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 ABSTRACT 

 
A system that experiences sudden state changes at specific times is said to be discrete. 
The majority of systems that are studied in operations research and management 
science, such as transportation or communication studies, are under the application of 
discrete systems. This study investigates the analytical study of the static soliton for 
Cubic-Quintic Discrete Nonlinear Schrödinger Equation (DNLSE) in discrete system. 
Subsequently, static soliton, that is often used to characterize specific self-action regime 
in a continuous one-dimensional problem, is defined as a self-reinforcing wave packet 
that keeps its form and velocity while it travels in a medium. Moreover, it is well-known 
that the NLSE is a known integrable equation of partial differential equation. Therefore, 
the variational approximation method is applied to transform the partial differential 
equation of the main equation into ordinary differential equations, thus, to derive the 
equations for soliton parameters evolution during the interaction process. The method 
is used to qualitatively study the Discrete NLSE and characterize self-action modes. It is 
shown that in discrete media, both wide and narrow wave beams (relative to the grating 
scale) experience weakened diffraction, resulting in the “collapse” of the one-
dimensional wave field when the power is greater than the critical threshold. As a result, 
the central fiber is able to self-channel radiation. 
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1. Introduction 
 

The Nonlinear Schrödinger Equation (NLSE) is a mathematical framework employed for the 
purpose of explaining the dynamics of specific wave phenomena observed in many physical systems, 
with particular emphasis on nonlinear optics and condensed matter physics [1]. It was first 
formulated by Benney & Newell in 1967 where this equation is widely employed in the analysis of 
light pulse propagation within optical fibers [2]. The equation exhibits a strong connection with wave 
particles, especially soliton wave, which is first introduced by Scottish scientist and engineer, John 
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Scott Russel in 1834 [3]. The discrete NLSE then is an extension form of the NLSE under the discrete 
system where it is a framework of the nonlinear lattice dynamics model and becoming attracting 
researcher interest on its possession of a distinctive solution referred to as a soliton [4]. This solution 
propagates with a constant pattern and velocity. The equation has a wide range of practical 
applications, including denaturation, circuits for electricity and phase transformation occurrences 
within double-stranded Deoxyribonucleic Acid (DNA), biomolecular chain dynamics, optical beam 
propagation on nonlinear waveguides, and material formation processes, particularly Bose-Einstein 
Condensation (BEC) on optical lattices [5]. Kevrekidis under his study mentioned that discrete NLSE 
is derived from the continuum NLSE for the wave function,   in the presence of a periodic potential 

[6]. Etten mentioned in his work [7] on how a discrete system of nonlinear equations can be 
represented as a nonlinear discrete-time system. 

A discrete system exists in which each point is precisely isolated from the others. At a given 
moment in time, the characteristics of each site serve to denote a particular state of the system. The 
values of other sites may impact the way in which variables alter on a given site [8]. In order to solve 
the DNLSE problem, the variational approximation method (VA) method is utilized to study the 
propagation of the solitons. This approach is used to obtain an approximate inference based on the 
solitons' parameters in existing complicated models.  

The Discrete NLSE can be generalized by adding several terms into the equation. Discrete soliton 
in Cubic NLSE have been investigated several times and gave numerous incidents on the soliton wave 
beams [1,4,9]. This paper focuses on the discrete soliton solution in Cubic-Quintic NLSE in self-action 
mode, where this equation is derived from the inclusion of cubic and quintic nonlinear elements into 
the NLSE. 

Our objective in this paper consists of studying the static soliton interactions in discrete NLSE and 
analyzing the static soliton scattering behavior in discrete cubic-quintic NLSE using a variational 
approximation approach. The study of finding an analytical solution to a partial differential equation 
has been widely investigated and has become theoretically important for several research fields 
other than soliton propagation. Omar et. al., [10] have studied the analytical solution of unsteady 
MHD casson fluid with thermal radiation and chemical reactions in a porous medium. 

Generally, the manuscript is arranged as follows. The Introduction section provides a literature 
overview, research background, and statement of the problem. Section 2 introduces the model and 
governing equations for the research. Section 3 describes the variational approximation method 
employed throughout the investigation. Section 4 presents the analytical and numerical simulations 
of the entire work, which explain the results and discussions of the collapse of soliton wave beams in 
discrete NLSE. Lastly, the manuscript concludes at Section 5 and summarizes the result of the study.  
 
2. The Model and Governing Equation 
 

The Discrete Nonlinear Schrödinger Equation (DNLSE) applied to a one-dimensional system serves 
as the basis for our main equation model while incorporating cubic and higher-order quintic 
nonlinearity terms into the system. This framework enables us to analyze the system’s response 
under various conditions as well as investigate its stability and evolution dynamic of the wave beams 
throughout the propagation path. The following equation demonstrates the Cubic-Quintic DNLSE for 
a set of evenly spaced ideal waveguide in its simplest form, elucidating its formulation and 
significance in describing the system’s behaviour: 
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where ( )n z  is the complex wave function characterized at the n th site and z  is the propagation 

direction. The evolution of the wave packets in the n th light guide across the z -axis is considered to 
be driven by the interplay of the third and fifth-order nonlinearities of the medium along with its 
interaction solely with neighbouring light guides. Similar to the case of continuous NLSE, the system 
in Eq. (1) maintains its Hamiltonian or the energy structure in the form of 
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while also upholding the wave-field power conservation, represented by 
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typically referred to as the norm of the system. In particular, the behaviour of the wave beams is 
greatly influenced by the value of P  which acts as a controlling parameter for the entire system. 
Through deliberate manipulation of P , one can modulate the characteristics of the radiation to meet 
the desired outcomes for different applications effectively. 

Utilizing Eq. (1) as our foundation, the investigation on the potential scattering behaviour for a 
wave beam with a collimated pattern introduced into a periodic arrangement of the light guides in 
the z -axis orientation will be conducted thoroughly, specifically by means of variational approach. 
This method is outlined in detail in the following section. 
 
3. Methodology: Variational Approximation Method 
 

The Variational Approximation (VA) Method serves as the primary tool for examining the 
behavior and interaction of the soliton wave beams scattering process, including their scattering 
dynamics within the cubic-quintic discrete NLSE. This investigation proceeds in the case of static 
states of the one-dimensional system Discrete NLSE. Initially, the main equation of the Eq. (1) is 
tackled using the VA method to derive analytical solutions for the evolution of soliton parameters, 
essential for characterizing the soliton scattering phenomenon. 

This method stands out as a key theoretical approach for studying non-integrable equations with 
soliton characteristics, dating back to its initial application by Anderson (1983) [11]. Anderson first 
employed this method to examine soliton behavior within a significantly perturbed NLSE, particularly 
in nonlinear optics. 

Essentially, the VA method offers approximate solutions based on certain assumptions. It is 
undeniable that NLSE typically considered a non-integrable equation, leading to the absence of an 
analytical solution. VA method then enables the simplification of the Partial Differential Equation 
(PDE) governing the primary equation into an Ordinary Differential Equation (ODE) [12], facilitating 
the approximation of coupled equations governing soliton width and center of mass position. These 
approximations are then interpretable through numerical simulations, crucial for analyzing the 
incidents phenomena, given the significance of these parameters in wave propagation.  

The effectiveness of this method hinges on selecting an appropriate trial function, which is 
subsequently substituted into the Lagrangian density for further analysis [13]. In our case, we 
employed the Gaussian ansatz outlined in Eq. (7). A critical aspect here is that the evolution equations 
governing soliton parameters should be analytically evaluable through the averaged/effective 
Lagrangian. For instance, the Gaussian profile and the hyperbolic secant function with time 
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dependent parameters, are commonly used as trial functions in articles since both functions satisfy 
the objective in many circumstances [14-17]. To emphasize, the utilization of these approximate 
solutions is of great value in acquiring a deeper understanding of the physical event elucidated by 
the NLSE [1]. 
    
4. Results 
4.1 Variational Analysis of PDE 
 

In the framework of nonlinear wave equations, it is beneficial to employ the variational approach 
to provide an approximate depiction of the evolution of the wave beams, particularly in scenarios 
where traditional analytical techniques fall short. Below is the Lagrangian of the system for the Cubic-
Quintic DNLSE in Eq. (1) as the initial parameter for this approach, 
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where nL  denotes the Lagrangian density. By the application of the Poisson summation formula on 

the continuous argument function ( )F x , i.e., 

 

( ) ( ) exp(2 )
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the Lagrangian presented in Eq. (4) is restructured into a more practical form given by 
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which further facilitates calculation process within this continuous approximation approach, 
considering the discrete nature of the system. Following this, a Gaussian wave packet characterized 
by a parabolic phase front (Balakin et al., [4]) is adopted as the trial function: 
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where ( )a z  and ( )z  are the wave-packet parameters of the width and phase-front curvature, 

respectively, while P  signifies the wave-field power. Then, the chosen ansatz above is substituted 
into Eq. (6), followed by the integration of the Lagrangian density over the continuous domain of x  
which then results into the effective Lagrangian as depicted below. 
 

2 2
2 2 2 2 2 2 22

2 2 2 2 2 2

12
2 2 2 24

2 3
/2 /3

2

(1 2 ) 2 cos( )
2

      .
2 2 3 3


   

 


 

 

 − −
− − −

=− =−

 
− −

=− =−

= − −

− −

 

 

a
n a a n n aa

n n

a n a n

n n

Pa d
L n a e Pe n e

dz

P P
e e

a a

 (8) 



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 58, Issue 1 (2026) 274-282 

278 
 

To adequately describe the process, it is sufficient to concentrate solely on the term pertaining 
to 0n =  in our analysis when dealing with the wave beams that have a width of 1/a  . 
Consequently, a reduced Lagrangian for the system is obtained as follows. 
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Next, the Euler-Lagrange equation is formulated for each ansatz parameters a ,   such that 
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and eventually we arrive at the approximate system of ODE for the width a  and phase-front 
curvature   as in the following equations. 
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These two coupled equations manifest the main outcome of this variational analysis, elucidating the 
dynamics of soliton within the context of Cubic-Quintic Discrete NLSE. The next step involves 
numerical simulations of the coupled equations, Eq. (11) and Eq. (12), to examine the behaviour of 

the discrete soliton in self-action mode. By initially setting 0 =  and 0
d

dz


=  for a collimated wave 

beam, the correlation between power, P  and the width, a  is established as below. 
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From the above equation, 2P  is taken into account to maintain a non-negative value of power which 

is essential for our analysis. With different value of P , the numerical simulations are conducted for 
coupled equation a  and  , revealing the scattering process of static soliton wave in discrete cubic-

quintic NLSE in the following section. 
 
4.2 Numerical Simulation of ODE 
 

According to the study by Balakin et al., [4], two distinct self-action regimes are apparent in the 
one-dimensional continuum case, with one characterized by spatial solitons exhibiting wider wave 
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beam widths, and another one with narrower widths as compared to a homogeneous wave channel 
size. However, the study suggested that analytical investigations are only feasible for the former case 
in a discrete system. 

Following this, numerical simulations herein are made based on two different sizes of initial 

widths for the wave beams such that we consider 0 10a =  for a wide beam and 0 2a =  for a narrow 

beam. For both cases, the value of the corresponding initial powers are calculated according to the 

correlation in the below part of Eq. (13) whereby 0 0.485591P =  and 0 1.58411P =  for 0 10a =  and 

0 2a = , respectively. When 0P P= , a spatial soliton is formed in a single light guide channel where 

the width remains constant and the stability of the soliton is maintained along z  direction. 

Nevertheless, a small deviation in P  compared to 0P  leads to a shift in the width of the wave beam, 

notably exhibiting oscillation throughout the propagation path. These phenomena can be referred to 
Figures 1 and 3 where the evolutions of the wave beam width are shown for the case of wide and 
narrow beams with varying the values of power P . 
 

 
Fig. 1. The dependence of a  with respect to z  across different values of

P for initial width of 0 10a =  

 

During the initial phase of the periodic process, the width of the wide wave beam decreases 

as depicted in Figure 1. On the other hand, the narrow wave beam widens when 0P P  and 

subsequently, becomes narrower periodically as P  is slightly larger than 0P . At a critical power 

threshold, crP , the behaviour of the wave beam width undergoes a sudden change. In particular, 

a qualitative shift occurs in the self-action regime when crP P , resulting in the collapse of the 

wave beam into a unified wave channel. Figures 2 and 4 illustrate specifically the phenomena of 
the collapse for both initially wide and narrow beams, respectively, when the power exceeds the 
critical value. Accordingly, the critical power value for the wide wave beam is found to be 

1.65P , whereas for the narrow wave beam, it stands at 1.8crP . Figure 3 displays the 

dependence of a  with respect to z  across different values of P  for initial width of 𝑎0 = 2. 
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(a) (b) 

Fig. 2. The collapse of the wave beam into a single wave channel for an initially wide beam, when (a) Gradual 
decrease in wave beam width (b) Sudden decrease in phase-front curvature 

 

 
Fig. 3. The dependence of a  with respect to z  across different values of
P  for initial width of 𝑎0 = 2 

 

  
(a) (b) 

Fig. 4. The collapse of the wave beam into a single wave channel: sudden decrease in wave beam width 

(a) and phase-front curvature (b) for an initially narrow beam, 0 2a =  when 1.8P = .  
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5. Conclusions 
 
The research developed a variational analysis for a qualitative study mainly on the discrete system 

of the cubic-quintic nonlinear Schrödinger equation (NLSE) and classify self-action mode. In this 
paper, the partial differential equation (PDE) of the discrete cubic-quintic NLSE is solved by converting 
it into ordinary differential equations (ODEs) of the coupled equations, Eq. (11) and Eq. (12), by using 
the VA method. It is proven that an approximate solution can provide results for the scattering 
process of discrete soliton in a nonlinear system. Sabdin et. al., [18] in their study on nonlinear 
telegraph equations with source terms and time-fractional nonlinear telegraph equations, proved 
that an approximate solution works for their work using the Multistep Modified Reduced Differential 
Transform Method (MMRDTM) [18,19].  

It is observed that the collapse of the wave beam in one-dimensional discrete system takes place 
when the power surpasses its critical value. This phenomenon results in periodic alterations in the 
width of the beam throughout the propagation process. The study indicates that during the self-
action regime, the width of the wave beam is localized within a region which is approximately 
equivalence to the characteristic size of the grating. Such localization of the beam width highlights 
the intricate dynamics governing the discrete systems where the properties of the wave beam and 
the structure of the medium plays significant roles in characterizing the scattering process as a whole.  

The discrete system of nonlinear equations is particularly significant to our understanding and 
modelling of wide range of physical phenomena. Notably, it provides a valuable framework for 
analyzing systems featuring discrete structures such as lattices, networks, and arrays. These systems 
are typically found in fields like condensed matter physics, optics, and biology. Moreover, discrete 
nonlinear equations often support localized solutions such as solitons, breathers, and discrete 
breathers. These solutions are of great importance in describing wave propagation, facilitating 
information transmission, and enabling efficient energy transfer across various physical systems 
where discrete nature of interactions is paramount. 

Furthermore, the study on the numerical simulations of discrete systems utilizing the discrete 
nonlinear equations forms the basis for numerical simulations of complex systems. In particular, 
researchers are able to explore behaviour of nonlinear systems, study bifurcations, and analyze the 
stability of solutions in a computationally efficient manner, leading to advancements in technology 
and scientific understanding. For instance, Lazar et al., [20] had investigated the Pacemaker and ICD 
Troubleshooting advanced technology where the different formation of continuous and discrete 
system is presented. 
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