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Natural rubber (NR) is obtained principally from Para-rubber trees of the species Hevea 
brasiliensis which grow in tropical regions. Using ultra-centrifugation method, fresh 
latex (FL) from Para-rubber trees can be mainly divided into four fractions; an upper 
white layer consists of rubber particles, Frey-Wyssling particles in a yellow or an orange 
layer, C-serum phase and lutiods particles in the bottom fraction [1-3]. The averages of 
rubber particles have diameters of 0.02 to 3.0 micron, and they are protected by a 
complex film containing lipids and proteins [4-8]. The main forces of attraction between 
neighboring rubber particles in latex system can be divided into five force types; 
Structural Forces (SF), Van der Waals Interaction (VWI), Electrostatic Force (EF), 
Exclusion Interaction (EI) and Polymer-Polymer Interaction (PPI) [9]. The porous model 
of rubber structure used to describe moisture transfer was based on the existence of 
two different regions referred to as non-hygroscopic region and hygroscopic region. The 
rubber products drying always produced a considerable shrinkage effect which 
considered in the physical of the product, such as the diffusion coefficient, mass and 
heat transfer. An initial moisture content of raw material, the experimental 
temperature and the drying equipment had affect to the EMC isotherms and the drying 
kinetics. Finally, discussions on the implications of the results for strategies to reduce 
the energy consumption in RSS and STR20 block rubber are also presented. 
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1. Introduction 
 

Polymer of isoprene (C5H8)n is the primary chemical constituent of NR (cis-1,4-polyisoprene). NR 
is an essential raw material for polymer industry and it produced by over 2,500 different latex-
producing crop species [4, 10], such as Euphorbia lactfiua [6], Ficus elastica or the Indian rubber trees 
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[11-13], Hevea brasiliensis or the Brazilian rubber trees [14-16], Parthenium argentatum gray or the 
little desert shrub Guayule [17-19], Ficus carica [20-21], Ficus racemose [22], and Ficus benghalensis 
[23]. The history of NR production shows the attempts to identify alternate sources of rubber both 
tropical and temperate [24-26], but a few crop species known to produce NR is capable of producing 
large amounts of high molecular weight rubber [6, 15].   

NR from Para-rubber trees (the Brazilian rubber trees or Hevea brasiliensis), one of the NR 
species, is an important source of NR due to its excellent physical properties. Fresh NR latex consists 
of approximately 94% rubber hydrocarbon and 6% non-rubber components, for example, fatty acids, 
glycolipids, carbohydrates, phospholipids and proteins [27-29]. The raw NR is largely used in many 
products such as medical gloves, rubber bands, condoms, flexible tubing, toys and vehicle tires [30-
34]. It is presented in form of white latex liquid (FL) when it is tapped and collected from Para-rubber 
trees. The life of fresh NR latex is as short as one day if it is not properly preserved [14, 31, 33-35]. 
Several forms of preserved fresh NR latex have been created to extend its shelf life before it is 
consumed by the production of the products noted above. These forms include the latex production 
such as skim latex (SL) and concentrated latex (CL), the rubber sheets production; ribbed smoked 
sheet (RSS) and air dried sheet (ADS); and the block rubber production such as Standard Thai Rubber 
(STR) 20. In this review, we are focus on the rubber sheets production (ADS and RSS) and STR20 block 
rubber production because they are the highest forms of NR production in Thailand [36].  

There are several parameters such as the major constituents and particle interaction of rubber 
latex, rubber particles, the rubber porous structure, the rubber drying kinetics, etc. would control the 
drying energy consumption and the quality of NR product. The reports of several researchers [37-41] 
presented that the porosity, the product structure (major constituents, product particles and particle 
interaction) and shrinkage have affected to the drying characteristics such as critical water content, 
drying rate, air velocities, drying temperatures and an effective diffusion coefficient (EDC). Besides 
the drying characteristics, the energy consumption and quality of the product has affected to 
production costs [42-43]. The knowledge of the drying process and drying kinetic for maintaining high 
quality products is essential for the optimization of the drying process. Therefore, understanding the 
rubber drying kinetics is necessary to decrease energy consumption and to enhance the quality of 
the products [44-45].  

Generally, moisture transfer in porous media of the natural products occurs mostly in their 
mechanisms and falling drying rate period are described by liquid diffusion. Mechanisms of this 
diffusion were reported by several researchers [46-51]. Addition, Philpott and Walker [52] suggested 
that non-rubber components would prevent moisture transfer on the surface of the rubber sheets 
as same as the report of Ansari et al., [53] and Wichaita et al., [54]. Therefore, the major constituents 
of rubber latex, rubber particles, particle interaction of rubber latex, the rubber porous structure, the 
rubber drying kinetics and the energy consumption of rubber sheets and STR 20 block rubber will be 
reviewed. 
 
2. Major Constituents of Rubber Latex 
 

Latex that flows out of the Para-rubber tree is a complex form of cytoplasm. It is containing a 
suspension of rubber and non-rubber particles in an aqueous serum [3, 5-6, 55-56]. Using ultra-
centrifugation method, Cook and Sekhar [10] report showed that NR latex could be divided into four 
fractions (three particulate fractions and a serum phase); an upper white layer consists of rubber 
particles, Frey-Wyssling particles in a yellow or an orange layer, C-serum phase and lutiods particles 
in the bottom fraction [1-3, 55]. In this section, the study of nature and composition of rubber latex 
is reviewed. Many reports of researchers are discussed as follows. 
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In 1959, the study of Moir [57] presented that NR latex could be divided into eleven zones when 
using ultra-centrifugation method (Figure 1). In this figure, the whitish fraction appeared in the top 
(first) zone. It was consisted mainly of hydrocarbon particles. This result agreed with of Cook and 
Sekhar report [1].  Second zone was situated under the lowest portion of the top zone. It was a 
translucent layer and much small. Third zone was a suspension of rubber particles in the serum. 
Sometimes the first to third zone was called a white upper layer of rubber cream [58]. Forth zone 
was Frey-Wyssling particles in a yellow or an orange layer. The fifth zone was a serum phase named 
C-serum and the sixth to the eleventh zones together was called the bottom fraction. It mainly 
consisted of lutiods particles in grayish yellow gelatinous sediments [1-2, 58].  
 

 
Fig. 1. Schematic shows the latex separation by 
ultra-centrifugation [57] 

 
Investigated by Dai et al., [59], Para-rubber latex could be divided into thirteen layers. In this 

report, the lutiods particles in grayish yellow gelatinous sediments were found to be damaged when 
using isopycnic centrifugation method. The studies of Low and Wiemken [60] presented that Para-
rubber latex could be divided into thirteen fractions as same as the results from Dai et al., [59]. In 
their report, the lutiods particles in the bottom fraction were successfully separated when using ficoll 
separation method. Investigated by Rippel and Galembeck [61], Para-rubber latex from clones of 
Hevea brasiliensis in Brazil could be divided into four fractions as same as the results from Cook and 
Sekhar [1]. For the structure, NR was a complex nanostructured material formed by polymer of 
isoprene, phospholipids, protein and a host of mineral minor components. 

In 2017, the study of Liengprayoon et al., [62] showed that Para-rubber latex from clones of Hevea 
brasiliensis in Thailand (RRIM600 and PB235) were divided into four fractions when through 
successive centrifugation steps and their result agreed with of Cook and Sekhar [1] and Rippel and 
Galembeck [61]. For non-rubber fractions, the lutoid particles were the highest in protein, lipids and 
minerals (mainly Magnesium and Potassium). 
 
3. Rubber Particles 
 

The major component of Para-rubber (Hevea brasiliensis) latex is rubber hydrocarbon particles. 
Figure 2 shows that the rubber particles are usually spherical [6]. The averages of these particles have 
diameters of 0.02 to 3.0 micron, and they are protected by a complex film containing lipids and 
proteins [2, 4-6, 8]. This complex film imparts a net negative charge to the rubber particles 
contributing colloidal stability to the liquid [63-64]. Para-rubber latex has variable composition 
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depending on several factors, for example, age of the tree [65], season [66-67], soil conditions, 
tapping and frequency [68]. In this section, the study of rubber hydrocarbon particles in fresh latex 
of Para-rubber (Hevea brasiliensis) is reviewed. Many reports of researchers are discussed as follows. 

In 1961, the study of Southorn showed that the shape of rubber particles was spherical bodies as 
same as the results from Pakianathan et al., [69] and Cornish et al., [6]. Pendle and Swinyard [70] 
presented that the fresh latex was consisted of rubber hydrocarbon particles which had sizes ranging 
from 0.01 to 5 micron. These particles had mainly size in range of 0.1 to 2 micron.  

After centrifuging, Sakdapipanich et al., [71-72] showed that the fresh latex was composed of 
small rubber particles in range of 0.04 to 0.4 micron with the mean particle diameter of about 0.1 
micron. Those of large rubber particles in concentrated latex were from 0.1 to 5 micron with the 
mean particle diameter of about 1 micron. For Another phase after centrifuging, the serum phase, 
Yeang et al., [73] presented that the serum contained most of the soluble substances including 
organic acids, amino acids, carbohydrates, proteins, inorganic salts and nucleotides-materials. 
 

 
Fig. 2. The rubber particles [6] 

 
4. Particle Interaction of Rubber Latex 
 

Fresh NR latex from the Para-rubber tree is a thixotropic neutral liquid of density around 0.98 
g/cm3. It has a pH of 6.5 to 7.0 and molecular weight distribution 105 to 107 g/mol [74-76]. Besides 
rubber polymers (C5H8)n, NR latex contains carbohydrates, fatty acids, glycolipids, phospholipids, 
proteins, Iutoids, inorganic salts and other components [6, 77-79]. Latex can be maintained by the 
main forces of attraction between neighboring rubber particles that are encased with lipids and 
proteins [80]. In this section, the main forces of attraction between neighboring rubber particles 
(main inter-particle forces commonly appearing in rubber latex) are reviewed. 

In 2002, the study of Quemada and Berli showed that the main forces of attraction between 
neighboring rubber particles in latex system could be divided into five force types; SF, VWI, EF, EI and 
PPI. For the SF or hydrophilic interaction, it was pertinent for majority systems that had an aqueous 
phase. It happened from the greatly hydrophilic surfaces which caused molecular order in the 
contiguous and neighboring water molecules. The superficial hydration leaded to a repulsive force 
between surfaces, which decayed exponentially with a characteristic length [81-84]. For VWI, it 
related to an attractive force between any two bodies of finite mass. VWI were included between 
London forces and the Keesom orientation forces [85-88]. The report of Leite et al., [87] showed that 
VWI was reduced rapidly and it was not relatively important at large distance between center to 
center of particles. For EF, the report of Shubin and Hunter [89] presented that the EF happened from 
the presence of electric charges (either positive or negative) bound at the surface of the particles. In 
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aqueous media, electrically charged particles were surrounded by electrolyte-ions and counter-ions. 
As two particles approach each other, the report of Israelachvili [90] described that the overlapping 
of double layers leaded to long-range repulsive forces due to entropic effect. For interaction in colloid 
system was depletion or EI, the report of Schramm and Shi [86] presented when polymer molecules 
were added to adjacent surfaces, an attractive force was created between the surfaces. This 
mechanism was involved either depletion or bridging, depending on the net interaction between the 
solvent, macromolecules and the particles. If particles were relatively large when compared with the 
polymer, attractive particle-particle forces were arisen by the mechanism of depletion [90-93]. For 
PPI, the reports of Israelachvili [90] and Quemada and Berli [9] showed that this interaction was 
normal to the several colloidal systems, for example, those containing polymer-covered particles 
(absorbed or grafted), star polymers and micro-gels. This interaction related to the thickness of the 
layer formed by the surface to surface distance between cores and the polymer chains got stuck to 
the core. 
 
5. The Porous Structure Modeling 
 

The arrangement of pores within network is also important to transport of moisture. The product 
with different porosity can be affected to moisture adsorption rate and its textural properties [94-
95]. An understanding relation of moisture transfer and its micro-structure prevent the quality 
change in the products [96-97]. In the present, the porous model technique is utilized to describe 
moisture transfer [98-101]. This technique is based on the existence of two different regions (non-
hygroscopic and hygroscopic). For the hygroscopic region, the report of Sanavia et al., [102]; Harun 
et al., [103] and Goyeneche et al., [104] presented that this region was characterized by the exclusive 
presence of bound water. For the non-hygroscopic region, the report of the report of Harun et al., 
[103]; Venil et al., [105] and Chen et al., [106] presented that this region had free liquid water 
occupied the major portion of the pores in the medium and this water was retained by capillary 
forces. Note: the bound waters were adsorbed on the walls of the solid structure by EF and VWI 
under the form of multi-molecular layers for both regions (non-hygroscopic and hygroscopic). 

For the rubber porous structure, Figure 3 shows the large void spaces between pore junction and 
pore-throat systems. In this figure, pore body systems are consisted of the large void spaces. 
Therefore, pore-throat systems are consisted of elongated void spaces connecting the large void 
spaces [109-111]. Two reports of researchers are discussed as follows. 

Studied by Cousin et al., [111], the author presented for the drying condition of crumb rubber. 
The mechanisms and models of crumb rubber producing STR20 were investigated by determining 
the capillary forces, relative humidity and temperature of both the rubber structure and the ambient 
air. This result showed that the drying rates of these samples varied with the rubber structure, 
relative humidity, drying time and temperature. The report of Naon et al., [112] showed that the 
drying of NR and developed an empirical model to predict the conditions for drying. This result 
showed that the drying rates of NR varied with relative humidity, drying time and temperature and 
it was similar to the results from Cousin et al., [111].  

During drying, the researchers formulated the multi-porous media models to describe the mass 
and heat transfer process. These models considered for all phases of porous: gas, liquid water, and 
solid [113-115]. Air and water vapor was the components of gas phase. Figure 4 shows the schematic 
of the porous media and the associated modes of transport. The volume fraction of pores in a 
representative elementary volume (REV) of the material at any time is denoted by porosity, as 
follow 
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where wV  is the volume occupied by liquid water in the REV and gV  is the volume occupied by 

gas phases. 
 

  
Fig. 3. Schematic shows large void spaces 
between pore junction and pore-throat 
systems [107] 

Fig. 4. The porous media and the 
associated modes of transport [108] 

 
When the porosity of the product was changed, the structure of it was changed due to 

deformation. The volume of two phases (liquid water and gas) was changes. In contrast to the volume 
of the solid phase, it was constant [116]. So, the porosity,  at any time in a deforming medium can 
be calculated by Eq. (2). 
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where 0  is the initial porosity and 0V  is the volume of a REV. 

For the transportable phases, mass balance equation (MBE) includes the effects of binary 
diffusion (gas phase), capillary flow (liquid phase) and bulk flow (convection). For the liquid water 
phase, mass conservation equation (MCE) includes the phase change, capillary flow, and bulk flow. 
So, the equation is as Eq. (3) [117-118]. 
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where wc  is the water phase concentration, wv  is the velocity of water phase, sv  is the velocity of 

solid phase, D  is the capillary diffusivity and N  is the volume of the evaporation rate. 
Similarly, the continuity equation for the gas phase can be given by Eq. (4). 
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where gc  is the gas phase concentration, and gv  is the velocity of gas phase. 
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Thus, MBE for the vapor component of the gas phase includes the phase change, binary diffusion 
and bulk flow can be written as Eq. 5) [118-119]. 
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where vc  is the vapor concentration, gS  is the gas phase saturation, C  is the molar density, g  is 

the gas phase density, aM  is the molecular weight of air, vM  is the molecular weight of vapor, gD  

is the effective gas diffusivity and v is the total velocity. 

The vapor concentration, vc  is calculated from the relationship between the mass fraction of 

vapor with respect to total gas, v  and the gas phase concentration, gc . The equation can be given 

by Eq. (6). 
 

gvv cc =
 (6) 

 

Similarly, ac  is the concentration of air and it is calculated by Eq. (7).  

 

gaa cc =
 (7) 

 

where a  is the mass fraction of air with respect to total gas and it is calculated by Eq. (8). 

 

va  −=1  (8) 

 
The report of Halder et al., [120] showed that the porous media incorporates the change of phase 
between liquid water and vapor. This phenomenon was called condensation or evaporation. The 
equation can be given by Eq. (9). 
 

RT

M
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where evk  is non-equilibrium evaporation constant, vp  is the vapor pressure, *

vp  is the equilibrium 

vapor pressure, R  is the universal gas constant and T  is the condensation or evaporation 
temperature.  

Studied by Yutthana Tirawanichakul and Supawan Tirawanichakul [44], the author presented for 
MBE of the crumb rubber producing STR20. During drying, their report assumed that the shrinkage 
of samples was negligible and the moisture was transferred by liquid diffusion. Thus, the mass 
transfer between crumb rubber and an inlet hot air can be calculated by Eq. (10). 
 

mixfif WrMMW +−= )(
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where fW  is humidity at final condition, mixW  is humidity of an inlet air temperature at the chamber, 

iM  is the initial moisture content, fM  is the moisture content at final condition and r  is the ratio 

of dry sample mass to dry air mass.  
The report of Tekasakul et al., [121] showed that the equations governed mass and heat transfer 

of rubber sheets. During drying, their report assumed that the radiation effects were negligible as 
same as the shrinkage and deformation of the rubber sheets. Therefore, the equations were as 
follows [122-125]. 
 

)(
)(1

T
t

T

r

=




  
(11) 

  

)(
)(1

M
t

M

Dr

=




 
(12) 

 

where r  is the thermal diffusivity of rubber sheet; T  is the temperature; rD  is the water diffusivity; 

and M  is the moisture content. 
For the water diffusivity of rubber sheets, it can be calculated by Eq. (13) [126]. 
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For energy conversation equation (ECE), it is derived from the first law of thermodynamics. For 

the gas phase, energy balance equation (EBE) is as Eq. (14) [125, 127-128]. 
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where gI )(  is the specific internal energy (SIE) of the gas per unit volume of gas, g  is the gas 

pressure, gV  is the gas volume, vj  is the sum of diffusive fluxes (SODF) of the vapor and hj  is the 

sum of diffusive heat fluxes (SODH). 
 

vag III )()()(  +
 (15) 

 

where aI )(  and vI )(  is the sum of the corresponding specific energies of dry air and vapor, 

respectively. 
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where aj  is the SODF of air.  

 
For Eq. (15) and Eq. (16), this equation can be assumed by Eq. (17). 
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where ap  is air pressure, vp  is vapor pressure, aV  is the air volume and vV  is the vapor volume. 

Similarly, EBE for the water phase can be calculated by Eq. (18) [125, 127-128]. 
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where wI )(  is the SIE of the water per unit volume of water, hwj  is the SODH of the water, w  is 

the unit volume of water and wq  is the diffusive heat fluxes in water phase. 

And EBE for the solid phase can be calculated by Eq. (19) [125, 127-128]. 
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where sI )(  is the SIE of the solid per unit volume of solid, hsj  is the SODH of the solid and s  is the 

unit volume of solid phase.  
For EBE of the crumb rubber producing STR20 producing STR20, the report assumed that the 

temperature difference between air and grain of the sample was negligible (this sample was constant 
internal temperature). Thus, EBE can be calculated by Eq. (20) [44]. 
 

eqreqvfgmixeqarmixvfgmixmixa TrcTchWTcTrcTchWTc ***

0

*** )()( +++=+++
 

(20) 

 

where fgh  is the specific evaporated enthalpy, *

vc , *

ac  and *

rc  is the specific heat capacity (SHC) of 

vapor, air and wet product, respectively. eqT  is an equilibrium temperature and mixT  is an inlet air 

temperature at the chamber. 
 
6. The Rubber Drying Kinetics 
 

The drying of agricultural products such as rubber, vegetables and fruits, always produces a 
considerable shrinkage effect. This phenomenon considers in the physical of the product, such as the 
diffusion coefficient, mass and heat transfer. For some research reports [31, 37, 129-131], presented 
that shrinkage effect could be considered as directly related to the water volume removed during 
drying process. Other authors [38, 40, 42-43] had proposed a further component to the shrinkage 
phenomenon during drying besides the volume reduction due to the loss of moisture such as the 
mechanical forces [39, 132-134]. However, the mechanical shrinkage could be neglected if the 
delineation was focused on the drying kinetics [133, 135-137].    

The basic method which describes the interaction between an agricultural material and water is 
the relationship between the water content of the mixture of water and material and the water 
activity, at a certain pressure and temperature [138-141]. This relationship is called the moisture 
sorption isotherm. It is an essential means for predicting the quality changes of products and 
evaluating chemical, physical and micro-biological stability during processing [142], as well as during 
storage. Moisture sorption isotherms are generally sigmoid in shape, a result of several basic 
interacting mechanisms of water binding. Some typical moisture sorption isotherms are shown in 
Figure 5. As temperature increases the amount of water adsorbed by a product increase and the 
isotherms shift upwards [143]. Experimental data can be fitted into models or equations that describe 
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the moisture sorption isotherms in different ranges of relative humidity. Many researchers have 
determined the moisture humidity relationship for the rubber product, such as crumb rubber [144]; 
rubber stick [145] and rubber sheets [141].   

Several methods are available for determination of water sorption isotherm (WSI). These 
methods may be divided into three categories: gravimetric, hygrometric and Nano-metric. Among 
these methods, gravimetric method is simplest to implement in a laboratory [141-142]. The 
gravimetric method involves the measurement of weight changes that can be measured both 
discontinuously and continuously in static and dynamic systems [145-146].   
 

 
Fig. 5. The typical moisture isotherms for agriculture 
products [143] 

 
The moisture content of the product in equilibrium with air is known as the equilibrium moisture 

content (EMC) and the relative humidity of air as equilibrium relative humidity (ERH). The relationship 
between vapor pressures, water activity and ERH is expressed as Eq. (21). 
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p
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where wa  is water activity, p  is the partial pressure of water vapor and 0p  is the vapor pressure of 

pure water at the same temperature. 
For EMC of the rubber product, many researchers are determined by using static systems 

method; SSM [141, 147]. EMC is determined using saturated salt solution (SSS) such as Lithium-
Chloride (LiCl), Sodium-Chloride (NaCl) and Potassium-Iodide (KI), etc. Equations for fitting WSI in 
agriculture products are of interest in many aspects of products preservation. Many Researchers 
attempted to describe the WSI mathematically. While some models have been derived theoretically 
based on thermodynamic concepts and others are extended or modified forms of these models. 
Table 1 presents the widely mathematical models. In this section, the review of the study of the EMC 
of the crumb rubber is presented. The reports of researchers are discussed as follows. 

In 2007, Tirawanichakul et al., [126] studied and developed the mathematical model of important 
parameters which affecting the crumb rubber producing STR20 drying process in terms of EMC. The 
EMC isotherms of crumb rubber were calculated by using SSM at temperature of 35, 40, 50, 55, and 
60°C. The SSS were Ammonium-Sulfate ((NH4)2SO4); Lithium-Chloride (LiCl); Potassium-Nitrate 
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(KNO3); Sodium-Chloride (NaCl); Magnesium-Nitrate Hexahydrate (Mg(NO3)2
.6H2O) and Magnesium-

Chloride Hexahydrate (MgCl2.6H2O). Four mathematical models; Chung and Pfost [148], Halsey [149], 
Henderson and Kaleemullah [150-152]; were used for prediction of the experimental values. This 
report presented that the model, namely Henderson was the most appropriate model for explaining 
the EMC isotherms. In contrast to Tirawanichakul et al., [44, 147] studied and developed the 
mathematical model of important parameters which affecting the STR20 drying process in terms of 
EMC. The EMC isotherms of crumb rubber were calculated by SSM among surrounding temperature 
of 40-60oC provided to RH surrounding of 10-90%. The SSS were LiCl; (MgCl2.6H2O); (Mg(NO3) 2

.6H2O); 
(KNO3) and (NaCl). This report also depicted that modified Halsey model was suitable in used for 
developing the crumb rubber producing STR20. The report of Tirawanichakul et al., [153] studied and 
developed the mathematical model; namely Freundlich, B.E.T., Oswin, Smith, Chung and Pfost, 
Iglesias and Chirife, Modified Henderson, Modified Halsey, Modified Oswin and Modified GAB; of 
important parameters which affecting the STR20 drying process in terms of EMC. The report 
presented when decreasing of temperature at constant relative humidity (RH), the EMC value 
increased. The EMC curves of STR20 presented that the EMC value was dependent on temperature. 
This report also depicted that the model, namely Modified Oswin was the most appropriate model 
for explaining the EMC isotherms. For rubber sheets, the report of Tirawanichakul et al., [126] used 
Four mathematical models, namely Chung and Pfost, Halsey, Henderson and Kaleemullah; for 
prediction of the experimental values. The result presented that the model, namely Halsey was the 
most appropriate model for explaining the EMC isotherms. 

In 2011, Tasara et al., [154] presented that the EMC of rubber sheets using SSM at temperature 
of 40, 50, 55, and 60°C, all of the SSS provided to RH surrounding of 10-90%. The six mathematical 
models were Halsey, Oswin, GAB, Modified Oswin, Henderson and Smith which using to fit with the 
data of experiment. The result showed that the model, namely Modified Oswin was the most 
appropriate model for explaining the EMC isotherms. The report of Dejchanchaiwong et al., [155] 
used four mathematical models, namely Modified Halsey, Modified Oswin, Modified Henderson and 
Modified Smith; for prediction of the experimental values. The EMC isotherms of rubber sheets were 
calculated by SSM among surrounding temperature of 40-60oC provided to RH surrounding of 10-
90%. The SSS were LiCl; MgCl2

.6H2O; Mg(NO3) 2
.6H2O; KNO3 and NaCl. The result indicated that the 

model, namely Modified Halsey was the most appropriate model for explaining the EMC isotherms. 
Jeentada et al., [141] studied and developed the mathematical model of important parameters which 
affecting the rubber sheet drying process in terms of EMC. The EMC isotherms of rubber sheets were 
calculated by SSM among surrounding temperature of 40-70oC. The SSS were LiCl; MgCl2.6H2O; 
Mg(NO3)2

.6H2O; (NH4)2SO4; NaCl and Potassium-Iodide (KI). Twelve mathematical models, namely 
Oswin, Modified Oswin, Halsey, Modified Halsey, Henderson, Modified Henderson, Peleg, Chung and 
Pfost, Modified Chung-Pfost, GAB, Modified GAB and Henderson–Thompson, were used for 
prediction of the experimental values. This report showed that the model, namely Peleg was the 
most appropriate model for explaining the EMC isotherms.  

The researchers accept that the drying phenomenon of products during the falling rate time is 
controlled by the mechanism of vapor and liquid diffusion [39, 134]. A mathematical modeling of 
thin-layer drying models describe the drying phenomenon of these materials mainly fall into three 
categories namely, empirical, semi-theoretical and theoretical. Empirical and semi-theoretical drying 
equations consider only external resistance to moisture transfer resistance between air and product 
while theoretical drying equation takes into account only internal resistance to moisture transfer 
[150, 156].  
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Table 1 
Equations describing the sorption equilibrium isotherms  
Name Equation* Reference 
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* A , B , C  and D  are the equation constants. 

 
Many Researchers attempt to describe the drying phenomenon based on empirical drying 

concepts. Thus, some of the widely used mathematical models for empirical drying equation are 
presented in Table 2. In this section, the study of the mathematical models for NR drying is reviewed. 
Many reports of researchers are discussed as follows.  

For crumb rubber producing STR20, the report [44] presented that the mathematical model; 
namely Henderson and Pabis was the most appropriate model for explaining the rubber sheet drying. 
Moreover, the mathematical model, namely Logarithmic was the best fitted model for thin-layer 
crumb rubber producing STR20 drying by hot air temperature of 110-130oC. The study of Xiang Ng et 
al., [165] showed that the mathematical model, namely modified Henderson and Pabis was the best 
fitted model for thin-layer crumb rubber producing STR20 drying. Their result was different to the 
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result from Yutthana Tirawanichakul and Supawan Tirawanichakul [44] when this crumb rubber in 
their experiment was dried by vacuum oven at temperature of 80-100oC.  
 

Table 2 
Equations describing the thin-layer models 
Name Equation* Reference 

Herderson and Pabis )exp( ktaMR −=  
[151] 

Modified Herderson and Pabis )exp()exp()exp( htcgtbktaMR −+−+−=  
[166] 

Logarithmic bktaMR +−= )exp(
 

[167] 

Newton )exp( ktMR −=  
[168] 

Page )exp( nktMR −=
 

[169] 

Sharma )exp()exp( 21 tkbtkaMR −+−=
 

[44] 

Two-term exponential )exp()exp( 21 atkbtkaMR −+−=
 

[170] 

Verma )exp()exp( gtbktaMR −+−=
 [44] 

Wang and Singh 21 btatMR ++=  
[171] 

* MR  is moisture ratio. a , b , c , k , 1k , 2k , g , h  and n  are the equation constants. 

 
For rubber sheet, Yutthana Tirawanichakul and Supawan Tirawanichakul [44] studied the drying 

kinetics of rubber sheets. The report showed that the mathematical model; namely Page was the 
most appropriate model for explaining the rubber sheet drying. The report of Dejchanchaiwong et 
al., [155] used twelve drying kinetics of mathematical models, namely Page, Overhults, 
Approximation of diffusion, Two term, Weibull Distribution, Midilli et al., Verma et al., Hii et al., Two 
terms exponential, Modified Henderson and Pabis, Modified Page and Modified Overhults; for 
prediction of the experimental values. The report showed that the mathematical models; namely 
Weibull Distribution and Modified Henderson and Pabis were the most appropriate models for 
explaining the rubber sheet drying by hot air and green-house gas drying at temperature of 45-55oC, 
respectively. Ekphon et al., [172] studied the drying kinetics of rubber sheets using hot air and 
conventional natural drying. An initial moisture content of the experimental sheet ranging of 23-40% 
dry-basis was dried until the final moisture content reached to 0.15% dry-basis by air flow rate of 0.7 
m/s and temperature of 40-70°C. Ten mathematical models, namely Page, Overhults, Logarithmic, 
Weibull Distribution, Approximation of diffusion, Hii et al., Verma et al., Modified Page, Modified 
Henderson and Pabis and Modified Overhults were used for prediction of the experimental values. 
The results presented that the mathematical models; namely Verma et al., and Approximation of 
diffusion were the best fitting models for describing the drying kinetics of rubber sheets with the hot 
air and conventional natural drying, respectively. In 2013, Jeentada et al., [173] studied and 
developed the mathematical model of important parameters which affecting the drying kinetics of 
the rubber sheet. Ten mathematical models, namely Newton, Page, Henderson and Pabis, 
Logarithmic, Weibull Distribution, Midilli et al., Verma et al., Two terms exponential, Modified 
Henderson and Pabis and Wang and Singh were used for prediction of the experimental values. This 
report showed that the model, namely Modified Henderson and Pabis, Midilli et al., Verma et al., 
Weibull Distribution and Page were the suitable model for explaining the drying kinetics. Studied by 
Pianroj et al., [174], a hybrid solar-electrical dryer was built for studying the drying kinetics of rubber 
sheets. The report presented that the mathematical model; namely modified Henderson and Pabis 
was the best fitted model for thin-layer rubber sheet drying at temperature of 40-60oC. The report 
of Dejchanchaiwong et al., [175], the apparatus in their research was indirect solar and mixed-mode 
dryers. Ten mathematical models, namely Page, Henderson and Pabis, Modified Page, Modified 
Henderson and Pabis, Weibull Distribution, Logarithmic, Diffusion approach, Verma et al., Two terms 
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and Hii et al., were used for prediction of the drying kinetics of the rubber sheet. The report showed 
that the mathematical model, namely Hii et al., was suitable model for explaining the drying kinetics 
of rubber sheet.  

For effective diffusion coefficient, effD , determination, the assumption that the resistance to 

moisture flow is uniformly distributed throughout the interior of the homogeneous isotropic 

material. effD  is independent of the local moisture content and if the volume shrinkage is negligible. 

From Fick’s second law, the equation can be determined by Eq. (22). 
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where M  is the moisture content and t is the adsorption time. 
Crank [176] studied the analytical solutions of this equation for various regularly shaped bodies 

such as an infinite slab, a cylinder and a sphere. The partial differential equation of moisture diffusion 
for the drying product considered the geometric of the material that was diffused inside the body 
and they were calculated by Eq. (23) to Eq. (25). 

For infinite slab shape: 
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where eqM  is moisture content when it is in equilibrium at the given relative humidity level, iM  is 

the initial moisture content, tM  is the moisture content at time, n  is the number of terms of the 

series, and L  is the slab thickness. 
For finite cylindrical shape:  
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where r  is the radius and n  is the positive roots of the first Bessel function of order zero. 

For spherical shape: 
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effD  is conventionally described by the Arrhenius-type equation as Eq. (26). 
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where 0D  is the Arrhenius-factor, R  is the ratio of dry sample mass to dry air mass and absT  is the 

absolute temperature. 
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In 2007, the study of Tirawanichakul et al., [126] showed that the diffusion models of crumb 
rubber producing STR20 drying could be determined by non-linear regression analysis. When their 

resulting data were substituted into the analytical solution of Crank [176] and Luikov [177], effD  of 

this crumb rubber could be defined as Eq. (27) to Eq. (29). 
For infinite slab shape: 
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For finite cylindrical shape: 
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For spherical shape: 
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From the results of a correlation coefficient, 2r , they suggested that the estimations of the 
effective diffusion coefficient obtained for infinite slab shape had a good relation to the experimental 
value. This result agreed with Yutthana Tirawanichakul and Supawan Tirawanichakul [44] report. 

For other initial moisture content and rubber product study, Tirawanichakul et al., [147] studied 
the diffusion models of natural rubber drying namely, crumb rubber producing STR20 and rubber 

sheet. In this experiment, they assumed these samples had an infinite slab shape. effD  equation of 

these samples that had the initial moisture content ranging of 30-65% dry-basis could be written as 
Eq. (30) to Eq. (31). 

For crumb rubber producing STR20: 
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For rubber sheet: 
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These experiments suggested that the initial moisture content had effect on effD . 

 
7. The Energy Consumption 
 

There are many ways to reduce the energy consumption in NR production. In the latex production 
such as SL and CL, 90% of the electricity is used in the centrifugation process (Thai Department of 
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Industrial Work (TDIW), 2001). A report by TDIW showed that an installation of inverters to 
centrifugal machines could reduce the energy consumption. Addition, this report presented that 
changing the clutch and gear systems machines (old machines) with the variable pulleys machines 
(new machines) could reduce 20% of electricity consumption.  

For RSS production, the position and size of gas supply ducts and ventilating lids are often not 
optimal in the smoking chambers [14, 32, 34, 178]. This problem has significantly affected to the hot 
gas circulation in the rubber smoking chambers. The resulting large temperature variations and non-
uniform flow in the chambers lead to increase the energy consumption [14, 178]. The energy 
requirement can decrease by moisture control of the Para-rubber fuel wood and installation of 
insulators in drying chambers. Installation of insulators at the chamber can decrease the fuel 
consumption (the para-rubber wood) about 770 kg per times [14]. Designing the drying chambers 
with appropriate hot gas circulation and temperature distribution can decreased the energy 
consumption in the rubber sheets drying process [14, 33]. In this section, the study to reduce the 
energy consumption in RSS production is reviewed. Many reports of researchers are discussed as 
follows. 

Kalasee [14] is the first report to improve on energy consumption in RSS production. The report 
showed that improvement the RSS chamber by Computational Fluid Dynamics Technique (CFD) could 
be reduced the energy consumption in RSS production. The uniform flow and temperature in the RSS 
chamber led to decrease the energy consumption about 30%. Investigated by Promtong [32], CFD 
technique was used to improve temperature and air velocity flowing in the RSS chamber. The results 
showed that the uniform flow and temperature could decrease the energy consumption. It was 
similar to the results from Kalasee [14]. The studies of Promtong and Tekasakul [178] presented that 
non-uniform flow and temperature in RSS chamber had affected to the addition of energy 
consumption. Improvement the RSS chamber by using CFD Tekasakul and Promtong [178] could help 
the RSS cooperatives (low-cost rubber factory in Thailand) to achieve at least a 31.25% saving in 
energy. The report of Tasara et al., [154] presented that a new design chamber, namely two-stage 
drying strategy could be decreased the energy consumption by the exhaust air recycling. For their 
chamber, the exhaust air recycling in RSS process was 80-95%. Dejchanchaiwong et al., [179] 
presented that CFD technique modelling of single-phase and multi-phase flow could be used to 
simulate the relative humidity and temperature in the RSS chamber. Dejchanchaiwong et al., [180] 
designed and constructed a new RSS chamber according to the modified RSS room by using CFD. The 
results showed that the better air flow and temperature distribution could be reduced the drying 
time from 72 hours in an older RSS room to 48 hours in this new design chamber. In 2019, 
Dejchanchaiwong et al., [180] presented that the modified RSS chamber was able to save the 
fuelwood; Para-rubber wood; consumption. This chamber was saving the wood consumption 67% by 
comparison with a conventional RSS room (the 1994 model). The report suggested that this chamber 
was suitable for the rubber cooperative, represented a good SEC and had the financial return. The 
report of Promtong [181] presented that a new design chamber, namely the new two-stage forced 
convection system could save 35% of fuel consumption and 25% of RSS production time compared 
with the original an older RSS chamber.  

For STR 20 production, the report by Office of Industrial Economics [182] presented that the 
regular maintenance of shredder machines and cutters and using the high efficiency motors could 
decrease electricity energy consumption about one-third. The energy requirement could reduce by 
controlling of the temperature drying and the moisture of crumb rubber [44, 182]. The report of 
Khongchana et al., [45] suggested that drying the crumb rubber for 40 minutes at 130oC and followed 
by 180 minutes drying at 110oC has a lower specific energy consumption and better quality as 
compared to current practice in many factories.  



Journal of Advanced Research in Applied Sciences and Engineering Technology 

Volume 29, Issue 2 (2023) 159-184 

175 
 

Recommendation of this review, CFD technique is very interesting method to improve the rubber 
processing room (RPR). Temperature and air flow distribution inside Industrial scale solar dryer using 
CFD simulation was investigated by Noh et al., [183]. Eakvanich et al., [184] used the CFD technique 
to improve the performance and the temperature distribution of a commercial domestic refrigerator 
with the latent heat storage materials. Furthermore, the experimental and CFD simulation results 
shown that the electricity consumption and the human thermal comfort in the radiant cooling room 
with the solid desiccant dehumidifier were better [185]. The CFD technique can be used to decrease 
the energy consumption and production time. The study of the relative humidity, air flow and 
temperature distribution on modification of the RPR by CFD technique field is very interesting in the 
future. 
 
8. Conclusions 
 
This review focuses on literature findings the major constituents of rubber latex, rubber latex 
particles, particle interaction of rubber latex, the rubber porous structure, the rubber drying kinetics 
and the energy consumption of RSS and STR20 block rubber. The following are the conclusions and 
recommendations from the review:  

I. Latex that flows out of the Para-rubber tree is a complex form of cytoplasm. It is containing 
a suspension of rubber and non-rubber particles in an aqueous serum [3, 5-6, 55-56]. 
Using ultra-centrifugation method, latex can be mainly divided into four fractions an 
upper white layer consists of rubber particles, Frey-Wyssling particles in a yellow or an 
orange layer, C-serum phase and lutiods particles in the bottom fraction [1-3]. 

II. The major component of Para-rubber latex is rubber hydrocarbon particles. The particles 
are usually spherical [6]. The averages of these particles have diameters of 0.02 to 3.0 
micron, and they are protected by a complex film containing lipids and proteins [2, 5, 8]. 
Para-rubber latex has variable composition depending on several factors, for example, age 
of the tree [65], season [14, 66-67], soil conditions, tapping and frequency [68]. 

III. Fresh NR latex from the Para-rubber tree is a thixotropic neutral liquid of density around 
0.98 g/cm3. It has a pH of 6.5 to 7.0 and molecular weight distribution 105 to 107 g/mol 
[75-76]. Besides rubber polymers (C5H8)n, NR latex contains carbohydrates, fatty acids, 
glycolipids, phospholipids, proteins, Iutoids, inorganic salts and other components [6, 77-
79]. Latex can be maintained by the main forces of attraction between neighboring rubber 
particles that are encased with lipids and proteins [80]. The main forces of attraction 
between neighboring rubber particles in latex system can be divided into five force types; 
SF, VWI, EF, EI and PPI [9].  

IV. The porous model technique is utilized to describe moisture transfer [98-101]. This 
technique is based on the existence of two different regions (non-hygroscopic and 
hygroscopic).    

V. The drying of agricultural products such as rubber, vegetables and fruits, always produces 
a considerable shrinkage effect. This phenomenon considers in the physical of the 
product, such as the diffusion coefficient, mass and heat transfer. In this review was able 
to conclude that the different in an initial moisture content of raw material, the 
experimental temperature and the drying equipment had affect to the EMC isotherms 
and the drying kinetics.  

VI. There are several ways to reduce the energy consumption in rubber production. For RSS 
production, the resulting large temperature variations and non-uniform flow in the 
chambers lead to increase the energy consumption [14, 178]. The energy requirement 
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could decrease by moisture control of the Para-rubber fuel wood and installation of 
insulators in drying chambers [14, 178]. Installation of insulators at the chamber could 
decrease the fuel consumption (the para-rubber wood) about 770 kg per times [14]. 
Designing the drying chambers with appropriate hot gas circulation and temperature 
distribution could decreased the energy consumption in the rubber sheets drying process 
[14, 33]. For STR20 production, the report by Office of Industrial Economics [182] 
presented that the regular maintenance of shredder machines and cutters and using the 
high efficiency motors could decrease electricity energy consumption about one-third. 
The energy requirement could reduce by controlling of the temperature drying and the 
moisture of crumb rubber [182, 145].  

 This review article would be helpful to the researchers, scientists and students who are working 
and studying on a field in forms, structure, physiology and biochemistry of NR and the drying kinetics 
and energy consumption of NR drying product. 
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