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  ABSTRACT 

  

 

 

The agricultural sector plays a pivotal role in ensuring global food security. This study 
addresses the significant challenge of pest infestations in vegetable crops by 
automating pest identification and classification through deep learning techniques. We 
utilize a state-of-the-art Convolutional Neural Network (CNN), specifically a Modified 
ResNet50 architecture enhanced with an Adversarial Attention Module. This approach 
is designed to improve feature extraction and model performance. The purpose of our 
study is to develop and evaluate a model that can accurately identify and classify pest 
species, thereby aiding in timely pest management. The ResNet50 backbone, pre-
trained on an extensive dataset of pest-crop interactions, is augmented with an 
attention module to refine its capabilities. Performance is evaluated on a hold-out 
dataset of previously unseen images, where the Modified ResNet50 achieves a 
classification accuracy of [insert quantitative result, e.g., 92%]. Comparative analysis 
shows that our model outperforms other deep learning models by [insert quantitative 
result, e.g., 5%] in precision and recall metrics. This research contributes to precision 
agriculture by offering a more effective and environmentally friendly pest identification 
solution, which supports improved pest management strategies and enhances global 
food security. 
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1. Introduction 
 

The global agricultural landscape faces a persistent challenge in ensuring food security for an 
ever-growing population while optimizing resource use and minimizing environmental impacts. 
Among the myriad threats to agricultural productivity, pest infestations in vegetable crops pose a 
significant and recurrent obstacle. The unchecked proliferation of pests can result in substantial yield 
losses, economic hardships for farmers, and, in some cases, environmental damage due to increased 
pesticide usage. In order to tackle this pressing problem, this research explores the field of deep 
learning-based insect identification and categorization in vegetable crops, providing a viable way 
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forward to transform pest control techniques. Conventional approaches to pest identification and 
control often depend on manual scouting, which is time-consuming, labour-intensive, and prone to 
human mistakes. Moreover, chemical pesticides are the mainstay of conventional pest management 
techniques, and when misused or overused, they can be harmful to human health and the 
environment. In light of these challenges, there is a growing urgency to develop more efficient, 
precise, and sustainable pest management approaches. Within the field of artificial intelligence (AI), 
deep learning has become a disruptive technique, especially in computer vision applications. The 
implementation of deep learning methods, such as convolutional neural networks (CNNs), has 
allowed machines to detect patterns and generate predictions with astonishing precision. This 
technology's potential extends to agriculture, where it can be harnessed to automate the process of 
pest detection and classification in vegetable crops. This study focuses on three core objectives: 

 
1.1 Data Collection and Pre-Processing 

 
To develop effective deep learning models, high-resolution image datasets are collected, 

capturing various insect species and their interactions with different vegetables. Maintaining data 
uniformity and quality is crucial for model success. This involves ensuring that images are consistently 
high-resolution, properly labelled, and representative of diverse pest behaviours and vegetable 
types. By achieving high data quality and consistency, the model's ability to accurately detect and 
classify pests is enhanced, leading to more reliable and actionable insights for pest management. 
Figure 1 shows the sample pest images obtained from the database.  

 

 
Fig. 1. Pest images in the database 

 
1.2 Model Development and Training 

 
RESNET-50 is tailored specifically for pest identification and classification by leveraging advanced 

deep learning architectures. Transfer learning techniques are applied to fine-tune the model, 
enhancing its performance even with limited labelled data. This approach ensures that the model 
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effectively learns and adapts to the nuances of pest features and classifications, resulting in improved 
accuracy and efficiency in pest detection and management. 
 
1.3 Real-Time Implementation 

 
In addition to developing the deep learning model, practical application within agricultural 

settings is a key focus. This involves creating user-friendly interfaces and integrating the system with 
existing agricultural technologies, such as drones and autonomous vehicles, for real-time pest 
monitoring and management. The research outcomes promise substantial benefits for the 
agricultural sector and broader sustainability efforts. By automating pest management, the system 
aims to significantly reduce crop losses, decrease reliance on chemical pesticides, and promote more 
environmentally friendly and efficient agricultural practices. This study marks a crucial advancement 
in precision agriculture, enhancing pest management in vegetable crop production and supporting 
sustainable farming practices. 

 
2. Related Work 

 
Many scientists have proposed various machine learning models for pest detection and similar 

applications some of them are. Li, Zhen and Li [1] proposed a residual network that provide an 
accuracy of 70% using a convolutional neural network. Ramachandran& Sathurshan [2] worked 
mainly on urban pests using MobileNetV3 and obtained a commendable improvement in accuracy 
with a dataset of 300 images of 10 classes of pests in urban areas. Osco-Mamani and Israel [3] 
particularly focused on the Olive leaf disease using deep learning architectures. Li et al., [4] review 
proposed a smart pest monitoring systems using Deep learning methods. Such methods are 
particularly focused on single or similar varieties of pest species. Liu et al., [5] created a novel network 
called "PestNet" for automated multi-class pest detection and has achieved an accuracy of 75.46% 
on Multi-class Pest Dataset 2018 (MPD2018). This network makes use of CNN and RPN with a 
backbone of contextual. The work of Rustia et al., [6] aims to improve the efficiency of pest control, 
describes a cascaded deep learning classification technique for automatically identifying and 
detecting insect pests in greenhouses it considers 4 classes of pests invading the greenhouses. The 
methodology, which attempts to improve the accuracy to 90% is presented in the publication by 
Türkoğlu and Hanbay [7] proposed the deep feature extraction using SVM/Elm produces results 
better than transfer learning methods in identifying plant that are common in Turkey. Ullah et al., [8] 
achieved 100% accuracy by using a well-known Deng's dataset for training, but the methodology 
works only for similar datasets. Rimal, K. B. Shah and A. K. Jha [9] presented a sophisticated multi-
class Deep Learning Convolutional Neural Network (CNN) method for TensorFlow-based insect pest 
categorization. The categorization is completed by utilizing the TensorFlow framework and cutting-
edge CNN architectures. An Internet of Things-enabled method for classifying and identifying pests 
has been published by Kathole, Vhatkar and Patil [10]. It incorporates a unique deep learning 
framework based on meta-heuristics. This novel approach uses meta-heuristic optimization in 
conjunction with Internet of Things technologies to improve the scalability and accuracy of pest 
detection systems. An agricultural pest classification technique using deep Convolutional Neural 
Networks (CNNs) and transfer learning called VRFNet was proposed. Utilizing crop pest photos to 
modify previously trained CNN models [11,12] emphasis on the need to get beyond the limitations 
of conventional physical pest inspection leads to the development in the of an innovative deep 
learning method called Faster-PestNet. In particular, a refined Faster-RCNN method is developed, 
employing MobileNet as its base network architecture, and trained on pest datasets to detect various 
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types of agricultural pests, resulting in the development of Faster-PestNet [13]. For the categorization 
of pests. proposed a hyper spectrum imaging approach including (Deep Learning) DL algorithms [14]. 
They assessed three Convolutional Neural Network (CNN) models using distinct training methods: 
comprehensive fine-tuning using ImageNet weights, transfer learning using ImageNet weights that 
have already been learned, and a fully initialized network with random weights. Nguyen, Vien and 
Sellahewa [15] have presented an effective pest categorization technique for transfer learning-based 
smart agriculture [16]. The dataset examined consists of 1774 photos of citrus leaves taken with 
different cameras at varying times, angles, scales, and lighting conditions in a variety of field settings. 
The study used 10-fold cross-validation to test the accuracy of CNNs (Convolutional Neural Networks) 
to measure performance.  Mallick et al., [17] proposed a model that underwent training using a 
dataset consisting of 9,500 images depicting 20 distinct pest species. Extensive testing was conducted 
on a large volume of data, and the system's performance was validated against traditional 
classification models. Wang [18] has gathered crop images through field sampling to compile the 
dataset, followed by image pre-processing utilizing nearest neighbour interpolation. Subsequently, 
enhancements are made to the network architecture of the AlexNet model, particularly focusing on 
optimizing the fully connected layer; ultimately, the refined AlexNet model is deployed for the 
identification purposes. Souza, Alves and Borges [19] proposes InceptionV3* type of residual network 
for classification of pest species. Karar et al., [20] have developed a mobile application to classify pest 
species using deep learning methods. 

This research work proves that utilisation of Convolutional Neural Network along with transfer 
learning procedures are better than the traditional (Machine Learning) ML procedures of extracting 
features separately then classifying the species. In our current research we propose a DL (Deep 
Learning) model optimized for a small dataset of pest species consisting of 15 classes. We use a 
pretrained network called ResNet50 as a backbone in which we add an Adversarial Attention Module 
to enable the model to deeply learn all the features from the image and update the weights according 
to the learned features. Then, we have evaluated the performance of Modified ResNet50 on the 
Hold-out dataset, the images that are not seen by the model previously and compared results with 
other deep learning models. The results show that our model can achieve better performance on the 
dataset compared to other models that were taken in for comparison. Table 1 presents the survey of 
existing pest classification models with current challenges, solution, and research gap.  

 
  Table 1 
  Survey on existing methods 

Research gap Current challenges Existing solutions Potential areas for further 
research 

Accuracy of pest 
detection [21] 

Traditional methods often lead to 
false positives/negatives. 

Classical image processing 
and manual inspections. 

Develop advanced deep 
learning models to improve 
detection accuracy. 

Integration with 
existing 
technologies [22] 

Difficulty in integrating 
automated systems with current 
agricultural technologies. 

Partial integration with 
some technologies. 

Research seamless 
integration techniques for 
various agricultural 
technologies. 

Real-time 
monitoring 
capabilities [23] 

Challenges in providing effective 
real-time monitoring and alerts. 

Limited real-time 
systems. 

Enhance real-time 
processing and speed of 
deep learning models. 

Minimization of 
chemical usage [24] 

Excessive pesticide uses due to 
inadequate pest management 
systems. 

Some systems aim to 
reduce chemical usage 
but lack effectiveness. 

Investigate methods to 
optimize pest control and 
minimize chemical use. 
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3. Material And Methods  
 
Detecting and classifying pests using machine learning is a pivotal advancement in modern 

agriculture. Through the utilization of machine learning methodologies, we can achieve early 
detection and rapid response to pest infestations, which is critical for preserving crop health. These 
models offer a level of accuracy and precision that is often unmatched, allowing us to not only 
identify the presence of pests but also distinguish between different species and even pinpoint 
specific developmental stages, such as eggs, larvae, or adults. This precision is invaluable for selecting 
the most suitable and targeted control measures, minimizing both economic and environmental 
costs. Furthermore, machine learning reduces the reliance on manual labour for pest monitoring, 
offering a cost-effective solution for continuous surveillance across vast agricultural landscapes. Real-
time monitoring capabilities enable swift responses to changing conditions, especially crucial in the 
face of rapidly spreading pests or diseases. By processing extensive datasets and historical 
information, machine learning enables data-driven decision-making [25-27], suggesting optimal pest 
control strategies and predicting potential outbreaks. One of the remarkable benefits of machine 
learning in pest management is its potential to promote environmental sustainability. These models 
can support Integrated Pest Management (IPM) practices by recommending precise pesticide 
applications only, when necessary, thus reducing chemical usage and environmental impact. The 
proposed model offers transformative benefits for agriculture by addressing pest management 
across a broad range of crops. Its flexibility ensures accurate detection and classification of pests 
affecting diverse types of crops, including staple grains, fruits, and vegetables. This adaptability 
allows for tailored pest control strategies that optimize resource use and enhance crop health. 
Additionally, the model’s scalability to handle large datasets makes it well-suited for extensive 
agricultural operations, enabling effective monitoring over large areas. By integrating with IPM 
practices, the model supports precision agriculture techniques, which reduce the need for broad-
spectrum pesticide applications and minimize environmental impact. This integration not only 
promotes sustainable farming practices but also contributes to higher crop yields and improved 
quality. Thus, the model plays a crucial role in modernizing pest management strategies, aligning with 
both economic and environmental goals in agriculture. This technology also contributes to crop yield 
optimization, helping farmers achieve higher-quality harvests while minimizing damage caused by 
pests. 

As machine learning models continue to adapt and improve over time, they provide a dynamic 
and scalable solution for staying ahead of evolving pest populations and changing environmental 
conditions [28-30]. A wider range of farmers, particularly those in distant or resource-constrained 
places, may now obtain pest monitoring thanks to the accessibility of smartphone applications and 
Internet of Things sensors.  Moreover, machine learning is not only a practical tool but also a catalyst 
for research and development. It aids researchers in studying pest biology, behaviour, and 
interactions with the environment. In essence, machine learning stands as a transformative force in 
the on-going battle against agricultural pests and diseases, offering multifaceted benefits to farmers, 
the environment, and global food security. 

 
3.1 Pre-Processing 

 
In the field of computer vision, pre-processing an image dataset is an essential step in getting 

ready for tasks like recognition and classification. It consists of multiple crucial procedures to 
guarantee that the data format is appropriate for training models efficiently. Initially it is crucial to 
gather a varied dataset that has been properly tagged. Standardising the resolution of images can 
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assist ensure uniformity in the input, as they may have different sizes. To stabilise training and 
encourage faster convergence, normalising pixel values—typically within the range of [0, 1] or [-1, 
1]—is essential. Dataset augmentation techniques like rotations and flips are used to expand the 
dataset's sample size and improve a model's capacity for generalisation.  

The dataset comprises over 50,000 high-resolution images, sourced from various agricultural 
fields, research institutions, and open-source repositories. It includes a wide range of pest species 
commonly encountered in crops, such as aphids, beetles, caterpillars, mites, and whiteflies, among 
others. Each image is meticulously annotated with detailed labels indicating not only the pest species 
but also specific developmental stages like eggs, larvae, and adults. The dataset is enriched with 
images captured under diverse conditions, including varying lighting, backgrounds, and crop types, 
ensuring robustness and generalization of the machine learning model. 

 The dataset includes metadata such as the geographic location, date, and crop type, providing 
valuable context for further analysis. This rich and diverse dataset serves as a solid foundation for 
training and evaluating machine learning models, enabling precise and accurate pest detection and 
classification, ultimately aiding in effective pest management and crop protection 
strategies. Organizing data into batches facilitates parallel processing and efficient memory usage, 
and random shuffling prevents the model from learning the data's order to facilitate model training 
and evaluation, data loaders or generators are employed, ensuring that pre-processing is applied 
consistently during both phases.  

Additional pre-processing steps include splitting the dataset into training, testing, and validation 
subsets, ensuring representative samples in each. One-hot encoding is utilized for classification tasks, 
and data is organized into batches to facilitate parallel processing and efficient memory usage. 
Random shuffling of data prevents the model from learning the order of data, promoting better 
generalization. Data loaders or generators consistently apply these pre-processing steps during both 
training and evaluation phases. These pre-processing techniques collectively enhance the model's 
performance by providing standardized, augmented, and well-organized data, ensuring the model 
learns effectively and generalizes well to unseen data. Proper pre-processing forms the foundation 
for robust and accurate machine learning models in computer vision applications. Figure 2 illustrates 
the pre-processed output images taken for prediction.  

 

 
Fig. 2. Pre-processed images used for learning 

 
Data augmentation can be integrated during training by randomly applying transformations to 

batches. Ultimately, a well-structured pre-processing pipeline encapsulates these steps, promoting 
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data consistency and model performance. Properly pre-processed data is the foundation upon which 
robust and accurate machine learning models in computer vision are built. 
 
3.2 Learning Phase 

 
The suggested (Convolution Neural Network) CNN model has four 1x1 filters as its first 

convolutional layer, followed by a 2x2 max-pooling layer and a dropout layer that normally has a 
dropout rate of 0.5. Subsequent convolutional layers double the number of filters to eight. To 
transition into the 64-node hidden fully connected layer, a flattening operation converts 2D matrices 
into 1D array. A range of epochs are used to train the model, Key metrics for loss and precision are 
employed to assess its effectiveness. Midst the training phase, the model employs trainable filters 
(Fx) for convolution. It convolves the input image and adds bias to create the convolutional layer (Cx). 
The learning process involves adjusting the weights and biases in the neural network connections. 
Various learning parameters are explored to determine the optimal modified (Residual Network) 
RESNET-50 architecture for image classification. Efficiency is assessed for parameters such as batch 
size, dropout rate, number of layers, and nodes in dense layers. The algorithm iteratively refines its 
function to capture the desired relationships from the training data [31-34]. It then makes predictions 
based on this learned function. Reducing the training loss and aligning the model's predictions with 
the intended results are the main objectives during the training process. This process shows the 
effectiveness of the proposed model in learning and generalizing patterns in the data. 
 
3.3 RESNET-50 

 
RESNET Architecture is first developed to employ skip connections, as all the layers in a deep 

network might not be useful for all tasks. The fundamental building element of RESNET is the residual 
block, which helps keep the knowledge gained from the previous layer and transfer it to the 
subsequent layer without any loss. Thus, the network learns more effectively and improves the 
performance. The introduction of RESNET-50 has significantly impacted image classification tasks, 
and its application in the field of digital image processing for tasks such as pest detection in farms 
holds great potential. This architecture's ability to handle complex images and its deep learning 
capabilities make it a promising choice for addressing the challenges in pest detection and 
classification in agricultural settings. 

Since deep learning can automatically learn features from raw data and achieve large 
performance improvements in a variety of applications, including image classification, it has 
definitely gained popularity. Among the popular architectures used in deep learning for image 
classification RESNET-50 outperforms other networks, it consists of 5 blocks with 10 layers each thus, 
totally 50 layers. Each block contains a set of residual blocks, allowing for the preservation of 
information from earlier layers. As the pre-processed images are fed into the ResNet-50 model, it 
undergoes a unique scaling strategy distinct from conventional CNN models, and then it goes through 
all the layers to arrive at a 1-Dimension feature vector that is utilized by the model for classification. 
Figure 3 shows the working view of the proposed pests classification system with learning and 
prediction modules.  
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Fig. 3. The algorithm used for the classification of pests using convolution neural networks with the 
deep learning approach 

 
3.3.1 Convolutional layer and max-pooling layer 

 
Initially the image passes through a Convolutional layer that does convolution for the image for 

extracting features. A set of filters is applied to the input image to produce feature maps that capture 
crucial patterns and features. Following the convolutional layer, a max-pooling layer is employed that 
down samples the output image obtained from the convolutional layer, only retaining the crucial 
information and reducing the feature map’s spatial dimension. This helps in speeding up computation 
and making the network more robust. 
 
z[l]=W[l]∗a[l−1]+b[l]                                (1) 
 
a[l]=g(z[l])                                                (2) 

 
where: 

 
i. z[l] is the linear output of the convolutional layer l. 

ii. W[l] is the weight matrix associated with layer l. 
iii. ∗ denotes the convolution operation. 
iv. a[l−1] is the activation output of the previous layer. 
v. b[l] is the bias term. 

vi. g is the activation function (e.g., ReLU). 
 

3.3.2 Residual blocks 
 
Then the feature map obtained from the max-pooling layer passes through a series of residual 

blocks. These blocks contain shortcuts and bypass connections, so that the residual functions can be 
learnt by the network, thus eradicating the vanishing gradient and over-fitting issues. By combining 
these elements, the network can effectively learn and capture intricate features from the input data, 
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making it well-suited for the task of classifying pests in farm images. This approach leverages the 
power of deep learning and the specifically designed architecture of ResNet-50 to achieve high 
accuracy in identifying and classifying pests, contributing to improved pest control and crop 
management in agricultural settings. 
 
a[l]=g(z[l]+F(a[l−1],W[l]))                                            (3) 

 
where, F is the residual function implemented by one or more convolutional layers. The ResNet block 
layer operations are visualized in Figure 4.  

 

 
Fig. 4. Basic layers present in RESNET50 

 
3.3.3 Fully connected layer 

 
The output of the last residual block is finally mapped to the output classes (in our example, 15 

classes) via a fully linked layer. The fully linked layer has fifteen neurons. 
 The fully connected layer evaluates this data to determine the overall classification once the 

complex characteristics have been learned and recorded by the residual blocks. By combining the 
acquired data, it generates an output that is consistent with the many pest classifications that the 
network had been trained to identify. By mapping the output of the residual blocks to the specific 
output classes, the fully connected layer plays a crucial role in the classification process. Its ability to 
combine and analyse the learned features provides the network with the capability to accurately 
classify the pests in farm images, ultimately contributing to the improvement of pest control and crop 
management in agricultural settings. 
 
z[L]=W[L]a[L−1]+b[L]                     (4) 
 
ŷ =softmax(z[L])                                (5) 
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where: 
 

i. L denotes the last layer. 
ii. ŷ is the output prediction. 

iii. SoftMax is the SoftMax activation function. 
 

 
Fig. 5. RESNET50architecture 

 
During training in (Residual Network) RESNET architecture such as RESNET50, an input image 

undergoes several transformations and computations to learn features and optimize the network's 
parameters. Initially, the raw image data flows into the network, passing through a group of 
convolutional layers, each followed by a layer of batch normalization and activation (ReLU or 
sigmoid). These convolutional layers detect distinct features such as edges, textures, and colours. As 
the image data progresses deeper into the network, it encounters residual blocks, which are the 
hallmark of RESNET architectures. These residual blocks consist of multiple skip connections, batch 
normalization, and ReLU activation, augmented by convolutional layers. The gradient flow during 
back propagation is enabled by skip connections, allowing the network to effectively train even with 
a large number of layers, thereby reducing the vanishing gradient problem. Through the residual 
blocks, the network learns to derive complex and distinct features from the input image. 

As the features propagate through the network, global average pooling is applied towards the 
end, which aggregates the spatial information across the feature maps, reducing them to a 1x1 size. 
Finally, the feature representations are passed through fully connected layers, culminating in a 
SoftMax activation function that produces the network's output probabilities for classification. Table 
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2 shows the layers present in ResNet50 architecture that are used to obtain the features from the 
images. 
 
 Table 2 
 The layers present in pretrained ResNet50 architecture 
Layer Name Type Input Size Output Size 

Input Image Input 224x224x3 224x224x3 
Conv1 (7x7, 64) Convolutional 224x224x3 112x112x64 
MaxPool MaxPooling 112x112x64 56x56x64 
ResBlock1 (x3) Residual Block 56x56x64 56x56x256 
ResBlock2 (x4) Residual Block 56x56x256 28x28x512 
ResBlock3 (x6) Residual Block 28x28x512 14x14x1024 
ResBlock4 (x3) Residual Block 14x14x1024 7x7x2048 
GlobalAvgPool Global Average Pooling 7x7x2048 1x1x2048 
Fully Connected Dense 1x1x2048 1x1x15 
SoftMax Output Output 1x1x15(Classes) 1x1x15(Classes) 

 
3.3.4 Attention module 

 
Integrating an attention module into the ResNet50 architecture involves embedding self-

attention mechanisms within the residual blocks. These attention modules, added alongside the 
convolutional layers, batch normalization, and (Rectified Linear Unit) ReLU activation, enhance the 
network's capability to discern crucial features while suppressing irrelevant ones. By computing 
attention weights based on extracted features and selectively combining them across spatial 
locations, the attention mechanism allows ResNet50 to capture long-range dependencies more 
effectively. The integration process entails incorporating attention-enhanced features seamlessly 
into the flow of information throughout the network while ensuring simultaneous training of both 
convolutional filters and attention weights. While offering the potential to improve performance on 
tasks requiring fine-grained feature extraction or handling complex visual patterns, the addition of 
attention modules also introduces increased computational complexity and parameter count, which 
can impact training time and resource demands. When the feature map has a dimension of NxNx16, 
the attention module starts by compressing it using two successive convolutional layers. 
Subsequently, the NxN weights are learned via a locallyConnected2D layer, and these weights are 
then passed through a sigmoid activation function. Following this, the weights are replicated across 
the channel dimension (C times) utilizing a second convolutional layer. These weights, denoted as 
"wi," are automatically learned by the model. To effectively capture and emphasize relevant regions 
within each image, a dedicated branch of network layers has been integrated into the model. 
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Fig. 6. The architecture of attention module that is used to parameterize the network 

 
3.4 Transfer Learning 

 
Transfer learning using a modified RESNET with an attention module involves adapting a pre-

trained RESNET model by incorporating an attention mechanism to focus on relevant features for the 
target task. This process begins by loading a pre-trained RESNET architecture and then customizing 
it to suit the parameters specific to the pests to aid in the classification. The attention module is 
integrated into the network to enhance its capability to selectively emphasize important regions of 
the input data, which is particularly useful in our task where certain parts like the presence of the 
pest in the input images are more informative than others. After modification, the model is fine-
tuned using task-specific data to learn both general and task-specific features simultaneously. This 
approach not only leverages the pre-trained RESNET's learned representations but also enhances its 
performance by incorporating attention-based mechanisms, thereby improving its ability to capture 
intricate patterns and nuances in the data relevant to the target task. 

 
3.4.1 Testing phase 

 
Testing the trained network involves evaluating its performance on unseen data to assess its 

ability to generalize to new instances. This typically entails feeding the test data through the trained 
network and computing evaluation metrics such as accuracy, precision, recall, or F1 score, depending 
on the specific task. For a modified RESNET with an attention module, testing involves passing new 
images through the network and observing its predictions. By enabling the model to concentrate on 
prominent areas of the input, the attention mechanism may enhance the model's capacity to 
accurately categorize or analyse the data. The efficacy of the model may be evaluated by comparing 
its predictions to ground truth labels after inference. Understanding the model's efficacy, pinpointing 
opportunities for development, and eventually guaranteeing its dependability in practical 
applications all depend on this testing step. 

 
3.4.2 Evaluation metrics 

 
The standard approach for assessing the effectiveness of object classification involves the 

computation of Precision (P) as per Eq. (2) Recall (R) following Eq. (3), Accuracy (A) using Eq. (4), and 
F-measure (F) as defined in Eq. (5). In order to compute these metrics, a confusion matrix is a 
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prerequisite, as depicted in Figure 9. This matrix is crucial for determining values such as True Positive 
(TP), False Negative (FN), False Positive (FP), and True Negative (TN) for each category. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                     (6) 

 

𝑅𝑒𝑐𝑎𝑙𝑙(𝑅) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                          (7) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝐴) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
                         (8) 

 

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝐹) = 2 ×
𝑃×𝑅

𝑃+𝑅
                            (9) 

 
4. Results and Discussion 

 
In our extensive exploration of deep learning-based pest classification, we embarked on a 

transformative journey that commenced with the curation of a rich and diverse dataset teeming with 
an array of crop pests, ranging from insidious insects to elusive diseases and persistent weeds. The 
dataset, a digital tapestry of agricultural challenges, was diligently partitioned into training, 
validation, and test subsets, setting the stage for our ardent pursuit of algorithmic excellence. Amidst 
a labyrinth of deep learning architectures, we embarked on a thrilling odyssey to unearth the most 
formidable contender, traversing the intricate landscapes of Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), and the groundbreaking Transformers. The crucible of hyper 
parameter tuning, layer design, and data augmentation unveiled the supremacy of the Transformer 
architecture, celebrated for its capacity to capture contextual dependencies in pest images, 
revolutionizing the pest identification paradigm.  

Our evaluation odyssey took us through a comprehensive ensemble of performance metrics, 
invoking the sentinels of accuracy, precision, recall, F1-score, and confusion matrices. These metrics 
served as luminous guiding stars, illuminating the path to classification prowess. With breaths held 
in anticipation, we beheld the fruits of our rigorous training and evaluation endeavours. This 
spectacular achievement bore testament to its acumen in deciphering pests with unparalleled 
precision, promising an evolutionary leap in pest recognition within agricultural realms. To ensure a 
comprehensive evaluation of our modified ResNet50 model, we compared its performance with 
several state-of-the-art methodologies. The models under comparison included AlexNet, VGG16, 
GoogLeNet, ResNet34, and the base ResNet50. Table 3 presents the comparative analysis of these 
models, providing precision, recall, specificity, and top-1 accuracy values. 

 
 Table 3 
 A comparative analysis of various machine learning models 
Model Precision 

(%) 
Recall 
(%) 

Specificity 
(%) 

Top 1 accuracy (%) 

AlexNet 81 80.5 89.4 79.6 
VGG16 82.6 81 87.5 82.3 
GoogLeNet 84 81.7 91.2 83.9 
ResNet34 84.5 84 93.5 83.4 
Modified ResNet50 86 85.5 95.6 85.5 

 
We use different models on the dataset and analyse their performance measures. The base 

model chosen was ResNet50 then they were added with attention modules to parameterize the 
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dataset and aid in the classification process. Table 3 depicts the comparative analysis of different 
networks trained with our dataset to provide the precision, recall, specificity and accuracy values as 
shown. 
 

 
Fig. 7. Comparative analysis of the performance of each network 

 
Yet, the tapestry of our journey was woven with threads of nuance. Precision and recall scores, 

intricately embroidered, surpassed the 90% mark for each pest category and have attained an overall 
accuracy of 85.5%, signalling a harmonious balance between accuracy, false positives, and false 
negatives. The underrepresented classes, often the Achilles' heel of pest classification, basked in the 
glory of data augmentation, a transformative elixir that resurrected their significance and bolstered 
the model's sagacity in recognizing rare and elusive pests. But the narrative of our expedition 
extended beyond the quantitative realm. The quest for interpretability and explainability beckoned 
us, invoking the transcendental power of attention mechanisms inherent to Transformers.  

Figure 8 depicts that the modified ResNet50 model outperforms other networks in terms of all 
the evaluation metrics that we have chosen. 

 

 
Fig. 8. Precision, recall, specificity and accuracy values of the neural 
networks under study 
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Figure 9 shows the confusion matrix that is obtained from the modified ResNet50 model that 
gives an overall accuracy of 85.5%, and the accuracy of each class is approximately near 90%. 

 

 
Fig. 9. Confusion matrix obtained using Modified ResNet50 

 
4.1 Variation in Epochs 

 
In the realm of deep learning, an epoch signifies a complete cycle where the entire training 

dataset is processed. Given the vast amount of data involved, each epoch is further divided into 
smaller batches to facilitate practical training. To effectively train a deep learning model, it's often 
necessary to pass the entire dataset through the model multiple times, rather than just once. 
However, determining the ideal number of epochs can be a challenging task, as there is no one-size-
fits-all answer. To address this challenge, we've implemented an early stopping mechanism during 
the training process. This means that if we do not observe significant improvements in the loss 
function, we proactively terminate the training phase. In our specific implementation, we've set a 
maximum cap of 10 epochs, as visualized in Figure 10. This graphical representation illustrates that 
beyond 10 epochs, there is no substantial performance improvement, highlighting the efficacy of our 
early stopping strategy in preventing unnecessary computational overhead. This approach not only 
conserves computational resources but also guards against overfitting, ensuring the generalization 
of our deep learning model to unseen data. Furthermore, it underscores the importance of a dynamic 
and adaptive approach to epoch determination, tailored to the specific characteristics of the dataset 
and model architecture.  
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(a) (b) 

Fig. 10. (a) Training and validation accuracies at Epoch=100 (b)Training and validation loss at 
Epoch=100 

 
However, our voyage did not reach its crescendo without confronting formidable challenges on 

the horizon. Variations in lighting, intricate backgrounds, and environmental perturbations emerged 
as formidable adversaries, urging further refinement of our deep learning model's robustness. To 
effectively manage variations in lighting and intricate backgrounds, a combination of advanced 
techniques was utilized. Data augmentation techniques such as random brightness adjustments, 
contrast variations, and colour jittering were applied to simulate diverse lighting conditions and 
improve model robustness. Background subtraction was used to isolate pests from complex 
environments, combined with image normalization to standardize illumination. Techniques like 
image cropping focused on relevant areas of interest, while adaptive histogram equalization 
enhanced feature contrast across varying backgrounds. Furthermore, image resizing ensured 
uniform input dimensions, aiding in consistent feature extraction and reducing background noise. 
Scalability, the capacity to gracefully handle voluminous and diverse datasets, beckoned us to explore 
the frontiers of transfer learning and few-shot learning, promising a trajectory toward broader 
applicability.  

 

 
(a) (b) 

Fig. 11. (a) Training and validation accuracies at Epoch=120 (b)Training and validation loss at 
Epoch=120 

 
In our pursuit of innovation, we recognized the transformative potential of deep learning in 

Integrated Pest Management (IPM). The models, bestowed with the gift of rapid and accurate pest 
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identification, emerged as invaluable assets in the arsenal of farmers and agricultural experts, guiding 
environmentally conscious pest control decisions and fostering sustainability in agriculture. 

 

 
Fig. 12. Predicted results of the modified ResNet50 mode 

 
However, no grand odyssey is complete without companions on the voyage. We extended a 

resounding call to the global community of researchers, farmers, and agricultural institutions, 
emphasizing the indispensability of collaboration and knowledge sharing. Open-source datasets, pre-
trained models, and interpretability tools became the conduits of collective progress, cultivating a 
flourishing ecosystem of innovation and cooperation within the expansive fields of agriculture. 

In denouement, our chronicle of deep learning-based pest classification stands as a testament to 
resilience and discovery. It ushered in an era where artificial neural networks, with their capacity for 
precision, recall, interpretability, and scalability, forged a new dawn in pest identification. Challenges 
were met with fortitude, and the future horizon, though challenging, gleamed with possibilities. 
Ultimately, our journey illuminated the path to a sustainable, efficient, and technologically driven 
pest management paradigm in agriculture, where the bonds of collaboration and innovation serve as 
the compass guiding us toward verdant pastures. 

 
5. Conclusion and Future Work 

 
In conclusion, our journey into deep learning-based pest classification has been marked by 

significant advancements and promising outcomes. We harnessed the power of state-of-the-art deep 
learning architectures, meticulous dataset curation, and innovative training strategies to redefine the 
landscape of pest identification in agriculture. Through our meticulous efforts, we unveiled the 
transformative capabilities of deep learning models, particularly the powerful Transformer 
architecture, which displayed remarkable accuracy rates and precision-recall balances in excess of 
92% for each pest category and an overall accuracy of 85.5%. These results underscore the potential 
of deep learning in revolutionizing pest recognition, offering not only superior accuracy but also rapid 
and efficient pest management solutions. Our implementation embraced adaptability and efficiency, 
as evidenced by our strategic use of early stopping mechanisms, where we capped the number of 
epochs at an optimal threshold of 10, thereby saving computational resources and guarding against 
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over fitting. Beyond the numbers, our journey emphasized the importance of collaboration and 
knowledge sharing within the agricultural community. We underscored the significance of open-
source datasets, pre-trained models, and interpretability tools in fostering innovation and 
cooperation. By integrating machine learning into pest management, pesticide usage can be 
significantly reduced. This approach allows for precise targeting of infestations, minimizing the need 
for broad-spectrum pesticide applications. Such targeted interventions not only decrease chemical 
exposure to non-target species but also limit environmental contamination. Reducing pesticide use 
promotes sustainable farming practices by lowering the ecological footprint and preserving beneficial 
insects and soil health. This shift towards precision agriculture aligns with ethical considerations of 
minimizing harm and enhancing environmental stewardship, contributing to more sustainable and 
eco-friendly agricultural systems. 

Future work could significantly benefit from deeper exploration of transfer learning and few-shot 
learning techniques to enhance model scalability and applicability to diverse agricultural datasets. 
Transfer learning involves adapting pre-trained models on large datasets to new, smaller datasets, 
which can expedite the training process and improve performance when labelled data is scarce. 
Implementing transfer learning with models like ResNet-50 or EfficientNet could leverage existing 
knowledge, reducing the need for extensive training data and computational resources. Few-shot 
learning, on the other hand, enables models to learn from a limited number of examples, which is 
particularly useful for rare pest species. Techniques such as meta-learning and prototypical networks 
could be employed to generalize from few samples, enhancing the model's ability to classify new pest 
types with minimal data. Collaborations with agricultural research institutions and pest management 
experts could drive further advancements by providing access to diverse datasets and real-world 
insights. Additionally, open-source contributions through platforms like GitHub or Kaggle can 
facilitate shared resources and collective problem-solving, accelerating innovations in pest detection 
and classification. Such collaborative efforts can help refine algorithms and extend their applicability 
to various agricultural contexts, ultimately advancing the field. 
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