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Swirling Fluidized Bed (SFB) is a system that possess a plenum chamber and distributor 
air gap which leading up to dispersion of the airflow to the bed. The current SFB is in 
contrast with conventional fluidization systems whereby the effect of multi-stage 
through blades inclination angle (15°) and number of blades (60) was carried out. The 
simulation was used to compute and assess the performance outcomes of velocity 
distribution in a SFB. Therefore, the present study focuses on the numerical analysis 
procedure on the air flow distribution impacted by annular blade distributor 
arrangement in a Multi-stage SFB via ANSYS Fluent before a detailed study on selected 
variable would be carried out. As a consequence, the findings of the primary study that 
have been conducted are in line with expectations formed by earlier research. 
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1. Introduction 
 

One of current technologies in fluidization systems is Swirling Fluidized Beds (SFB) [1] that were 
suggested to aid in swirl motion in fluidized beds. The concept of SFB is based on distributors [2] used 
in conventional fluidization which is proposed to evenly distribute fluidizing the air flow throughout 
the bed. Through a swirling motion that had an impact on this particular blade arrangement, air 
distribution in the plenum interacted with each other. Reminds to coventional fluidization systems, 
most of the design's allowed for easy airflow around the bed, although this led to poor bed usage.  

Furthermore, what usually goes to the old fluidization systems when the air velocity is suddenly 
increased, the airflow seems to be non-uniform. Due to this circumstance, a bubble may form inside 
the beds [2]. To overcome this circumstance, previous researcher has proposed a new fluidization 
system that is Swirling Fluidized Beds (SFB) [1-2]. With SFB, the bed distributor is minimized due to 
the absence of drag. Following the passage of the blade distributor, the optimal performance in terms 
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of pressure drops and flow actions may be attained by configuring SFB with the needed blade 
distributor configuration [3]. By referring to the previous experimental study that has been done to 
the existing SFB system, an advanced on multi-stage SFB had been carried out. Therefore, in current 
study, the author would investigate the air flow characteristic when using multi-stage SFB based on 
previous researcher had done [3-6]. 

Therefore, further numerical simulation studies on the multi-stage blade distributor in the 
plenum chamber will elucidate more information on the airflow behaviour. On the basis of the 
current of the Swirling Fluidized Bed, the multi-stage SFB has been developed [6] to enhance the 
fluidization process and function of SFB. The thorough multi-stage fluidization interaction approach 
gives a realistic representation of the interaction between airflow and fluidization systems [6-9]. Fig. 
1 shows the annular blade distributor with a conical center body 
 

 
Fig. 1. Annular blade distributor with 
a conical center body 

 
2. Methodology 
2.1 Numerical Simulation Process 
 

A flow chart of the research processes is presented in Figure 2. The final phase in this research is 
described as the post-processing phase, employing many different graphical approaches such as 
grids, contours, vectors, and line plots. 
 
2.2 Description of the Multi-Stage SFB 
 

Using ANSYS Fluent commercial CFD software [10], the airflow distribution in an SFB was 
evaluated [11] and be used to construct the computation domain and generate the grid. Figure 3 
illustrates how the number of blades distributed at 60 is applied in this research. The air intake for 
velocity boundary condition was simulated using a 2.25 m/s that equal to mass flow rate, 0.22 kg/s 
and the pressure outlet was set at atmospheric pressure (101,325 Pa). Consequently, the present 
investigation's flow is consistent and viscous. Thus, the fluid element's density and time do not 
fluctuate as the air flow moves over the geometrical volume. In addition, the no-slip shear condition 
assumes that the fluid velocity relative to the geometric boundary is zero. In addition, the wall motion 
was set to be stationary. In this research, several sorts of angles were employed, including horizontal 
inclination. In this study, a constant horizontal inclination angle of 15° was used. 
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Fig. 2. Flow chart of the research methodology 

 
The horizontal angle was selected based on [1-3]. As a consequence of the preceding study, a full-

scale model was constructed. In this research, the kind of blade was modified to an angle blade 
distributor that matched a turbine blade. One parameter of the blade has been constructed and 
positioned in the vicinity of the plenum SFB. The SFB’s plenum has a diameter of 300 mm [1-3, 5, 6]. 
Each blade is 2 mm thick and is placed clockwise with a 15° [1] horizontal angle. Based on earlier 
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studies [2, 3], the angle degree of the blade distributor was decided. Previous studies have shown 
that a 15° angle via 60 blades number produces high tangential velocity and high velocity magnitude 
consistency. Therefore, the parameter setting above has been used in current study. The value ratio 
of the chamber diameter to the radius of the blade distributor (50 mm) was used to collect more data 
on the influence of the present design study centred on the angle of blade configuration. Boundary 
conditions of blade distributor column with 60 blades. 
 

 
Fig. 3. Fluidization systems (a) Blade inclination angle,15° (b) Boundary conditions of blade distributor 60 
blades and (c) Data extraction located at 15 mm above the distributor 

 
2.3 Numerical Model 
 

As a consequence of the present investigation, researchers [3, 5] used a comparable condition 
setup. The ANSYS Fluent commercial CFD software [10] was able to generate a face mesh consisting 
of irregular triangular mesh elements by applying the Tri: Pave Meshing Scheme on the surface and 
the geometry volume. The Tet/Hybrid parameter type defines tetrahedral, hexahedral, pyramidal, 
and wedge components for the meshing process. Fluidization systems' turbulent flow was simulated 
using a steady-state segregated implicit solver. In the ANSYS Fluent features, the Reynolds Averaged 
Navier Stokes (RANS) [12] turbulence equation of the (Re-Normalization Group) RNG techniques 
based on model transport equations for the turbulence kinetic energy (k) and its dissipation rate (𝜀) 
has been selected. To limit numerical diffusion, a second-order upwind technique was selected for 
the discretization of momentum equations [12].  

The methods for pressure-velocity interaction were then resolved using the SIMPLE algorithm. 
The assessment of meshing is the same as in the previous studies, with the exception of the following 
facts [5]. The quality of the mesh may be deemed good based on this evaluation. This turbulence 
model is analogous to that shown in the next subtopic. 
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2.4 Governing Equation 
 

The current study's governing equations [12] are three-dimensional momentum and continuity 
equations in cylindrical coordinates that were solved for Newtonian, incompressible fluid in steady 
flow. 
 
2.4.1 Navier-stoke equation for steady flow case 
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(z-direction) 
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2.4.2 Continuity equation 
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3. Results  
 

The conclusions of the numerical analytic inquiry are reviewed in this section. The tangential 
velocity of the multi-stage SFB was examined in this study. Data was retrieved on a horizontal plane 
15 mm above the distributor since this was the optimal location for analysing the air flow 
characteristics. 
 
3.1 Grid Independence Study 
 

A grid sensitivity study was carried out in order to determine an effective meshing approach that 
causes low computational errors owing to truncation and round-off errors while requiring less time 
to calculate. As shown in Table 1, the most suitable meshing method was selected as the standard 
scheme to be used and Figure 4(a) for meshing of multi-stage SFB with their respective scheme. The 
sensitivity analysis, as shown in Table 1, suggests that scheme D is the most suitable scheme for all 
case studies (which contains cell elements of 1,502,506). The iteration time of 300 iterations in 
Scheme D is ideal. Moreover, it provides the best size function of all the schemes. Due to these 
attributes, scheme D has the best and most efficient simulation time, hence minimising the time 
necessary to simulate each case. This may be observed on the graph as shown in Figure 4(b), where 
the velocity magnitude results from various systems exhibit the same patent with one another. 
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Table 1 
All different scheme meshing parameter 
Meshed Scheme Number of Elements 

Scheme A 422,709 
Scheme B 1,461,332 
Scheme C 343,893 
Scheme D 1,502,506 

 

 
Fig. 4(a). Meshing of multi-stage SFB with their respective scheme (a) SFB domain 
(b) SFB volume (c) annular blade distributor with a conical center body and (d) 
inlet meshes 

 

(a) (b)

(d)

(c)



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 30, Issue 1 (2023) 65-75 

71 
 

 
Fig. 4(b). Velocity distribution for a different number of the grid 

 

 
Fig. 4(c). Velocity distribution at various number of iterations 

 
3.2 Turbulence Model Selection 
 

In the selection of turbulent models, all selected models (five total turbulent models, five eddy 
viscosity models, and one Reynolds Stress Model (RSM) were compared. The eddy viscosity models 
consist of the standard standard 𝑘−𝜀, realisable 𝑘−𝜀, and RNG 𝑘–𝜀 model. All models show the 
greatest agreement with the present observation, which is a high-velocity system near the wall, as 
shown in Figure 5. In actuality, the flow in this region shows forced vortex behaviour due to the 
vortex's centrifugal influence, which was created by the inclination angle of the blade distributor. In 
fact, as indicated by previous studies [5], the RNG 𝑘–𝜀 model provides more agreement in the annular 
blade distributor area. 
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Fig. 5. Velocity distribution at various number of turbulence models 

 
The flow is identifiable in such a region. It is vital to note that the most significant mean flow 

phenomena occur close to the centreline (e.g., vortex, breakdown, and recirculation zone) (e.g., 
vortex, breakdown, and recirculation zone). As a result, the RNG 𝑘−𝜀 model is the optimal turbulent 
model for assessing the flow phenomena at the blade distributor, which is the subject of this paper. 
The RNG 𝑘−𝜀 model and the conventional 𝑘−𝜀 model share a similar structure. In addition, the 
inclusion of the component in its equation would significantly improve the accuracy for rapidly 
strained flows and provide an analytical formula for turbulence Prandtl numbers. It is also 
appropriate for swirl and turbulence conditions, which are already accounted in the RNG model [5].  

The Reynolds Averaged Navier Stokes (RANS) turbulence equation model being considered to be 
employed in this study is the RNG 𝑘−𝜀 model. The RNG 𝑘−𝜀 model was the most prominent 
turbulence model applied and taken into consideration in the industry-standard CFD model. It has 
proven to be dependable, numerically powerful, and has a clear system of predictive capability. The 
model follows to the settings of the preceding turbulence model study and offers a decent 
compromise between accuracy and resilience for general-purpose simulations [2, 12]. 
 
3.3 Reynolds Number (Re) 
 

Since the distributor blades are oriented to a certain degree, the number of Reynolds (Re) greatly 
affects the flow characteristics across them. Previous researcher had performed a series of air flow 
study using a several range of entering plenum chambers with varying blade counts and blade 
inclination angles (10°, 12°, and 15°). As the flow approaches, there is a vertical component at the 
entrance of the trapezoidal area between the two blade distributors. No-slip conditions will be 
considered on this flow direction. Low Reynolds numbers from the flow's impact on the wall led to 
the formation of a tiny vortex outside the distributor's entrance and a slight constriction of the flow's 
streamlines in the distributor's direction. As the Reynolds number climbs, the increasing flow 
momentum will drive the centerline of the vortex to ascend above the horseshoe vortex. The flow 
would centrifugally go to the wall after the slotted duct distributor.  
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According to the present study, when there are many blades and a low slotted inclination angle, 
a huge vortex forms at the top of the blade distribution zone. Keep in mind that the imposed velocity 
has a significant influence on the flow in this range of Reynolds numbers. The current analysis 
indicates that a massive vortex arises at the top of the blade distribution region when there are a 
large number of blades and a low slotted inclination angle. Keep in mind that, in this range of 
Reynolds numbers, the imposed velocity has a major impact on the flow. The effects of Reynolds 
number, a simulation's raw data was also performed at several speeds of 2.25 m/s, 5.0 m/s, 6.75.0 
m/s, 19.61 m/s and 45.0 m/s respectively that corresponding to 14 881.8, 33 070.6, 44 645.3, 129 
702.8 and 297 635.3 Reynolds number, calculated from Eq. (5).   
 
𝑅𝑒 = 𝜌𝑉𝐼𝐷𝐻/𝜇                                                                                       (5) 
 
where the dynamic viscosity, μ, density of air, 𝜌, hydraulic diameter tube (DH = 2(ro - ri)) and velocity 
inlet, VI were taken in accordance with the velocity inlet above. Therefore, this value showed an 
effect of fluid turbulence (Re > 4000) for all cases in the current work. As shown in Figure 6, the 
turbulence model provides a reading result that is quite similar to the RNG 𝑘−𝜀 turbulence model's. 
 

 
Fig. 6. Velocity distribution at various Reynolds numbers 

 
3.4 Velocity Distribution Analysis 
  

The current study has performed 60 blades with a constant horizontal inclination of 15° in multi-
stage SFB. Figure 3 depicts the geometry of the simulation. The air will be diverted as soon as it enters 
the distributor, producing a whirling effect. This will affect the outer mass of the column created by 
centrifugal force. Three (3) components comprise the velocity distribution: tangential velocity, radial 
velocity, and axial velocity. In actual industrial applications, axial velocity promotes fluidization 
whereas tangential velocity results in a swirling motion. Radial velocity would be attributable to the 
centrifugal force generated by the whirling gas. In the next study, these velocity components details 
will be discussed in more depth (Part 2 - Air Flow Distribution). 
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The distributor blade being dislocated by the air when it is inserted axially may be referred to as 
the velocity magnitude component. Consequently, the annular blade distributor generates the 
swirling the air flows. In addition, the swirling movement adds mass to the air at the farthest edge of 
the column by centrifugal force, causing the flow to separate into its three (3) component 
components. Figure 7 illustrates the gathered data. As the distributor induces spinning, the air that 
enters the chamber axially is deflected. Due to the air's centrifugal whirling action near the edge of 
the base, the flow would break into three (3) velocity components as indicated before. The position 
of the velocity components retrieved from the data was normalised in line with a previous work by 
[5]. The statistical analysis may be employed in this research to optimise the present model of current 
fluidization systems. The optimal design and parameter will be identified, as in earlier studies [13-
15]. 
 

 
Fig. 7. Velocity magnitude for blade numbers, NB = 60 with horizontal 
blade inclination, IH = 15° 

 
4. Conclusions 
 

The primary objective of this research is to demonstrate the process step and identify the 
parameter of the present fluidization systems of multi-stage SFB using the commercial CFD 
programme ANSYS Fluent. A chosen one of the geometries of multi-stage SFB was investigated in 
order to evaluate one of the key outcomes, namely the retention capability on velocity profile of 
multi-stage SFB. According to the numerical findings, current fluidization systems have a high 
retention capacity and velocity homogeneity on the plane of interest. Consequently, a selection of 
numerical setup settings based on Reynolds number, iterations, scheme, and turbulence model 
findings has been made, as it is anticipated that this would result in optimal performance 
characteristics of a multi-sage swirling fluidized bed. 
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