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The increasing need for automated networking platforms like the Internet of Things, as 
well as network services like cloud computing, big data applications, wireless networks, 
mobile Internet, and virtualization, has driven existing networks to their limitations. 
Software-defined network (SDN) is a new modern programmable network architectural 
technology that allows network administrators to control the entire network 
consistently and logically centralized in software-based controllers and network devices 
become just simple packet forwarding devices. The controller that is the network's 
brain, is mostly based on the OpenFlow protocol and has distinct characteristics that 
vary depending on the programming language. Its function is to control network traffic 
and increase network resource efficiency. Therefore, selecting the right controllers and 
monitoring their performance to increase resource usage and enhance network 
performance metrics is required. For network performance metrics analysis, the study 
proposes an implementation of SDN architecture utilizing an open-source OpenDaylight 
(ODL) distributed SDN controller. The proposed work evaluates the deployment of 
distributed SDN controller performance on three distinct customized network 
topologies based on SDN architecture for node-to-node performance metrics such as 
delay, throughput, packet loss, and bandwidth use. The experiments are conducted 
using the Mininet emulation tool. Wireshark is used to collect and analyse packets in 
real-time. The results obtained from the comparison of networks are presented to 
provide useful guidelines for SDN research and deployment initiatives. 
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1. Introduction 
 

The networking sector is being challenged with a new paradigm, which some consider extremely 
transformational. This new paradigm seeks to transform the way networks are developed, requiring 
networks to be flexible, secure, and keep the quality of service while still complying with policies and 
standards. Due to the network issues that need different solutions and intention to overcome the 
limitations in the conventional network, Software-defined networking (SDN) is presented. The main 
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idea behind the SDN is the "Stanford Clean Slate Project" in the year 2007 [1]. The project's primary 
objective is to develop a new architecture for business networks that is both simple to use and secure.  
 
1.1 SDN Architecture 
 

The architecture is the key component of the existence of SDN as, through the design, SDN is 
claimed to be able to overcome the constraint in the traditional networks [2]. SDN architecture 
separates the network into three (3) different layers data plane, control plane, and management 
plane [3] as shown in Figure 1.  
 

 
Fig. 1. SDN architecture 

 
As indicated in Figure 1, there are two (2) basic characteristics of SDN architecture. The first is the 

isolation of data and control plane which is derived from the telephone network system, and the 
second is the integration of network intelligence in a centralized controller [4-5]. The network control 
is done by a controller that must have connectivity with all nodes in the network. 
 
1.1.1 Data plane 
 

The Data plane layer or also known as the infrastructure layer consists of network devices such 
as a physical switch or virtual switch, router, gateway, server, and access point [6]. Generally, this 
layer allows device connectivity and data transfer [7]. The data plane consists of hardware devices 
that are responsible to handle the traffic following the rules set by the control plane. It is responsible 
for the same functions as it is in the conventional network to forward the data, but routing decisions 
are excluded from this layer [8]. The connection between the data plane and the control plane can 
be performed through OpenFlow protocol and Southbound application programming interfaces 
(APIs) [9]. Southbound APIs are used to send the instructions and receive the information from the 

Firewall

InternetOpenFlow Switch

SDN Controller

APP APP APP APP

Network Application

Northbound API

Controller AgentController Agent

Controller Agent Controller Agent

Data Plane

OpenFlow Switch

Data Plane

OpenFlow Switch

Data Plane

OpenFlow Switch

Data Plane

D
a

ta
 P

la
n

e
C

o
n

tr
o

ll
e
r 

P
la

n
e

M
a
n

a
g

e
m

e
n

t 
P

la
n

e

Southbound API

SDN Controller SDN Controller 

Eastbound API Westbound API

Network Infrastructure



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 1 (2023) 115-131 

117 
 

data plane to the controller [10]. As a result, SDN switches are composed primarily of three 
components, the OpenFlow protocol, a flow table, and a secure channel. For each OpenFlow switch 
securely connected to the controller, the interface is responsible to become a secure channel and a 
flow table is used to process the packets that are sent through them [11-12]. 
 
1.1.2 Control plane 
 

The control plane consists of a controller that manages the data plane devices and establishes 
traffic flows according to network rules. All the decision routing in the OpenFlow switch will be 
controlled by the SDN controller. The controller serves as the network brain for decision routing at 
switches based on the OpenFlow protocol [13]. Meanwhile, the SDN controller is an application to 
the centralized control point. Due to the architecture of SDN consisting of three (3) layers and the 
control plane being the middle layer, the connection between the control plane and data plane is 
through Southbound API. While the connection between the control plane and management plane 
can be performed using Northbound API. The control plane can be implemented as a centralized 
controller, or distributed controller and integrated both centralized and distributed known as hybrid 
centralization only one controller manages the flow table of all SDN switches [14]. In contrast, for the 
distributed controller deployment, the control plane may consist of many controllers that may 
interact with one another through the Westbound and eastbound interfaces [15]. 
 
1.1.3 Management plane 
 

The management plane or known as the application layer is at the top layer in the SDN 
architecture [16]. This layer covered the software-related operations and handle security applications 
such as network virtualization, mobility management, firewall, Intrusion Prevention Systems (IPS), 
and Intrusion Detection Systems (IDS) [17]. This layer interacts with the control layer using 
Northbound API [18-19]. 
 
1.2 Distributed Controllers 
 

The first concepts of the controller were introduced to allow network administrators to set flow-
based policies for their networks [1]. Further in the year 2008, the OpenFlow protocol and a program 
software were proposed which served as the beginning point for network programmability to 
accomplish a range of control applications [20]. OpenFlow is the most popular SDN protocol that 
implemented SDN communication standards for communication between the controller and other 
networking devices [21]. In recent years, numerous OpenFlow controllers have been created and 
made available for research and commercial use. These can be separated into two categories: 
centralized controllers and distributed controllers [22]. Ryu and Floodlight are the most well-known 
centralized SDN controllers [22]. However, a single physically or logically centralized controller to 
perform forwarding nodes presents a major bottleneck in a large-scale network [23]. It is a single 
point of failure that can cause the network to lose intelligence, become inefficient, experience 
unexpectedly long delays due to the controller's distance from the switches, lack scalability support 
for big SDN networks, and have limited controller processing power [24]. To overcome these issues, 
research has found that distributed SDN controllers can be used [25]. A variety of controllers has 
been developed, but OpenDayLight (ODL) has gained the most attention among the distributed 
controller platforms due to its excellent scalability, support for dependability, and ability to handle 
consistency [26]. Numerous OpenFlow controllers have been developed and made available for 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 1 (2023) 115-131 

118 
 

research and commercial usage in recent years. The following Figure 2 summarizes the various types 
of OpenFlow SDN controllers based on their control plane architecture. The majority of SDN 
controllers are based on the OpenFlow protocol that implemented SDN communication standards 
for interacting between the controller and other networking devices. An example, NOX was the initial 
release of an OpenFlow controller in early 2008 [37]. Afterward, various alternative OpenFlow 
controllers have been launched with distinct characteristics in terms of high-performance, 
multithreaded OpenFlow controllers and offer high availability.  
 

 
Fig. 2. SDN controllers 

 
However, a physical centralized controller suffers from a single point of failure. Therefore, 

different SDN distributed controllers have been presented to give some amount of performance, 
security, availability, and scalability as indicated in Figure 2. Controllers such as Hyperflow [38], 
Kandoo [39], and, ONOS [22] provide a series of distributed controllers and each controller has an 
equivalent global view of network topology [40]. The distributed controller controls the entire 
network while preserving sophisticated requirements such as performance metrics, security, load 
balancing, efficiency, good features, stable architecture, availability, fault tolerance, and efficient 
convergence time [23, 33-41].   

The summary of the primary features for the most prominent sophisticated distributed SDN 
controller platforms is given in Table 1. Each distributed controller has special features that differ 
according to the programming language and functionality employed.  
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Table 1 
Main characteristics of distributed controllers [10, 26] 
Controllers Control 

Plane 
Design 

Programming 
Language 

Scalability Reliability Consistency  

ONIX Hierarchical Python, C Very Good Good Weak 
HyperFlow Hierarchical C++ Good Good Moderate 
Orion Hierarchical Java Very Good Very Good Strong 
ONOS Hierarchical Java Very Good Good Weak 
OpenDaylight Hierarchical Java Very Good Good Strong 
B4 Hierarchical Python, C Good Good N/A 
Kandoo Hierarchical C, C++, Python Very Good Limited N/A 
DISCO Flat Java Good Limited Strong (inter-domain) 
SDX Flat Python Limited N/A Strong 
DevoFlow N/A Java Good N/A N/A 
DIFANE N/A N/A Good N/A N/A 

 
Some of the controllers met some performance requirements better than others but failed in 

some other aspects. Even though the distributed control architecture is considered a scalable 
solution when compared to the centralized control model, the capability of the SDN controller to 
assure service continuity while preserving high performance requires proper attention to any 
proposal or design [33]. 
 
1.3 Reliable Connection Protocol in SDN 
 

The basic connection of an SDN network is formed on a data plane that is comprised of network 
devices such as OpenFlow switches that will execute regular forwarding that is controlled by a 
logically centralized SDN controller. Switches comprise essentially three components included flow 
table, secure channel, and OpenFlow protocol [10]. The interface is function as a secure route to link 
each OpenFlow switch to the controllers [11]. A flow table is used to process packets in switches [12]. 
The entire packet forwarding process in an OpenFlow switch is shown in Figure 3. 
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Fig. 3. The flow of packets in switches [10, 42-43] 

 
In Figure 3, when a packet arrives at a switch, the switch examines the flow table for an entry that 

matches the packet's header information. If the rule is matched, the packet is forwarded. In the 
missing of a match, the switch sends an asynchronous message to the controller. Based on the 
programmed policies, the controller transmits the message to the appropriate control applications 
as an event. The applications process the event and, if needed, return a message containing action 
instructions. Controllers configure network devices using Openflow. The SDN controller instructs the 
switch on what actions they should perform through southbound API. The Openflow protocol is the 
most efficient method of communicating between SDN controllers and switches using the 
Southbound API. It is a layer on top of the Transmission Control Protocol (TCP) and specifies the 
implementation of Transport Layer Security (TLS). Controllers used TCP port 6653 for switches that 
wanted to connect, and OpenFlow protocol unofficially used port 6633 [44].  

Figure 4 illustrates the OpenFlow connection establishment process, in which switches start a 
secure TCP channel to the controller, allowing the controller to manage switches using the OpenFlow 
protocol [45]. The IP address of the controller is accessible through switch configuration. Moreover, 
the controller may also have recognized the switch and performed the connection setup. As seen in 
Figure 4, the requirement has been met with a three-ways-hand check. The controller is then able to 
identify all connected switches and initiate the connection. Upon establishing a secure connection, 
the controller, and switches exchange hello messages to determine the highest OpenFlow version 
supported by both entities. Second, if the OpenFlow versions in both nodes are compatible, the 
controller requests the characteristics of the connected switch using a features request message. 
Finally, after receiving the message of the requested features, the switches respond with a message 
informing the controller of supported features [30, 45-46]. 
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Fig. 4. OpenFlow connection establishment process [30, 45-46] 

 
1.4 Distributed Controller Performance Evaluation 
 

Much research focusing on distributed controller performance evaluation and comparison has 
been conducted in recent years, and this section reviews a few of them. Koponen et al., [27] 
introduced and evaluated the performance of the first distributed SDN controller named ONIX. The 
evaluation was focused more on the reliability and scalability of ONIX in a large-scale network. 
However, because the ONIX figure provides a general API for the control plane and it is still a close 
source, more research is needed to examine the performance. An experiment was done in the year 
2014 using the distributed SDN control platform Open Network Operating System (ONOS) to examine 
the performance, scalability, and availability needs of large operator networks [28]. The authors 
evaluated the scalability, fault tolerance, and performance measures including latency and 
throughput of two ONOS prototypes. According to the authors, ONOS still must be improved to 
accommodate use cases like core network traffic engineering and scheduling.  

Mamushiane et al., [29] provided a comparative study on the performance of popular open-
source controllers such as ONOS, Ryu, Floodlight, and OpenDayLight in terms of latency and 
throughput using an OpenFlow benchmarking tool called Clench. The author recommends using 
OpenDayLight since it has a lot of APIs and vendor support. In terms of performance, ONOS had the 
best throughput while Ryu had the lowest latency. The same researchers compared the QoS 
performance of ONOS and OpenDayLight distributed SDN controllers [22]. Mininet is used to emulate 
three different topologies: single, linear, and tree. The purpose of the observation was to assess 
performance indicators such as one-way trip delay, jitter, and packet loss. In all topologies, the testing 
results reveal that OpenDayLight has much higher latency, jitter, and packet loss than ONOS.  

Priya et al., in Bhardwaj and Panda [30] compared the performance of well-known OpenFlow 
controllers such as NOX, POX, Ryu, and FloodLight by determining packet handling capacity and 
measuring performance in terms of delay, jitter, throughput, and packet loss using the Distributed 
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internet traffic flow generator (D-ITG). According to the authors, FloodLight offers higher throughput 
and less delay than alternative controllers. Furthermore, the authors recommended for future work 
include a comparison of the OpenDayLight and OpenContrail controllers.  

Rowshanrad et al., [31] examined QoS metrics of Floodlight and OpenDaylight in terms of latency, 
packet loss, and network loads in single, linear, and tree topologies using Mininet. The authors 
determined that OpenDaylight had better latency in tree topology for a network with half of 
bandwidth traffic, but floodlight can outperform OpenDaylight in terms of packet loss in the heavily 
loaded network in a tree topology. The authors propose comparing these two controllers in more 
complex topologies with varying numbers of switches for future work.  

Eftimie and Burcoci [32] present the implementation of the OpenDaylight controller in a small 
environment using Mininet to observe key functionality, stability, and resource usage, as well as 
analyze primary limitations. The authors concluded that OpenDaylight is a low-power distributed 
controller and easy-to-use tool. However, there are limits in terms of controller incompatibility with 
JAVA versions. Furthermore, the author recommends that the performance of this controller be 
assessed in the future.  

Abdullah et al., [33] provided the performance comparison of five SDN controllers libfluid, ONOS, 
OpenDaylight, POX, and Ryu. The authors develop custom linear topology in Mininet and observe 
end-to-end throughput and delay by using iPerf and Ping commands. Authors found that libfluid gives 
the best throughput performance and POX gives the best delay performance.  

Ghalwash and Huang [34] suggested a framework for applying QoS in an SDN network. The 
suggested framework is examined in a fat-tree topology utilizing an OpenDayLight (ODL) controller 
to evaluate two QoS metrics which are port use and delay. The authors concluded that the proposed 
framework with the OpenDaylight controller can lower the average delay and reduce average port 
utilization.  

Vilchez and Samiento [35] experimented on ONOS and OpenDaylight controllers to evaluate the 
abilities of the controller to handle fault tolerance in various fault situations using the Mininet 
emulator. Authors claimed that the ONOS controller outperforms ODL in terms of switching over to 
other pathways to ensure service continuity. The author recommended future directions to examine 
the capabilities of ONOS and ODL to dynamically modify the intentions deployed to avoid the 
bandwidth reduction in data links.  

Lastly, Ahmed Hassan et al., [36] conducted a comparative study of Floodlight and OpenDaylight 
controllers examining parameters such as new flow generation, flow setup latency, open flow 
messages, flow misses to the controller, CPU unitization, and memory. The experiment was 
accomplished by constructing tree topology using the OfNet environment. The authors determined 
that the Floodlight controller is outperforming the OpenDaylight controller in small occupying 
memory space, less CPU use, and a smaller number of messages in packages, but the new flow 
generation is static. However, the OpenDaylight controller is outperforming the floodlight controller 
in average setup latency. The authors emphasized the weakness of the OfNet emulator that caused 
instability of the controllers during an experiment. Therefore, the authors propose to use a Mininet 
emulator with more complex topologies for future study.  

The previous studies reveal that the architecture of single controllers is inefficient for network 
administration. Distributed SDN controllers have been implemented to solve scalability, reduce 
transmission delay, improve fault tolerance, and avoid packet loss concerns. Although distributed 
SDN controller platforms have been deployed to solve scalability, lowering transmission delay, 
improve fault tolerance, and minimize packet loss concerns but there is limited research existing 
literature based on distributed controllers [10]. To guarantee high quality of services (QoS) 
performance, the controller should be able to respond to packets in messages promptly. This means 
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that the delay and packet loss must be minimal, and throughput must be maximum. In most studies 
based on a distributed SDN controller, the placement of the controller is the primary challenge that 
directly affects its performance. Consequently, there is a research need to construct the structure of 
distributed SDN controllers with custom topology for traffic engineering and to give an in-depth 
illustration of performance metrics required for exploring the future of SDN [10]. To the best of our 
knowledge, the majority of controller evaluation studies did not focus exclusively on distributed 
controllers, and there is still a gap in implementing SDN architecture with custom topology and 
providing a detailed representation of various network performance measurements utilizing 
distributed controllers [10]. As a result, the focus of this research will be on implementing the SDN 
architecture in the Mininet emulator that includes the OpenDaylight controller for three (3) different 
custom-designed topologies consisting of OpenFlow switches and network nodes. This research’s 
primary objective is to examine the performance of SDN networks, with a focus on distributed 
controllers in three (3) various bespoke network designs. The proposed research intends to develop 
a framework for reporting the evaluation results of node-to-node performance measures such as 
delay, throughput, packet loss, and bandwidth utilization. Academics, application developers, and 
service providers can utilize this study to make educated controller selection decisions. 
 
2. Methodology  
 

The purpose of this study is to evaluate the performance of distributed SDN controller, which has 
the role of controller for a network emulated using Mininet. The methodology used to conduct the 
suggested research is shown in Figure 5. The first step of the approach is to conduct a literature 
evaluation on network traffic analysis using SDN controllers to identify research gaps and establish 
the goals of our study. The Mininet tool is then utilized to construct a custom network for the SDN 
environment. Mininet is a network simulator that implements the OpenFlow protocol and can 
construct any arbitrary network consisting of hosts, switches, and connections [33]. Even though 
network elements are formed by software, they are considered real-world features. Mininet's 
baseline design consists of an OpenFlow kernel switch connected to two hosts and an OpenFlow 
controller. Mininet hosts can run Linux and file system commands. The command "iPerf," for 
example, parses bandwidth between a client and server, whilst the "topo" command or MiniEdit GUI 
platform is used to design custom virtual networks [31].  
 

 
Fig. 5. Research methodology 

 
Implementation of the controller in the SDN is the next significant step. Experiments were set up 

using the open-source controller Opendaylight (ODL) in the Mininet topology. ODL is a distributed 
multi-protocol controller system intended for highly available, adaptable, and scalable SDN 
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implementations. It provides a framework service abstraction that allows users to create applications 
that are interoperable with a variety of hardware and Southbound protocols [47]. After the network 
topologies have been created, the Wireshark protocol analyzer is used to produce data traffic from 
the source to the destination node. Finally, the performance of the SDN network utilizing the ODL 
controller is measured by various metrics.  
 
2.1 Experiment Setup 
 

In this experiment, two virtual machines have been employed. One of these will run Mininet 
where the emulated network topology is located, and the second machine used to run the ODL 
controller. The two virtual machines must have connectivity to each other and execute services 
essential for the experiment are SSH, X Server software client, and Wireshark.  

Three (3) custom networks are created consisting of a liner network, tree network, and hybrid 
network with a combination of linear and tree networks. Figure 6 exhibits the network topologies 
GUI implemented in MiniEdit and topologies presented through the web interfaces of the ODL 
controller. The topologies are made from software switches, named Open Vswitches (OVS) and 
OpenFlow version 1.3 is utilized as the Southbound protocol for control traffic. The forwarding path 
selection is based on the odl-L2switch feature of the ODL controller. The odl-L2switch was configured 
to operate reactively to a new flow [34]. The abstract view of the proposed SDN architecture is 
presented in Figure 7. The IP address range for all hosts and switches is 10.0.0.0/8, and the ODL 
controller is implemented in the control plane using port 6633 and the IP address 192.168.56.107/24. 
 

 
 
 
 

 
 

 
 

 

 
 

 

Linear Topology Tree Topology Hybrid Topology 
(a) 

 

 

 

 
 

Linear Topology Tree Topology Hybrid Topology 
(b) 

Fig. 6. Network topologies (a) MiniEdit platform (b) OpenDaylight 
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Fig. 7. Abstract view of the topology 

 
To emulate network performance such as delay, throughput, packet loss, and bandwidth 

utilization under TCP data flow, tools like ping as well iPerf are employed. By implementing iPerf, one 
side runs in a “server” mode, listening for requests; the other end runs in “client” mode, sending 
data. iPerf can test in real time with any number of TCP packet size settings. Therefore, to study in-
depth the performance of each network topologies, the size of a data packet for the traffic flow was 
configured differently with sizes 356 Kbytes, 675 Kbytes, 1090 Kbytes, 1550Kbytes, and 2020Kbyt. 
The data traffic is transmitted from the client to the server node using Wireshark. The performance 
of the SDN network utilizing the distributed controller is evaluated. 
 
3. Results  
 

The delay, throughput, and packet loss for linear, tree, and hybrid topologies are shown in Table 
2. The time takes packets to travel from client to server is measured in delay. The controller is 
evaluated for the number of data successfully delivered per unit time during the throughput test [48]. 
The percentage of packets that fail to reach their destination is known as packet loss [31]. Referring 
to Table 2, the simulation result for the topology tree seemed to have the highest average delay and 
packet loss, as well as the lowest throughput average. 
 

Table 2 
Simulation result 
Topologies Min Delay 

(s) 
Max Delay 
(s) 

Average Delay 
(s) 

Average Throughput 
(Kbps) 

Average Packet Loss  
(%) 

Linear 0.00001 0.00060 0.00004 219614 37 
Tree 0.00003 0.00149 0.00009 111099 67 
Hybrid 0.00021 0.00052 0.00003 201118 39 

 
3.1 Network Delay 
 

In a network, during the process of data communication, the delay also known as latency is 
defined as the total time taken for a complete message to arrive at the destination, starting with the 
time when the first bit of the message is sent out from the source and ending with the time when 
the last bit of the message is delivered at the destination. Figure 8 illustrates the delay comparison 
between three different topologies with different size of packet sizes. 
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Fig. 8. Comparison of delay result 

 
The tree topology has the largest delay in all three topologies, as seen in Figure 8. As shown in 

Table 2, tree topology has the longest delay when the packet size is small. Linear topologies have 
lower delay than other topologies, implying that tree topologies take longer to select a route and 
send a decision for newly arriving flows. The effect of the delay, however, is just transient and 
diminishes as the number of packet sizes grows. In a more complicated topology (hybrid topology), 
the network has less delay compared to linear and tree topology. In contrast, the delay is increased 
in linear topology when the packet size increased. 
 
3.2 Throughput 
 

The controller is examined in throughput mode tests to see how many packets it can process in a 
second. The amount of data transferred per time is used to calculate network throughput. The 
throughput evaluation findings in Figure 9 show that increasing the number of packet sizes has a 
minor impact on tree topology. This is because larger packet sizes generate congestion at the data 
layer, requiring more processing resources. The throughput performance of the linear topology is the 
best. However, a rise in the number of packet sizes has a significant impact. 
 

 
Fig. 9. Comparison of throughput result 

 
3.3 Packet Loss 
 

The number of packets that fail to reach their destination is referred to as packet loss. The packet 
loss ratio is calculated as a percentage of total packet loss divided by the total number of packets 
delivered. The comparison of packet loss results is shown in Figure 10. 
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Fig. 10. Comparison of packet loss result 

 
It is noticeable that hybrid topology exhibited no packet loss under small packet size. However, it 

is drastically high when packet size increased. There is no significant difference in packet loss ratio in 
a linear topology. Tree topology faced the highest packet loss rate even in the small size of the packet. 
The experimental results showed that the packet size had different effects on the packet loss rate of 
the TCP stream. 
 
3.4 Bandwidth 
 

Performance evaluation of bandwidth used in SDN networks can be accomplished using iPerf to 
simulate the TCP data flow. In TCP traffic, the source node sends a request packet TCP SYN to the 
destination node for the establishing of connection via the SDN switch. TCP examines the number of 
packets forwarded to the target host via a different number of processes. This test is regulated to 
measure the bandwidth of TCP traffic among the nodes. The consumption of bandwidth in 
transferring packets is also determined. The average bandwidth utilization is displayed in Figure 11. 
As demonstrated in Figure 11, higher average bandwidth utilization during small packet size is 
transmitted and somewhat reduced when packet size is bigger.  
 

 
Fig. 11. Comparison of bandwidth average usage result 

 
Packet size will affect bandwidth depending on the performance of the network sources utilized 

in the transfer. Each packet has a header that has the destination address for that packet. Every 
switch needs to look up and match that destination address to a flow table. That lookup takes a 
specified amount of time and hence a latency in sending the packet to the proper “port” on the 
switch. As the lookup time or latency is pretty much the same for small packets as well as large 
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packets, then impact larger packets will have better bandwidth performance. Small packets will have 
more lookups per byte of payload [49]. 
 
4. Conclusions 
 

The effectiveness of controllers directly guarantees the quality of service in SDN. Therefore, 
controller performance is one of the most significant design parameters. To assure good quality of 
service, the controller should be able to respond to packets in messages immediately. This means 
that the average delay and packet loss must be minimal, and throughput must be maximal. This study 
intends to analyse the performance of the distributed controller to explore if these controllers are 
ready for prime-time deployment. The proposed work provides the traffic analysis via performance 
evaluation on one of the well-known distributed controllers named OpenDaylight. 

In this research, the results of the linear, tree, and hybrid topologies have been compared. The 
result shows that the controller’s load increases as the network architecture more complicated. The 
performance of the SDN network thus becomes incompetent. The packet drop ratio rises as the delay 
increases. The delay in tree topology is high, making a high packet loss ratio and throughput low. We 
have also found that the throughput and transmission delay are much better for simple network 
topologies such as linear topology.  

This report would be helpful for all the researchers working in SDN and controller traffic 
evaluation. The experimentations revealed that the distributed SDN controller may potentially be 
considered one of the powerful controllers for traffic engineering. The study work revealed beneficial 
findings for various performance indicators in the SDN environment using the distributed controller. 
It gives the traffic analysis via performance evaluation of the distributed controller in the SDN 
environment to optimize the consumption of resources for the enhanced performance of the 
network, and management of data traffic in the network. 
 
Acknowledgement 
This paper is a preliminary study of the first author's ongoing research work under the main 
supervision of Dr. Mohd Nazri Mohd Warip, Associate Professor, University Malaysia Perlis for her 
Ph.D. program. We would like to thank the reviewers of this manuscript for their valuable comments 
throughout the process. 
 
References 
[1] Casado, Martin, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott Shenker. "Ethane: Taking 

control of the enterprise." ACM SIGCOMM computer communication review 37, no. 4 (2007): 1-12. 
https://doi.org/10.1145/1282427.1282382 

[2] Blenk, Andreas, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer. "Survey on network virtualization 
hypervisors for software defined networking." IEEE Communications Surveys & Tutorials 18, no. 1 (2015): 655-685. 
https://doi.org/10.1109/COMST.2015.2489183 

[3] Tanyingyong, Voravit, Markus Hidell, and Peter Sjödin. "Improving pc-based openflow switching performance." 
In Proceedings of the 6th ACM/IEEE Symposium on Architectures for Networking and Communications Systems, pp. 
1-2. 2010. https://doi.org/10.1145/1872007.1872023 

[4] Wijethilaka, Shalitha, and Madhusanka Liyanage. "Survey on network slicing for Internet of Things realization in 5G 
networks." IEEE Communications Surveys & Tutorials 23, no. 2 (2021): 957-994. 
https://doi.org/10.1109/COMST.2021.3067807 

[5] Ahmad, Suhail, and Ajaz Hussain Mir. "Scalability, consistency, reliability and security in SDN controllers: a survey 
of diverse SDN controllers." Journal of Network and Systems Management 29 (2021): 1-59. 
https://doi.org/10.1007/s10922-020-09575-4 

[6] Benzekki, Kamal, Abdeslam El Fergougui, and Abdelbaki Elbelrhiti Elalaoui. "Software‐defined networking (SDN): a 
survey." Security and communication networks 9, no. 18 (2016): 5803-5833. https://doi.org/10.1002/sec.1737 

https://doi.org/10.1145/1282427.1282382
https://doi.org/10.1109/COMST.2015.2489183
https://doi.org/10.1145/1872007.1872023
https://doi.org/10.1109/COMST.2021.3067807
https://doi.org/10.1007/s10922-020-09575-4
https://doi.org/10.1002/sec.1737


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 1 (2023) 115-131 

129 
 

[7] Josbert, Nteziriza Nkerabahizi, Wang Ping, Min Wei, and Ahsan Rafiq. "Solution for Industrial Networks: Resilience-
based SDN Technology." In 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet 
of Things Engineering (ICBAIE), pp. 392-400. IEEE, 2021. https://doi.org/10.1109/ICBAIE52039.2021.9390019 

[8] Wang, Tao, Fangming Liu, Jian Guo, and Hong Xu. "Dynamic SDN controller assignment in data center networks: 
Stable matching with transfers." In IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on 
Computer Communications, pp. 1-9. IEEE, 2016. https://doi.org/10.1109/INFOCOM.2016.7524357 

[9] Nisar, Kashif, Emilia Rosa Jimson, Mohd Hanafi Ahmad Hijazi, Ian Welch, Rosilah Hassan, Azana Hafizah Mohd 
Aman, Ali Hassan Sodhro, Sandeep Pirbhulal, and Sohrab Khan. "A survey on the architecture, application, and 
security of software defined networking: Challenges and open issues." Internet of Things 12 (2020): 100289. 
https://doi.org/10.1016/j.iot.2020.100289 

[10] Rajoriya, Manisha Kumari, and Chandra Prakash Gupta. "A Taxonomy on Distributed Controllers in Software 
Defined Networking." In 2021 5th International Conference on Computing Methodologies and Communication 
(ICCMC), pp. 120-126. IEEE, 2021. https://doi.org/10.1109/ICCMC51019.2021.9418048 

[11] Haji, Saad H., S. R. Zeebaree, Rezgar Hasan Saeed, Siddeeq Y. Ameen, Hanan M. Shukur, Naaman Omar, Mohammed 
AM Sadeeq, Zainab Salih Ageed, Ibrahim Mahmood Ibrahim, and Hajar Maseeh Yasin. "Comparison of software 
defined networking with traditional networking." Asian Journal of Research in Computer Science 9, no. 2 (2021): 1-
18. https://doi.org/10.9734/ajrcos/2021/v9i230216 

[12] Naseer, Muhammd Zeshan. "Modeling Control Traffic in Distributed Software Defined Networks." (2016).  
[13] Fazea, Yousef, and Fathey Mohammed. "Software defined networking based information centric networking: An 

overview of approaches and challenges." In 2021 International Congress of Advanced Technology and Engineering 
(ICOTEN), pp. 1-8. IEEE, 2021. https://doi.org/10.1109/ICOTEN52080.2021.9493541 

[14] Shailly, Ms. "A critical review based on Fault Tolerance in Software Defined Networks." Turkish Journal of Computer 
and Mathematics Education (TURCOMAT) 12, no. 2 (2021): 456-461. https://doi.org/10.17762/turcomat.v12i2.849 

[15] Awais, Muhammad, Muhammad Asif, Maaz Bin Ahmad, Toqeer Mahmood, and Sundus Munir. "Comparative 
Analysis of Traditional and Software Defined Networks." In 2021 Mohammad Ali Jinnah University International 
Conference on Computing (MAJICC), pp. 1-6. IEEE, 2021. https://doi.org/10.1109/MAJICC53071.2021.9526236 

[16] Perera, Kosala, Udesh Gunarathne, Binal Chathuranga, Chamika Ramanayake, and Ajith Pasqual. "Hybrid Software 
Defined Networking Controller." In DCNET, pp. 77-84. 2017. https://doi.org/10.5220/0006423800770084 

[17] Liu, Jiyang, Liang Zhu, Weiqiang Sun, and Weisheng Hu. "Scalable application-aware resource management in 
software defined networking." In 2015 17th International Conference on Transparent Optical Networks (ICTON), 
pp. 1-5. IEEE, 2015. https://doi.org/10.1109/ICTON.2015.7193522 

[18] Hakiri, Akram, Aniruddha Gokhale, Pascal Berthou, Douglas C. Schmidt, and Thierry Gayraud. "Software-defined 
networking: Challenges and research opportunities for future internet." Computer Networks 75 (2014): 453-471. 
https://doi.org/10.1016/j.comnet.2014.10.015 

[19] Killi, Bala Prakasa Rao, and Seela Veerabhadreswara Rao. "Controller placement with planning for failures in 
software defined networks." In 2016 IEEE international conference on advanced networks and telecommunications 
systems (ANTS), pp. 1-6. IEEE, 2016. https://doi.org/10.1109/ANTS.2016.7947795 

[20] McKeown, Nick, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, 
and Jonathan Turner. "OpenFlow: enabling innovation in campus networks." ACM SIGCOMM computer 
communication review 38, no. 2 (2008): 69-74. https://doi.org/10.1145/1355734.1355746 

[21] Costa, Leonardo C., Alex B. Vieira, Erik de Britto e Silva, Daniel F. Macedo, Luiz FM Vieira, Marcos AM Vieira, Manoel 
da Rocha Miranda Junior et al. "OpenFlow data planes performance evaluation." Performance Evaluation 147 
(2021): 102194. https://doi.org/10.1016/j.peva.2021.102194 

[22] Mamushiane, Lusani, and Themba Shozi. "A QoS-based evaluation of SDN controllers: ONOS and OpenDayLight." 
In 2021 IST-Africa Conference (IST-Africa), pp. 1-10. IEEE, 2021.  

[23] Sarmiento, David Espinel, Adrien Lebre, Lucas Nussbaum, and Abdelhadi Chari. "Decentralized SDN control plane 
for a distributed cloud-edge infrastructure: A survey." IEEE Communications Surveys & Tutorials 23, no. 1 (2021): 
256-281. https://doi.org/10.1109/COMST.2021.3050297 

[24] Isong, Bassey, Reorapetse Ramoliti Samuel Molose, Adnan M. Abu-Mahfouz, and Nosipho Dladlu. "Comprehensive 
review of SDN controller placement strategies." IEEE Access 8 (2020): 170070-170092. 
https://doi.org/10.1109/ACCESS.2020.3023974 

[25] Abdelaziz, Ahmed, Ang Tan Fong, Abdullah Gani, Usman Garba, Suleman Khan, Adnan Akhunzada, Hamid Talebian, 
and Kim-Kwang Raymond Choo. "Distributed controller clustering in software defined networks." PloS one 12, no. 
4 (2017): e0174715. https://doi.org/10.1371/journal.pone.0174715 

[26] Bannour, Fetia, Sami Souihi, and Abdelhamid Mellouk. "Distributed SDN control: Survey, taxonomy, and 
challenges." IEEE Communications Surveys & Tutorials 20, no. 1 (2017): 333-354. 
https://doi.org/10.1109/COMST.2017.2782482 

https://doi.org/10.1109/ICBAIE52039.2021.9390019
https://doi.org/10.1109/INFOCOM.2016.7524357
https://doi.org/10.1016/j.iot.2020.100289
https://doi.org/10.1109/ICCMC51019.2021.9418048
https://doi.org/10.9734/ajrcos/2021/v9i230216
https://doi.org/10.1109/ICOTEN52080.2021.9493541
https://doi.org/10.17762/turcomat.v12i2.849
https://doi.org/10.1109/MAJICC53071.2021.9526236
https://doi.org/10.5220/0006423800770084
https://doi.org/10.1109/ICTON.2015.7193522
https://doi.org/10.1016/j.comnet.2014.10.015
https://doi.org/10.1109/ANTS.2016.7947795
https://doi.org/10.1145/1355734.1355746
https://doi.org/10.1016/j.peva.2021.102194
https://doi.org/10.1109/COMST.2021.3050297
https://doi.org/10.1109/ACCESS.2020.3023974
https://doi.org/10.1371/journal.pone.0174715
https://doi.org/10.1109/COMST.2017.2782482


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 1 (2023) 115-131 

130 
 

[27] Koponen, Teemu, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski, Min Zhu, Rajiv Ramanathan et 
al. "Onix: A distributed control platform for large-scale production networks." In OSDI, vol. 10, no. 1, p. 6. 2010.  

[28] Berde, Pankaj, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio Koide, Bob Lantz et al. 
"ONOS: towards an open, distributed SDN OS." In Proceedings of the third workshop on Hot topics in software 
defined networking, pp. 1-6. 2014.  

[29] Mamushiane, Lusani, Albert Lysko, and Sabelo Dlamini. "A comparative evaluation of the performance of popular 
SDN controllers." In 2018 Wireless Days (WD), pp. 54-59. IEEE, 2018. https://doi.org/10.1109/WD.2018.8361694 

[30] Bhardwaj, Shanu, and Surya Narayan Panda. "Performance evaluation using ryu sdn controller in software-defined 
networking environment." Wireless Personal Communications 122, no. 1 (2022): 701-723. 
https://doi.org/10.1007/s11277-021-08920-3 

[31] Rowshanrad, Shiva, Vajihe Abdi, and Manijeh Keshtgari. "Performance evaluation of SDN controllers: Floodlight 
and OpenDaylight." IIUM Engineering Journal 17, no. 2 (2016): 47-57. https://doi.org/10.31436/iiumej.v17i2.615 

[32] Eftimie, Alexandra, and Eugen Borcoci. "SDN controller implementation using OpenDaylight: experiments." In 2020 
13th International Conference on Communications (COMM), pp. 477-481. IEEE, 2020. 
https://doi.org/10.1109/COMM48946.2020.9142044 

[33] Abdullah, Mahmood Z., Nasir A. Al-Awad, and Fatima W. Hussein. "Performance Comparison and Evaluation of 
Different Software Defined Networks Controllers." International Journal of Computing and Network Technology 6, 
no. 2 (2018).  

[34] Ghalwash, Haitham, and Chun-Hsi Huang. "A QoS framework for SDN-based networks." In 2018 IEEE 4th 
International Conference on Collaboration and Internet Computing (CIC), pp. 98-105. IEEE, 2018. 
https://doi.org/10.1109/CIC.2018.00024 

[35] Vilchez, José Manuel Sanchez, and David Espinel Sarmiento. "Fault tolerance comparison of onos and opendaylight 
sdn controllers." In 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), pp. 277-282. 
IEEE, 2018. https://doi.org/10.1109/NETSOFT.2018.8460099 

[36] Hassan, Ahmed Hassan M., Ahmed M. Alhassan, and Fathia Izzeldean. "Performance evaluation of sdn controllers 
in ofnet emulation environment." In 2019 International Conference on Computer, Control, Electrical, and Electronics 
Engineering (ICCCEEE), pp. 1-6. IEEE, 2019. https://doi.org/10.1109/ICCCEEE46830.2019.9071007 

[37] Islam, Md Tariqul, Nazrul Islam, and Md Al Refat. "Node to node performance evaluation through RYU SDN 
controller." Wireless Personal Communications 112 (2020): 555-570. https://doi.org/10.1007/s11277-020-07060-
4 

[38] Tootoonchian, Amin, and Yashar Ganjali. "Hyperflow: A distributed control plane for openflow." In Proceedings of 
the 2010 internet network management conference on Research on enterprise networking, vol. 3, pp. 10-5555. 
2010.  

[39] Ahmed, Hatim Gasmelseed, and R. Ramalakshmi. "Performance analysis of centralized and distributed SDN 
controllers for load balancing application." In 2018 2nd International Conference on Trends in Electronics and 
Informatics (ICOEI), pp. 758-764. IEEE, 2018. https://doi.org/10.1109/ICOEI.2018.8553946 

[40] Kazemian, Mohammad Mahdi, and Meghdad Mirabi. "Controller placement in software defined networks using 
multi-objective antlion algorithm." The Journal of Supercomputing (2022): 1-24. https://doi.org/10.1007/s11227-
021-04109-4 

[41] Shalimov, Alexander, Dmitry Zuikov, Daria Zimarina, Vasily Pashkov, and Ruslan Smeliansky. "Advanced study of 
SDN/OpenFlow controllers." In Proceedings of the 9th central & eastern european software engineering conference 
in russia, pp. 1-6. 2013. https://doi.org/10.1145/2556610.2556621 

[42] Gong, Yili, Wei Huang, Wenjie Wang, and Yingchun Lei. "A survey on software defined networking and its 
applications." Frontiers of Computer Science 9 (2015): 827-845. https://doi.org/10.1007/s11704-015-3448-z 

[43] Khatri, Vikramajeet. "Analysis of OpenFlow protocol in local area networks." Master's thesis, 2013.  
[44] Specification, OpenFlow Switch. "Version 1.0. 0 (Wire Protocol 0x01)." Open Networking Foundation (2009).  
[45] Klein, Dominik, and Michael Jarschel. "An OpenFlow extension for the OMNeT++ INET framework." In Proceedings 

of the 6th International ICST Conference on Simulation Tools and Techniques, pp. 322-329. 2013. 
https://doi.org/10.4108/icst.simutools.2013.251722 

[46] Banjar, Ameen, Pakawat Pupatwibul, and Robin Braun. "Comparison of TCP/IP routing versus openflow table and 
implementation of intelligent computational model to provide autonomous behavior." Computational Intelligence 
and Efficiency in Engineering Systems (2015): 121-142. https://doi.org/10.1007/978-3-319-15720-7_9 

[47] Parhandhito, Nasikh, Ridha Muldina Negara, and Favian Dewanta. "Comparison of High Availability Performance 
on OpenDaylight with Corosync Pacemaker and OpenDaylight SDN Controller Platform Clustering." In 2020 IEEE 
International Conference on Internet of Things and Intelligence System (IoTaIS), pp. 66-71. IEEE, 2021. 
https://doi.org/10.1109/IoTaIS50849.2021.9359696 

https://doi.org/10.1109/WD.2018.8361694
https://doi.org/10.1007/s11277-021-08920-3
https://doi.org/10.31436/iiumej.v17i2.615
https://doi.org/10.1109/COMM48946.2020.9142044
https://doi.org/10.1109/CIC.2018.00024
https://doi.org/10.1109/NETSOFT.2018.8460099
https://doi.org/10.1109/ICCCEEE46830.2019.9071007
https://doi.org/10.1007/s11277-020-07060-4
https://doi.org/10.1007/s11277-020-07060-4
https://doi.org/10.1109/ICOEI.2018.8553946
https://doi.org/10.1007/s11227-021-04109-4
https://doi.org/10.1007/s11227-021-04109-4
https://doi.org/10.1145/2556610.2556621
https://doi.org/10.1007/s11704-015-3448-z
https://doi.org/10.4108/icst.simutools.2013.251722
https://doi.org/10.1007/978-3-319-15720-7_9
https://doi.org/10.1109/IoTaIS50849.2021.9359696


Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 1 (2023) 115-131 

131 
 

[48] Khattak, Zuhran Khan, Muhammad Awais, and Adnan Iqbal. "Performance evaluation of OpenDaylight SDN 
controller." In 2014 20th IEEE international conference on parallel and distributed systems (ICPADS), pp. 671-676. 
IEEE, 2014. https://doi.org/10.1109/PADSW.2014.7097868 

[49] Banchuen, Teerawut, Kiattikun Kawila, and Kultida Rojviboonchai. "An SDN framework for video conference in 
inter-domain network." In 2018 20th International Conference on Advanced Communication Technology (ICACT), 
pp. 600-605. IEEE, 2018. https://doi.org/10.23919/ICACT.2018.8323848 

 

https://doi.org/10.1109/PADSW.2014.7097868
https://doi.org/10.23919/ICACT.2018.8323848

