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 ABSTRACT 

 
The purpose of this study is to design a fatigue level monitoring system consisting of a 
monitoring device based on a Wemos D1 Mini microcontroller and a MAX30102 sensor, 
and a monitoring server with Thingsboard IoT Platform and Laravel PHP Framework 
using K-Nearest Neighbor Algorithm for burnout prevention. Design based research was 
used in this study. The monitoring system reads the activity level of the heart rate and 
the time interval between beats using the k-Nearest Neighbor algorithm, the heart rate 
variability value, and the questionnaire results. The monitoring results were delivered 
to the user's email and Telegram app. The monitoring system test results reveal that 
the entire system is functioning properly. However, there are still weaknesses in reading 
activities that require a lot of movement. This was attributed to the appearance of 
motion artifacts in heart rate sensor data obtained using photoplethysmography and/or 
PPG procedures at high wavelengths. From this research, a new alternative method was 
obtained to help maintain and monitor fatigue levels in order to prevent burnout. A 
fatigue monitoring system can be an alternative to preventing burnout in someone 
based on data received by the user.  
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1. Introduction 
 

Burnout is an individual response syndrome caused by stress from excessive work, causing 
changes in the health of sufferers [1-3]. The effects of burnout are not only limited to being physically 
tired or sick but can also be a syndrome that interferes with the sufferer's mentality [4, 5]. The 
phenomenon of burnout is a common occurrence among workers, especially those in the health 
sector [6, 7]. Based on a study conducted a decade earlier, approximately 11% of nurses experienced 
burnout, and many doctors also reported similar issues [3]. In addition to the Covid-19 pandemic, the 
risk of burnout for health workers increased due to the heavy workload, long working hours, lack of 
access to personal protective equipment, and reduced sleep time [8-10]. If not addressed promptly, 
burnout can adversely affect workers, not only in terms of their health but also in their performance 
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outcomes, such as increased absenteeism, impaired cognitive function, decreased work ability, and 
reduced job satisfaction [11, 12]. 

Several researchers have previously conducted research to detect and prevent burnout using 
different methods and parameters. In the fatigue detection system using a smart vest, the parameter 
data analyzed includes ECG data, thoracic electroimpedance, inertia (IMU), SparkFun heart rate data, 
Galvanic Skin Response (GSR) from Grove, and accelerometers. The data analysis uses models based 
on penalized logistic regression and penalized regression [13-15]. In other studies, fatigue detection 
systems built using computer vision have been carried out by analyzing data on eye movements, eye 
and mouth movements, 3D movements, temperature differences, and IMU sensors. The data is 
processed using the Convolutional Neural Network (ConNN) algorithm and time series models such 
as the Naïve Method, Autoregression (AR), Autoregressive Integrated Moving Average (ARIMA), 
Vector Autoregression (VAR), and Vector Error Correction Model (VECM) [16-21]. Many papers 
regarding K-nearest has been well-developed [22, 23]. However, there has been no research using 
the K-Nearest Neighbor algorithm to predict burnout based on several parameters, such as heart rate 
to determine activity level, Heart Rate Variability, and filling out individual data questionnaires to 
determine the fatigue level of each user. 

Due to the problem of the level of fatigue that can cause burnout, it is necessary to find a solution 
to overcome it. Through this research, we propose a monitoring system that can monitor and predict 
the level of worker fatigue using the k-Nearest Neighbor algorithm, which is known as an algorithm 
that is simple, comprehensive, and has high prediction accuracy, so that it is efficient and effective in 
its use [24-26]. In addition, this research uses a device in the form of an activity tracker that is 
supported by a monitoring server for monitoring and predicting fatigue. Thus, in the future, the 
authorities can take preventive action and provide warnings to workers who have the potential to 
experience burnout. 
 
2. Methodology  
 

The design-based research method was applied in this study. This research was divided into four 
stages: a literature review, monitoring system design and manufacture, testing, and system 
evaluation. 
 
2.1 Study Literature 
 

The first stage of this research was to conduct a literature review, which included studies on the 
fatigue of supporting theories, similar research, and related tools, as well as looking for data related 
to field situations and constraints to add input to system development and technical specification 
requirements. Technical literature studies were sourced from articles and journals published in IEEE, 
ResearchGate, and a variety of other publication sources. The medical literature research cited 
papers and journals in PubMed NCBI. 
 
2.2 Design and Manufacturing 
 

In this study, the fatigue detection process carried out by monitoring heart rate parameters with 
a sensor based on the MAX30102 module. This component was an integrated SpO2 and HR 
monitoring module designed for low-noise electronics and equipped with ambient light rejection 
capabilities. The module had been fully validated and came in a compact physical size of 5.6 mm × 
3.3 mm × 1.55 mm with 14 pins. It also had a low-power HR monitor, consuming less than 1 mW of 
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power, and had an ultra-low shutdown current of 0.7 µA. One of its main features was its robust 
motion artifact resilience, which ensured consistent performance even in the presence of strong 
motion disturbances. Furthermore, the module was designed to operate over a wide temperature 
range, from -40 to +85 ◦C. It could be powered by a single 1.8 V supply or a separate 3.3 V supply 
[27]. In addition, we utilized the Wemos D1 Mini Microcontroller to measure heart rate and heart 
rate variability (HRV). Following that, the collected data was transmitted to the server for further 
processing before being presented to the user via the OLED display module. To achieve a small 
design, the third module was designed and constructed on a stacked PCB. Software for device 
monitoring and server monitoring was created during the software design process. On the 
monitoring server, software for monitoring and processing monitoring results was built based on the 
ThingsBoard and Laravel platform and framework. The software on the primary server component 
functioned as a recorder and processor of monitoring results, as well as device and user management 
and prediction based on the monitoring results collected. The Arduino IDE was then used to write 
and design software in the monitoring device's software. The Arduino IDE software was compatible 
with the microcontroller used in this study. 
 
2.3 Testing System 
 

At this stage, testing was performed on the complete system. A monitoring device was tested 
against a comparison device during the trial phase, and a monitoring server was also tested to 
monitor and anticipate fatigue levels. The sensor performance of the monitoring device was tested 
in static and non-static tests and compared to a comparator device, the Mi Band 3 tool. The tests 
included testing the performance of the prediction algorithm utilized as well as the results of the 
subsequent reports and forecasts on the monitoring server. 
 
2.4 Evaluation 
 

The whole system performance was evaluated. As part of the evaluation procedure, the 
performance of the device under development and the monitoring server under development were 
both compared. Then it was appraised based on the whole system's strengths and weaknesses to 
serve as the study's conclusion and suggestions for future research. 
      
3. Results and Discussion 
3.1 Result of Monitoring Device 
 

Figure 1 shows the heart rate reading on the MAX30102 sensor which uses a combination of light 
from the 880nm Infrared LED and the 660nm Red LED to detect the heart rate. 
 

 
Fig. 1. Heart rate reading 
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3.2 Result of Monitoring Device 
 

The monitoring system was successfully created using the IoT Framework Thingsboard and Web 
Apps built using the PHP Framework Laravel, as can be seen in Figure 2. This monitoring system 
consists of two main components in order to make it easier in terms of device management, which 
is an advantage of using Thingsboard. As well as using Laravel to build supporting Web Apps, by 
building custom Web Apps, flexibility and customization of the required functions can be done more 
easily and specifically. 
 

 
Fig. 2. Heart rate reading 

 
The monitoring system can run smoothly both in operating scenarios on a local network using a 

PC device with 4 Cores and 8GB RAM, as well as non-locally using a Virtual Machinet2-micro cluster 
on Amazon AWS EC2 with 1 Core and 1GB RAM. However, due to the utilization of very big 
Thingsboard RAM capacity, two separate instances are required in testing utilizing the AWS EC2 t2-
micro cluster for Thingsboard and Laravel Web Apps. Review Figure 2 shows the dashboard 
monitoring system. 
 
3.3 Device Test 
 

The device test is divided into two parts: a walking test and a running test, the results of which 
are compared to the MiBand 3 tacker.  
 
3.3.1 Non-stress test 
 

The test scenario is carried out on two different test groups. The test is performed by sitting 
quietly and taking readings every three seconds. Table 1 displays the results. There is a difference in 
readings between the two subject groups, with the second subject group having a greater percent 
difference in readings and a greater percent difference in average heart rate than the first group. 
There is more movement than when testing the first group subject due to the incorrect placement 
of the sensor. This influences the motion artifact in the reading of the second, larger subject, which 
influences the final reading.  
 

Table 1 
Walking test result 
Non-Stress Group 1 Group 2 

Avg. difference read 8.10 % 16.34 % 
Avg. heart rate on MAX30102 75.43 BPM 69.29 BPM 
Avg. heart rate on Mi Band 3 79.98 BPM 81.37 BPM 
% 5.69 % 14.85  
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3.3.2 Non-stress test 
 

The test scenario is performed on two groups, one running and one walking, with readings taken 
at every 2-second interval. Table 2 displays the results. The results of the two non-static tests show 
that the motion artifact has a significant impact. This is because of the intensity of the movement or 
shift on the monitoring device. 

 
Table 2 
Running test result 
Non-stress Walking Running 

Avg. difference read 46.05 % 49.80 % 
Avg. heart rate on MAX30102 106.25 BPM 103.08 BPM 
Avg. heart rate on Mi Band 3 121.63 BPM 123.37 BPM 
% 12.64 % 16.45 % 

 
3.4 Prediction Test 
 

Two key parameters are used in the predictions generated by this monitoring system, namely the 
level of fatigue or tiredness and the HRV or heart rate variability value, which is compared to the Elite 
HRV reference number.  
 
3.4.1 Fatigue with k-nearest neigbor algorithm 
 

Complete questionnaire data and monitoring data can be accessed on the Monitoring System 
Web Apps at the address http://www.l0wpass.site/questionary. The data used is the user "user-
2023", because it has the most questionnaires with a range of data on numbers 1-16. Table 3 displays 
the results of the questionnaire obtained. 

 
Table 3 
Dataset of monitoring result and questions 
Parameter level activity Label 

Duration (s) Avg. Bpm Intensive (s) Light (s) Relaxed (s) 

735 98 120 240 360 
1161 100 0 600 540 
2586 90 0 240 2340 
1879 103 60 1260 600 
3603 87 60 480 3060 
915 124 600 300 0 
4863 76 0 120 4680 
7440 76 0 180 7140 
11124 78 0 0 11100 
3054 89 0 360 2700 
6727 84 120 300 6300 
15788 82 0 120 15720 
1493 98 60 720 720 

 
The test results in Table 3 are carried out using every existing piece of data from the dataset, and 

then the data is attempted to be forecasted using a dataset that does not include the previously 
taken data. Table 4 shows the test findings.  

Table 4 shows the test results, which obtained a maximum accuracy of 58% with a value of k = 1 
and a total of 13 questionnaire data points, which is the maximum available questionnaire data for 

http://www.l0wpass.site/questionary
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the user. In testing the k-Nearest Neighbor algorithm to forecast the level of fatigue, the maximum 
accuracy results are at a value of 53.846% at k = 1, however the accuracy results are still relatively far 
from the test results with other k values.  
 

Table 4 
Prediction accuracy test result 
Accuration (%) 

N-data k=1 k=2 k=3 k=4 

1 0 0 0 0 
2 0 0 0 0 
3 33.3 0 0 0 
4 0 0 0 0 
5 0 0 0 0 
6 16.7 16.7 16.7 0 
7 28.6 14.2 14.2 0 
8 37.5 25 37.5 25 
9 44.4 33.3 44.4 33.3 
10 60 50 30 30 
11 45.5 27.3 27.3 27.3 
12 41.7 25 16.7 16.7 
13 53.8 23.1 23.1 23.1 

 
The k-NN algorithm makes predictions by comparing data to k-data that is closest (nearest 

neighbor) in distance, and then taking the results from the label that appears the most from the 
closest k-data. As a result, for the same or close data distance, the k-NN algorithm ignores whether 
the data in the closest k-data are similar or not when compared to the raw parameter data. Because 
of the influence of this distance calculation, its accuracy can fluctuate as the number of datasets 
increases. However, when accuracy improves, it tends to produce a steadier average accuracy.  

 
3.4.2 Monitoring result and final predictions 
 

The results of monitoring and final predictions are sent as a notification to emails, as shown in 
Table 5. 
 

Table 5 
Prediction accuracy test result 
Activity Result 

Studying and working 
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Table 5. Continued 
Prediction accuracy test result 
Activity Result 

Sitting down and static 
testing 

 
 

Browsing, rest and particular  
condition: lack of sleep in the 
last 3 days 

 

 
4. Conclusions 
 

The monitoring device has been successfully created and can be used flexibly, and the device can 
also be operated properly with sufficient accuracy in the process of monitoring activities that do not 
involve a lot of intensive movement. The monitoring system server was successfully created and can 
be operated properly. The process of displaying monitoring data in real time, as well as providing the 
results of monitoring reports and predictions can be carried out as planned. In addition, the process 
of making fatigue predictions can also be carried out in accordance with expectations on the 
monitoring server that was developed, with the caveat that the number of available datasets 
influences the prediction accuracy outcomes. 
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