and offer high availability.

Fig. 2. SDN controllers

However, a physical centralized controller suffers from a single point of failure. Therefore,

different SDN distributed controllers have been presented to give some amount of performance,
security, availability, and scalability as indicated in Figure 2. Controllers such as Hyperflow [38],
Kandoo [39], and, ONOS [22] provide a series of distributed controllers and each controller has an
equivalent global view of network topology [40]. The distributed controller controls the entire
network while preserving sophisticated requirements such as performance metrics, security, load
balancing, efficiency, good features, stable architecture, availability, fault tolerance, and efficient
convergence time [23, 33-41].

The summary of the primary features for the most prominent sophisticated distributed SDN
controller platforms is given in Table 1. Each distributed controller has special features that differ
according to the programming language and functionality employed.

Software Defined Network

Controllers

Centralized Control Plane Distributed Control Plane Hybrid Control Plane

NOX

Maestro

Ryu

Trema

ParaFlow

Iris

POX

Floodlight

MUL

Beacon

Rosemary

Meridian

PANE

Onix

Kandoo

Orion

DIFANE

IRIS-HISA

SDX

Disco

ONOS

B4

Ravana

HP VAN

Elasticon

Expresso

DevoFlow

Panopticon

ClosedFlow

TelekInesis

LegacyFlow

Fibbing

SDNp

HybridFlow

Hybnet

Exodus

SHEAR

SYMPHONY

ISDX

RouteFlow

Hydra

OpenDayLight

Hyperflow

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

119

Table 1
Main characteristics of distributed controllers [10, 26]
Controllers Control

Plane
Design

Programming
Language

Scalability Reliability Consistency

ONIX Hierarchical Python, C Very Good Good Weak
HyperFlow Hierarchical C++ Good Good Moderate
Orion Hierarchical Java Very Good Very Good Strong
ONOS Hierarchical Java Very Good Good Weak
OpenDaylight Hierarchical Java Very Good Good Strong
B4 Hierarchical Python, C Good Good N/A
Kandoo Hierarchical C, C++, Python Very Good Limited N/A
DISCO Flat Java Good Limited Strong (inter-domain)
SDX Flat Python Limited N/A Strong
DevoFlow N/A Java Good N/A N/A
DIFANE N/A N/A Good N/A N/A

Some of the controllers met some performance requirements better than others but failed in

some other aspects. Even though the distributed control architecture is considered a scalable
solution when compared to the centralized control model, the capability of the SDN controller to
assure service continuity while preserving high performance requires proper attention to any
proposal or design [33].

1.3 Reliable Connection Protocol in SDN

The basic connection of an SDN network is formed on a data plane that is comprised of network
devices such as OpenFlow switches that will execute regular forwarding that is controlled by a
logically centralized SDN controller. Switches comprise essentially three components included flow
table, secure channel, and OpenFlow protocol [10]. The interface is function as a secure route to link
each OpenFlow switch to the controllers [11]. A flow table is used to process packets in switches [12].
The entire packet forwarding process in an OpenFlow switch is shown in Figure 3.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

120

Fig. 3. The flow of packets in switches [10, 42-43]

In Figure 3, when a packet arrives at a switch, the switch examines the flow table for an entry that

matches the packet's header information. If the rule is matched, the packet is forwarded. In the
missing of a match, the switch sends an asynchronous message to the controller. Based on the
programmed policies, the controller transmits the message to the appropriate control applications
as an event. The applications process the event and, if needed, return a message containing action
instructions. Controllers configure network devices using Openflow. The SDN controller instructs the
switch on what actions they should perform through southbound API. The Openflow protocol is the
most efficient method of communicating between SDN controllers and switches using the
Southbound API. It is a layer on top of the Transmission Control Protocol (TCP) and specifies the
implementation of Transport Layer Security (TLS). Controllers used TCP port 6653 for switches that
wanted to connect, and OpenFlow protocol unofficially used port 6633 [44].

Figure 4 illustrates the OpenFlow connection establishment process, in which switches start a
secure TCP channel to the controller, allowing the controller to manage switches using the OpenFlow
protocol [45]. The IP address of the controller is accessible through switch configuration. Moreover,
the controller may also have recognized the switch and performed the connection setup. As seen in
Figure 4, the requirement has been met with a three-ways-hand check. The controller is then able to
identify all connected switches and initiate the connection. Upon establishing a secure connection,
the controller, and switches exchange hello messages to determine the highest OpenFlow version
supported by both entities. Second, if the OpenFlow versions in both nodes are compatible, the
controller requests the characteristics of the connected switch using a features request message.
Finally, after receiving the message of the requested features, the switches respond with a message
informing the controller of supported features [30, 45-46].

Switch received the packet

Flow table entries compared

by header fields

Drop

Forward to required portMatch in flow table?

Yes

No

Matching flow entry

in controller

No

Yes

Send packet to controller

Store matching flow to

switch and apply action

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

121

Fig. 4. OpenFlow connection establishment process [30, 45-46]

1.4 Distributed Controller Performance Evaluation

Much research focusing on distributed controller performance evaluation and comparison has
been conducted in recent years, and this section reviews a few of them. Koponen et al., [27]
introduced and evaluated the performance of the first distributed SDN controller named ONIX. The
evaluation was focused more on the reliability and scalability of ONIX in a large-scale network.
However, because the ONIX figure provides a general API for the control plane and it is still a close
source, more research is needed to examine the performance. An experiment was done in the year
2014 using the distributed SDN control platform Open Network Operating System (ONOS) to examine
the performance, scalability, and availability needs of large operator networks [28]. The authors
evaluated the scalability, fault tolerance, and performance measures including latency and
throughput of two ONOS prototypes. According to the authors, ONOS still must be improved to
accommodate use cases like core network traffic engineering and scheduling.

Mamushiane et al., [29] provided a comparative study on the performance of popular open-
source controllers such as ONOS, Ryu, Floodlight, and OpenDayLight in terms of latency and
throughput using an OpenFlow benchmarking tool called Clench. The author recommends using
OpenDayLight since it has a lot of APIs and vendor support. In terms of performance, ONOS had the
best throughput while Ryu had the lowest latency. The same researchers compared the QoS
performance of ONOS and OpenDayLight distributed SDN controllers [22]. Mininet is used to emulate
three different topologies: single, linear, and tree. The purpose of the observation was to assess
performance indicators such as one-way trip delay, jitter, and packet loss. In all topologies, the testing
results reveal that OpenDayLight has much higher latency, jitter, and packet loss than ONOS.

Priya et al., in Bhardwaj and Panda [30] compared the performance of well-known OpenFlow
controllers such as NOX, POX, Ryu, and FloodLight by determining packet handling capacity and
measuring performance in terms of delay, jitter, throughput, and packet loss using the Distributed

Source DestinationControllerOpenFlow Switch OpenFlow Switch
T

im
e

ARP Request ARP Request

ARP Reply ARP Reply

SYN SYN

SYN + ACK SYN + ACK

ACK ACK

Features Request

 ACK

Features Request

 ACK

ACK ACK

Features RequestFeatures Request

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

122

internet traffic flow generator (D-ITG). According to the authors, FloodLight offers higher throughput
and less delay than alternative controllers. Furthermore, the authors recommended for future work
include a comparison of the OpenDayLight and OpenContrail controllers.

Rowshanrad et al., [31] examined QoS metrics of Floodlight and OpenDaylight in terms of latency,
packet loss, and network loads in single, linear, and tree topologies using Mininet. The authors
determined that OpenDaylight had better latency in tree topology for a network with half of
bandwidth traffic, but floodlight can outperform OpenDaylight in terms of packet loss in the heavily
loaded network in a tree topology. The authors propose comparing these two controllers in more
complex topologies with varying numbers of switches for future work.

Eftimie and Burcoci [32] present the implementation of the OpenDaylight controller in a small
environment using Mininet to observe key functionality, stability, and resource usage, as well as
analyze primary limitations. The authors concluded that OpenDaylight is a low-power distributed
controller and easy-to-use tool. However, there are limits in terms of controller incompatibility with
JAVA versions. Furthermore, the author recommends that the performance of this controller be
assessed in the future.

Abdullah et al., [33] provided the performance comparison of five SDN controllers libfluid, ONOS,
OpenDaylight, POX, and Ryu. The authors develop custom linear topology in Mininet and observe
end-to-end throughput and delay by using iPerf and Ping commands. Authors found that libfluid gives
the best throughput performance and POX gives the best delay performance.

Ghalwash and Huang [34] suggested a framework for applying QoS in an SDN network. The
suggested framework is examined in a fat-tree topology utilizing an OpenDayLight (ODL) controller
to evaluate two QoS metrics which are port use and delay. The authors concluded that the proposed
framework with the OpenDaylight controller can lower the average delay and reduce average port
utilization.

Vilchez and Samiento [35] experimented on ONOS and OpenDaylight controllers to evaluate the
abilities of the controller to handle fault tolerance in various fault situations using the Mininet
emulator. Authors claimed that the ONOS controller outperforms ODL in terms of switching over to
other pathways to ensure service continuity. The author recommended future directions to examine
the capabilities of ONOS and ODL to dynamically modify the intentions deployed to avoid the
bandwidth reduction in data links.

Lastly, Ahmed Hassan et al., [36] conducted a comparative study of Floodlight and OpenDaylight
controllers examining parameters such as new flow generation, flow setup latency, open flow
messages, flow misses to the controller, CPU unitization, and memory. The experiment was
accomplished by constructing tree topology using the OfNet environment. The authors determined
that the Floodlight controller is outperforming the OpenDaylight controller in small occupying
memory space, less CPU use, and a smaller number of messages in packages, but the new flow
generation is static. However, the OpenDaylight controller is outperforming the floodlight controller
in average setup latency. The authors emphasized the weakness of the OfNet emulator that caused
instability of the controllers during an experiment. Therefore, the authors propose to use a Mininet
emulator with more complex topologies for future study.

The previous studies reveal that the architecture of single controllers is inefficient for network
administration. Distributed SDN controllers have been implemented to solve scalability, reduce
transmission delay, improve fault tolerance, and avoid packet loss concerns. Although distributed
SDN controller platforms have been deployed to solve scalability, lowering transmission delay,
improve fault tolerance, and minimize packet loss concerns but there is limited research existing
literature based on distributed controllers [10]. To guarantee high quality of services (QoS)
performance, the controller should be able to respond to packets in messages promptly. This means

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

123

that the delay and packet loss must be minimal, and throughput must be maximum. In most studies
based on a distributed SDN controller, the placement of the controller is the primary challenge that
directly affects its performance. Consequently, there is a research need to construct the structure of
distributed SDN controllers with custom topology for traffic engineering and to give an in-depth
illustration of performance metrics required for exploring the future of SDN [10]. To the best of our
knowledge, the majority of controller evaluation studies did not focus exclusively on distributed
controllers, and there is still a gap in implementing SDN architecture with custom topology and
providing a detailed representation of various network performance measurements utilizing
distributed controllers [10]. As a result, the focus of this research will be on implementing the SDN
architecture in the Mininet emulator that includes the OpenDaylight controller for three (3) different
custom-designed topologies consisting of OpenFlow switches and network nodes. This research’s
primary objective is to examine the performance of SDN networks, with a focus on distributed
controllers in three (3) various bespoke network designs. The proposed research intends to develop
a framework for reporting the evaluation results of node-to-node performance measures such as
delay, throughput, packet loss, and bandwidth utilization. Academics, application developers, and
service providers can utilize this study to make educated controller selection decisions.

2. Methodology

The purpose of this study is to evaluate the performance of distributed SDN controller, which has
the role of controller for a network emulated using Mininet. The methodology used to conduct the
suggested research is shown in Figure 5. The first step of the approach is to conduct a literature
evaluation on network traffic analysis using SDN controllers to identify research gaps and establish
the goals of our study. The Mininet tool is then utilized to construct a custom network for the SDN
environment. Mininet is a network simulator that implements the OpenFlow protocol and can
construct any arbitrary network consisting of hosts, switches, and connections [33]. Even though
network elements are formed by software, they are considered real-world features. Mininet's
baseline design consists of an OpenFlow kernel switch connected to two hosts and an OpenFlow
controller. Mininet hosts can run Linux and file system commands. The command "iPerf," for
example, parses bandwidth between a client and server, whilst the "topo" command or MiniEdit GUI
platform is used to design custom virtual networks [31].

Fig. 5. Research methodology

Implementation of the controller in the SDN is the next significant step. Experiments were set up

using the open-source controller Opendaylight (ODL) in the Mininet topology. ODL is a distributed
multi-protocol controller system intended for highly available, adaptable, and scalable SDN

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

124

implementations. It provides a framework service abstraction that allows users to create applications
that are interoperable with a variety of hardware and Southbound protocols [47]. After the network
topologies have been created, the Wireshark protocol analyzer is used to produce data traffic from
the source to the destination node. Finally, the performance of the SDN network utilizing the ODL
controller is measured by various metrics.

2.1 Experiment Setup

In this experiment, two virtual machines have been employed. One of these will run Mininet
where the emulated network topology is located, and the second machine used to run the ODL
controller. The two virtual machines must have connectivity to each other and execute services
essential for the experiment are SSH, X Server software client, and Wireshark.

Three (3) custom networks are created consisting of a liner network, tree network, and hybrid
network with a combination of linear and tree networks. Figure 6 exhibits the network topologies
GUI implemented in MiniEdit and topologies presented through the web interfaces of the ODL
controller. The topologies are made from software switches, named Open Vswitches (OVS) and
OpenFlow version 1.3 is utilized as the Southbound protocol for control traffic. The forwarding path
selection is based on the odl-L2switch feature of the ODL controller. The odl-L2switch was configured
to operate reactively to a new flow [34]. The abstract view of the proposed SDN architecture is
presented in Figure 7. The IP address range for all hosts and switches is 10.0.0.0/8, and the ODL
controller is implemented in the control plane using port 6633 and the IP address 192.168.56.107/24.

Linear Topology Tree Topology Hybrid Topology
(a)

Linear Topology Tree Topology Hybrid Topology
(b)

Fig. 6. Network topologies (a) MiniEdit platform (b) OpenDaylight

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

125

Fig. 7. Abstract view of the topology

To emulate network performance such as delay, throughput, packet loss, and bandwidth

utilization under TCP data flow, tools like ping as well iPerf are employed. By implementing iPerf, one
side runs in a “server” mode, listening for requests; the other end runs in “client” mode, sending
data. iPerf can test in real time with any number of TCP packet size settings. Therefore, to study in-
depth the performance of each network topologies, the size of a data packet for the traffic flow was
configured differently with sizes 356 Kbytes, 675 Kbytes, 1090 Kbytes, 1550Kbytes, and 2020Kbyt.
The data traffic is transmitted from the client to the server node using Wireshark. The performance
of the SDN network utilizing the distributed controller is evaluated.

3. Results

The delay, throughput, and packet loss for linear, tree, and hybrid topologies are shown in Table
2. The time takes packets to travel from client to server is measured in delay. The controller is
evaluated for the number of data successfully delivered per unit time during the throughput test [48].
The percentage of packets that fail to reach their destination is known as packet loss [31]. Referring
to Table 2, the simulation result for the topology tree seemed to have the highest average delay and
packet loss, as well as the lowest throughput average.

Table 2
Simulation result
Topologies Min Delay

(s)
Max Delay
(s)

Average Delay
(s)

Average Throughput
(Kbps)

Average Packet Loss
(%)

Linear 0.00001 0.00060 0.00004 219614 37
Tree 0.00003 0.00149 0.00009 111099 67
Hybrid 0.00021 0.00052 0.00003 201118 39

3.1 Network Delay

In a network, during the process of data communication, the delay also known as latency is
defined as the total time taken for a complete message to arrive at the destination, starting with the
time when the first bit of the message is sent out from the source and ending with the time when
the last bit of the message is delivered at the destination. Figure 8 illustrates the delay comparison
between three different topologies with different size of packet sizes.

CONTROL

PLANE

OpenDaylight

(Silicon 0.14.4)

OpenFlow Switch S1

(Switch 1.3)

DATA PLANE

OpenFlow Switch S2

(Switch 1.3)
OpenFlow Switch S3

(Switch 1.3)

OpenFlow Switch S4

(Switch 1.3)

OpenFlow Switch S5

(Switch 1.3)

OpenFlow Switch S6

(Switch 1.3)

Node 1 Node 3Node 2 Node 4 Node 5 Node 6

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

126

Fig. 8. Comparison of delay result

The tree topology has the largest delay in all three topologies, as seen in Figure 8. As shown in

Table 2, tree topology has the longest delay when the packet size is small. Linear topologies have
lower delay than other topologies, implying that tree topologies take longer to select a route and
send a decision for newly arriving flows. The effect of the delay, however, is just transient and
diminishes as the number of packet sizes grows. In a more complicated topology (hybrid topology),
the network has less delay compared to linear and tree topology. In contrast, the delay is increased
in linear topology when the packet size increased.

3.2 Throughput

The controller is examined in throughput mode tests to see how many packets it can process in a
second. The amount of data transferred per time is used to calculate network throughput. The
throughput evaluation findings in Figure 9 show that increasing the number of packet sizes has a
minor impact on tree topology. This is because larger packet sizes generate congestion at the data
layer, requiring more processing resources. The throughput performance of the linear topology is the
best. However, a rise in the number of packet sizes has a significant impact.

Fig. 9. Comparison of throughput result

3.3 Packet Loss

The number of packets that fail to reach their destination is referred to as packet loss. The packet
loss ratio is calculated as a percentage of total packet loss divided by the total number of packets
delivered. The comparison of packet loss results is shown in Figure 10.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

127

Fig. 10. Comparison of packet loss result

It is noticeable that hybrid topology exhibited no packet loss under small packet size. However, it

is drastically high when packet size increased. There is no significant difference in packet loss ratio in
a linear topology. Tree topology faced the highest packet loss rate even in the small size of the packet.
The experimental results showed that the packet size had different effects on the packet loss rate of
the TCP stream.

3.4 Bandwidth

Performance evaluation of bandwidth used in SDN networks can be accomplished using iPerf to
simulate the TCP data flow. In TCP traffic, the source node sends a request packet TCP SYN to the
destination node for the establishing of connection via the SDN switch. TCP examines the number of
packets forwarded to the target host via a different number of processes. This test is regulated to
measure the bandwidth of TCP traffic among the nodes. The consumption of bandwidth in
transferring packets is also determined. The average bandwidth utilization is displayed in Figure 11.
As demonstrated in Figure 11, higher average bandwidth utilization during small packet size is
transmitted and somewhat reduced when packet size is bigger.

Fig. 11. Comparison of bandwidth average usage result

Packet size will affect bandwidth depending on the performance of the network sources utilized

in the transfer. Each packet has a header that has the destination address for that packet. Every
switch needs to look up and match that destination address to a flow table. That lookup takes a
specified amount of time and hence a latency in sending the packet to the proper “port” on the
switch. As the lookup time or latency is pretty much the same for small packets as well as large

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

128

packets, then impact larger packets will have better bandwidth performance. Small packets will have
more lookups per byte of payload [49].

4. Conclusions

The effectiveness of controllers directly guarantees the quality of service in SDN. Therefore,
controller performance is one of the most significant design parameters. To assure good quality of
service, the controller should be able to respond to packets in messages immediately. This means
that the average delay and packet loss must be minimal, and throughput must be maximal. This study
intends to analyse the performance of the distributed controller to explore if these controllers are
ready for prime-time deployment. The proposed work provides the traffic analysis via performance
evaluation on one of the well-known distributed controllers named OpenDaylight.

In this research, the results of the linear, tree, and hybrid topologies have been compared. The
result shows that the controller’s load increases as the network architecture more complicated. The
performance of the SDN network thus becomes incompetent. The packet drop ratio rises as the delay
increases. The delay in tree topology is high, making a high packet loss ratio and throughput low. We
have also found that the throughput and transmission delay are much better for simple network
topologies such as linear topology.

This report would be helpful for all the researchers working in SDN and controller traffic
evaluation. The experimentations revealed that the distributed SDN controller may potentially be
considered one of the powerful controllers for traffic engineering. The study work revealed beneficial
findings for various performance indicators in the SDN environment using the distributed controller.
It gives the traffic analysis via performance evaluation of the distributed controller in the SDN
environment to optimize the consumption of resources for the enhanced performance of the
network, and management of data traffic in the network.

Acknowledgement
This paper is a preliminary study of the first author's ongoing research work under the main
supervision of Dr. Mohd Nazri Mohd Warip, Associate Professor, University Malaysia Perlis for her
Ph.D. program. We would like to thank the reviewers of this manuscript for their valuable comments
throughout the process.

References
[1] Casado, Martin, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott Shenker. "Ethane: Taking

control of the enterprise." ACM SIGCOMM computer communication review 37, no. 4 (2007): 1-12.
https://doi.org/10.1145/1282427.1282382

[2] Blenk, Andreas, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer. "Survey on network virtualization
hypervisors for software defined networking." IEEE Communications Surveys & Tutorials 18, no. 1 (2015): 655-685.
https://doi.org/10.1109/COMST.2015.2489183

[3] Tanyingyong, Voravit, Markus Hidell, and Peter Sjödin. "Improving pc-based openflow switching performance."
In Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, pp.
1-2. 2010. https://doi.org/10.1145/1872007.1872023

[4] Wijethilaka, Shalitha, and Madhusanka Liyanage. "Survey on network slicing for Internet of Things realization in 5G
networks." IEEE Communications Surveys & Tutorials 23, no. 2 (2021): 957-994.
https://doi.org/10.1109/COMST.2021.3067807

[5] Ahmad, Suhail, and Ajaz Hussain Mir. "Scalability, consistency, reliability and security in SDN controllers: a survey
of diverse SDN controllers." Journal of Network and Systems Management 29 (2021): 1-59.
https://doi.org/10.1007/s10922-020-09575-4

[6] Benzekki, Kamal, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui. "Software‐defined networking (SDN): a
survey." Security and communication networks 9, no. 18 (2016): 5803-5833. https://doi.org/10.1002/sec.1737

https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1109/COMST.2015.2489183
https://doi.org/10.1145/1872007.1872023
https://doi.org/10.1109/COMST.2021.3067807
https://doi.org/10.1007/s10922-020-09575-4
https://doi.org/10.1002/sec.1737

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

129

[7] Josbert, Nteziriza Nkerabahizi, Wang Ping, Min Wei, and Ahsan Rafiq. "Solution for Industrial Networks: Resilience-
based SDN Technology." In 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet
of Things Engineering (ICBAIE), pp. 392-400. IEEE, 2021. https://doi.org/10.1109/ICBAIE52039.2021.9390019

[8] Wang, Tao, Fangming Liu, Jian Guo, and Hong Xu. "Dynamic SDN controller assignment in data center networks:
Stable matching with transfers." In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on
Computer Communications, pp. 1-9. IEEE, 2016. https://doi.org/10.1109/INFOCOM.2016.7524357

[9] Nisar, Kashif, Emilia Rosa Jimson, Mohd Hanafi Ahmad Hijazi, Ian Welch, Rosilah Hassan, Azana Hafizah Mohd
Aman, Ali Hassan Sodhro, Sandeep Pirbhulal, and Sohrab Khan. "A survey on the architecture, application, and
security of software defined networking: Challenges and open issues." Internet of Things 12 (2020): 100289.
https://doi.org/10.1016/j.iot.2020.100289

[10] Rajoriya, Manisha Kumari, and Chandra Prakash Gupta. "A Taxonomy on Distributed Controllers in Software
Defined Networking." In 2021 5th International Conference on Computing Methodologies and Communication
(ICCMC), pp. 120-126. IEEE, 2021. https://doi.org/10.1109/ICCMC51019.2021.9418048

[11] Haji, Saad H., S. R. Zeebaree, Rezgar Hasan Saeed, Siddeeq Y. Ameen, Hanan M. Shukur, Naaman Omar, Mohammed
AM Sadeeq, Zainab Salih Ageed, Ibrahim Mahmood Ibrahim, and Hajar Maseeh Yasin. "Comparison of software
defined networking with traditional networking." Asian Journal of Research in Computer Science 9, no. 2 (2021): 1-
18. https://doi.org/10.9734/ajrcos/2021/v9i230216

[12] Naseer, Muhammd Zeshan. "Modeling Control Traffic in Distributed Software Defined Networks." (2016).
[13] Fazea, Yousef, and Fathey Mohammed. "Software defined networking based information centric networking: An

overview of approaches and challenges." In 2021 International Congress of Advanced Technology and Engineering
(ICOTEN), pp. 1-8. IEEE, 2021. https://doi.org/10.1109/ICOTEN52080.2021.9493541

[14] Shailly, Ms. "A critical review based on Fault Tolerance in Software Defined Networks." Turkish Journal of Computer
and Mathematics Education (TURCOMAT) 12, no. 2 (2021): 456-461. https://doi.org/10.17762/turcomat.v12i2.849

[15] Awais, Muhammad, Muhammad Asif, Maaz Bin Ahmad, Toqeer Mahmood, and Sundus Munir. "Comparative
Analysis of Traditional and Software Defined Networks." In 2021 Mohammad Ali Jinnah University International
Conference on Computing (MAJICC), pp. 1-6. IEEE, 2021. https://doi.org/10.1109/MAJICC53071.2021.9526236

[16] Perera, Kosala, Udesh Gunarathne, Binal Chathuranga, Chamika Ramanayake, and Ajith Pasqual. "Hybrid Software
Defined Networking Controller." In DCNET, pp. 77-84. 2017. https://doi.org/10.5220/0006423800770084

[17] Liu, Jiyang, Liang Zhu, Weiqiang Sun, and Weisheng Hu. "Scalable application-aware resource management in
software defined networking." In 2015 17th International Conference on Transparent Optical Networks (ICTON),
pp. 1-5. IEEE, 2015. https://doi.org/10.1109/ICTON.2015.7193522

[18] Hakiri, Akram, Aniruddha Gokhale, Pascal Berthou, Douglas C. Schmidt, and Thierry Gayraud. "Software-defined
networking: Challenges and research opportunities for future internet." Computer Networks 75 (2014): 453-471.
https://doi.org/10.1016/j.comnet.2014.10.015

[19] Killi, Bala Prakasa Rao, and Seela Veerabhadreswara Rao. "Controller placement with planning for failures in
software defined networks." In 2016 IEEE international conference on advanced networks and telecommunications
systems (ANTS), pp. 1-6. IEEE, 2016. https://doi.org/10.1109/ANTS.2016.7947795

[20] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker,
and Jonathan Turner. "OpenFlow: enabling innovation in campus networks." ACM SIGCOMM computer
communication review 38, no. 2 (2008): 69-74. https://doi.org/10.1145/1355734.1355746

[21] Costa, Leonardo C., Alex B. Vieira, Erik de Britto e Silva, Daniel F. Macedo, Luiz FM Vieira, Marcos AM Vieira, Manoel
da Rocha Miranda Junior et al. "OpenFlow data planes performance evaluation." Performance Evaluation 147
(2021): 102194. https://doi.org/10.1016/j.peva.2021.102194

[22] Mamushiane, Lusani, and Themba Shozi. "A QoS-based evaluation of SDN controllers: ONOS and OpenDayLight."
In 2021 IST-Africa Conference (IST-Africa), pp. 1-10. IEEE, 2021.

[23] Sarmiento, David Espinel, Adrien Lebre, Lucas Nussbaum, and Abdelhadi Chari. "Decentralized SDN control plane
for a distributed cloud-edge infrastructure: A survey." IEEE Communications Surveys & Tutorials 23, no. 1 (2021):
256-281. https://doi.org/10.1109/COMST.2021.3050297

[24] Isong, Bassey, Reorapetse Ramoliti Samuel Molose, Adnan M. Abu-Mahfouz, and Nosipho Dladlu. "Comprehensive
review of SDN controller placement strategies." IEEE Access 8 (2020): 170070-170092.
https://doi.org/10.1109/ACCESS.2020.3023974

[25] Abdelaziz, Ahmed, Ang Tan Fong, Abdullah Gani, Usman Garba, Suleman Khan, Adnan Akhunzada, Hamid Talebian,
and Kim-Kwang Raymond Choo. "Distributed controller clustering in software defined networks." PloS one 12, no.
4 (2017): e0174715. https://doi.org/10.1371/journal.pone.0174715

[26] Bannour, Fetia, Sami Souihi, and Abdelhamid Mellouk. "Distributed SDN control: Survey, taxonomy, and
challenges." IEEE Communications Surveys & Tutorials 20, no. 1 (2017): 333-354.
https://doi.org/10.1109/COMST.2017.2782482

https://doi.org/10.1109/ICBAIE52039.2021.9390019
https://doi.org/10.1109/INFOCOM.2016.7524357
https://doi.org/10.1016/j.iot.2020.100289
https://doi.org/10.1109/ICCMC51019.2021.9418048
https://doi.org/10.9734/ajrcos/2021/v9i230216
https://doi.org/10.1109/ICOTEN52080.2021.9493541
https://doi.org/10.17762/turcomat.v12i2.849
https://doi.org/10.1109/MAJICC53071.2021.9526236
https://doi.org/10.5220/0006423800770084
https://doi.org/10.1109/ICTON.2015.7193522
https://doi.org/10.1016/j.comnet.2014.10.015
https://doi.org/10.1109/ANTS.2016.7947795
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1016/j.peva.2021.102194
https://doi.org/10.1109/COMST.2021.3050297
https://doi.org/10.1109/ACCESS.2020.3023974
https://doi.org/10.1371/journal.pone.0174715
https://doi.org/10.1109/COMST.2017.2782482

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

130

[27] Koponen, Teemu, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan et
al. "Onix: A distributed control platform for large-scale production networks." In OSDI, vol. 10, no. 1, p. 6. 2010.

[28] Berde, Pankaj, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob Lantz et al.
"ONOS: towards an open, distributed SDN OS." In Proceedings of the third workshop on Hot topics in software
defined networking, pp. 1-6. 2014.

[29] Mamushiane, Lusani, Albert Lysko, and Sabelo Dlamini. "A comparative evaluation of the performance of popular
SDN controllers." In 2018 Wireless Days (WD), pp. 54-59. IEEE, 2018. https://doi.org/10.1109/WD.2018.8361694

[30] Bhardwaj, Shanu, and Surya Narayan Panda. "Performance evaluation using ryu sdn controller in software-defined
networking environment." Wireless Personal Communications 122, no. 1 (2022): 701-723.
https://doi.org/10.1007/s11277-021-08920-3

[31] Rowshanrad, Shiva, Vajihe Abdi, and Manijeh Keshtgari. "Performance evaluation of SDN controllers: Floodlight
and OpenDaylight." IIUM Engineering Journal 17, no. 2 (2016): 47-57. https://doi.org/10.31436/iiumej.v17i2.615

[32] Eftimie, Alexandra, and Eugen Borcoci. "SDN controller implementation using OpenDaylight: experiments." In 2020
13th International Conference on Communications (COMM), pp. 477-481. IEEE, 2020.
https://doi.org/10.1109/COMM48946.2020.9142044

[33] Abdullah, Mahmood Z., Nasir A. Al-Awad, and Fatima W. Hussein. "Performance Comparison and Evaluation of
Different Software Defined Networks Controllers." International Journal of Computing and Network Technology 6,
no. 2 (2018).

[34] Ghalwash, Haitham, and Chun-Hsi Huang. "A QoS framework for SDN-based networks." In 2018 IEEE 4th
International Conference on Collaboration and Internet Computing (CIC), pp. 98-105. IEEE, 2018.
https://doi.org/10.1109/CIC.2018.00024

[35] Vilchez, José Manuel Sanchez, and David Espinel Sarmiento. "Fault tolerance comparison of onos and opendaylight
sdn controllers." In 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 277-282.
IEEE, 2018. https://doi.org/10.1109/NETSOFT.2018.8460099

[36] Hassan, Ahmed Hassan M., Ahmed M. Alhassan, and Fathia Izzeldean. "Performance evaluation of sdn controllers
in ofnet emulation environment." In 2019 International Conference on Computer, Control, Electrical, and Electronics
Engineering (ICCCEEE), pp. 1-6. IEEE, 2019. https://doi.org/10.1109/ICCCEEE46830.2019.9071007

[37] Islam, Md Tariqul, Nazrul Islam, and Md Al Refat. "Node to node performance evaluation through RYU SDN
controller." Wireless Personal Communications 112 (2020): 555-570. https://doi.org/10.1007/s11277-020-07060-
4

[38] Tootoonchian, Amin, and Yashar Ganjali. "Hyperflow: A distributed control plane for openflow." In Proceedings of
the 2010 internet network management conference on Research on enterprise networking, vol. 3, pp. 10-5555.
2010.

[39] Ahmed, Hatim Gasmelseed, and R. Ramalakshmi. "Performance analysis of centralized and distributed SDN
controllers for load balancing application." In 2018 2nd International Conference on Trends in Electronics and
Informatics (ICOEI), pp. 758-764. IEEE, 2018. https://doi.org/10.1109/ICOEI.2018.8553946

[40] Kazemian, Mohammad Mahdi, and Meghdad Mirabi. "Controller placement in software defined networks using
multi-objective antlion algorithm." The Journal of Supercomputing (2022): 1-24. https://doi.org/10.1007/s11227-
021-04109-4

[41] Shalimov, Alexander, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan Smeliansky. "Advanced study of
SDN/OpenFlow controllers." In Proceedings of the 9th central & eastern european software engineering conference
in russia, pp. 1-6. 2013. https://doi.org/10.1145/2556610.2556621

[42] Gong, Yili, Wei Huang, Wenjie Wang, and Yingchun Lei. "A survey on software defined networking and its
applications." Frontiers of Computer Science 9 (2015): 827-845. https://doi.org/10.1007/s11704-015-3448-z

[43] Khatri, Vikramajeet. "Analysis of OpenFlow protocol in local area networks." Master's thesis, 2013.
[44] Specification, OpenFlow Switch. "Version 1.0. 0 (Wire Protocol 0x01)." Open Networking Foundation (2009).
[45] Klein, Dominik, and Michael Jarschel. "An OpenFlow extension for the OMNeT++ INET framework." In Proceedings

of the 6th International ICST Conference on Simulation Tools and Techniques, pp. 322-329. 2013.
https://doi.org/10.4108/icst.simutools.2013.251722

[46] Banjar, Ameen, Pakawat Pupatwibul, and Robin Braun. "Comparison of TCP/IP routing versus openflow table and
implementation of intelligent computational model to provide autonomous behavior." Computational Intelligence
and Efficiency in Engineering Systems (2015): 121-142. https://doi.org/10.1007/978-3-319-15720-7_9

[47] Parhandhito, Nasikh, Ridha Muldina Negara, and Favian Dewanta. "Comparison of High Availability Performance
on OpenDaylight with Corosync Pacemaker and OpenDaylight SDN Controller Platform Clustering." In 2020 IEEE
International Conference on Internet of Things and Intelligence System (IoTaIS), pp. 66-71. IEEE, 2021.
https://doi.org/10.1109/IoTaIS50849.2021.9359696

https://doi.org/10.1109/WD.2018.8361694
https://doi.org/10.1007/s11277-021-08920-3
https://doi.org/10.31436/iiumej.v17i2.615
https://doi.org/10.1109/COMM48946.2020.9142044
https://doi.org/10.1109/CIC.2018.00024
https://doi.org/10.1109/NETSOFT.2018.8460099
https://doi.org/10.1109/ICCCEEE46830.2019.9071007
https://doi.org/10.1007/s11277-020-07060-4
https://doi.org/10.1007/s11277-020-07060-4
https://doi.org/10.1109/ICOEI.2018.8553946
https://doi.org/10.1007/s11227-021-04109-4
https://doi.org/10.1007/s11227-021-04109-4
https://doi.org/10.1145/2556610.2556621
https://doi.org/10.1007/s11704-015-3448-z
https://doi.org/10.4108/icst.simutools.2013.251722
https://doi.org/10.1007/978-3-319-15720-7_9
https://doi.org/10.1109/IoTaIS50849.2021.9359696

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 30, Issue 1 (2023) 115-131

131

[48] Khattak, Zuhran Khan, Muhammad Awais, and Adnan Iqbal. "Performance evaluation of OpenDaylight SDN
controller." In 2014 20th IEEE international conference on parallel and distributed systems (ICPADS), pp. 671-676.
IEEE, 2014. https://doi.org/10.1109/PADSW.2014.7097868

[49] Banchuen, Teerawut, Kiattikun Kawila, and Kultida Rojviboonchai. "An SDN framework for video conference in
inter-domain network." In 2018 20th International Conference on Advanced Communication Technology (ICACT),
pp. 600-605. IEEE, 2018. https://doi.org/10.23919/ICACT.2018.8323848

https://doi.org/10.1109/PADSW.2014.7097868
https://doi.org/10.23919/ICACT.2018.8323848

