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The significance of human sports activities recognition (HSAR) in many computing 
applications, including sports analytics, smart surroundings, and healthcare monitoring 
is huge. The current use of vision sensors for HSAR is a difficult task due to the intricate 
movements involved in sports and fitness workouts, as well as fluctuations in 
illumination conditions. Therefore, a comprehensive review of machine learning 
algorithms (such as XGBoost, Random Forest (RF), Decision Trees (DT), and K-Nearest 
Neighbors (KNN)) and their usage for human sports activities classification based on 
sensor data called ML-HSAR is presented in this article. A dataset containing 19 different 
human activities gathered from 8 different people through different types of sensors 
was used for this work; the dataset contains activities like sitting and standing, as well 
as other activities that require serious movements, such as running, cycling, and playing 
basketball. This study primarily aims to determine the performance of the considered 
ML models in accurately classifying these activities found in the dataset. The training of 
the algorithms and the subsequent evaluation were done on the segmented sensor 
data, effectively leveraging the dataset’s temporal aspect. In addition to the presented 
results for each of these algorithms, the limitations of each algorithm and their 
strengths in handling the complexities involved in HSAR were also presented. The 
contribution of this analysis is towards the understanding of the most appropriate ML 
models for HSAR tasks; it also offers valuable insights for future research and practical 
applications.  
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1. Introduction 
 

Machine learning (ML) and image processing researchers have shown interest in investigating 
advanced video analysis, specifically for security reasons. Human sports activity recognition (HAR) 
strives toward automatic tracking and identification of various human postures and sporting 
movements from still images or real-time recordings [1, 2]. HSAR systems can be used in many areas, 
including smart homes, crime prevention, healthcare monitoring, sports support, and security 
surveillance. Numerous recording devices (installed) is required in public places for these 
applications, such as stadiums, public gardens, etc. to capture the required number of videos [3]. 
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Automatic systems are critically needed for video content analysis because it takes a long time and 
money for human eyes to analyze these recordings. The primary objective of these video-detecting 
systems is to autonomously recognize and comprehend interesting occurrences inside certain 
sequences. As a result, rather than focusing on entire settings, these HSAR applications primarily 
concentrate on the subjects' typical social behavior [4]. 

People’s behaviors in many scenarios can be detected and classified into two main groups using 
automated systems; the groups include activities that are usual and activities that are unclear or 
suspicious (out-of-character). For instance, visual monitoring devices (sensor data or video analysis) 
are used in interactive systems, sports analytics, and healthcare monitoring to examine 
patient's usual and unusual behavior. Automatic detection of desperate situations triggers alarms to 
draw the attention of medical personnel. Violence cam detectors can prompt quick responses in the 
context of crime prevention, such as the prompt deployment of security personnel in response to 
suspected fights, domestic violence, and violent strikes [5]. In HAR, smart home implementation aims 
to increase home security for people by continuously monitoring and assessing their behavior. 
Players can also use HAR-based sports assistance systems to assess and critically monitor their indoor 
workout routines, fitness levels, and interactions. A human operator is required in traditional security 
surveillance systems to supervise and handle a number of video cameras, but this process is costly 
and prone to error. On the other hand, HSAR has significant promise for effectively managing 
surveillance systems at reduced costs, with more precision and requiring fewer human interventions. 
The HSAR technology generates intelligent virtual worlds that benefit humans in numerous ways [6]. 

Four fundamental modules, preprocessing, posture tracking and estimation, cue extraction, and 
recognition, make up the majority of earlier HSAR systems [7]. The pre-processing module removes 
extraneous information, such as noise or distortion, and focuses incoming data, such as video or 
signal, on the intended region of interest. Salient area detection is used by the posture estimation 
and tracking module to identify observably important human areas and to track important body parts 
that are represented by labels or masks in a series of frames [8]. During the phase of human action 
recognition, the Cues extraction module facilitates the portrayal of a human silhouette by utilizing 
ideal measurement units. In the identification module, distinctions between various postures are 
finally noted, and incoming data sequences are used to train and test a classifier engine to identify 
activity classes. Several popular machine-learning techniques are used in different ways to improve 
HSAR systems. Even though researchers have put in a great deal of work, HSAR still faces many 
difficulties [9]. These difficulties include uneven human movement, variations in human height and 
shape in images, dynamic backgrounds, lighting issues, feature selection techniques, the articulated 
nature of the body, and different scales of normalization [10]. Hence, this work proposed a new 
model utilizing four machine learning models to make it easier to classify human sports activities in 
real-time using sensor data. This capability is especially valuable for applications that demand prompt 
and immediate activity recognition, including healthcare monitoring, sports analytics, and interactive 
systems.  

The objectives of this paper are to propose an HSAR model that can classify different human 
sports activities from sensors using several ML algorithms. Thus, a set of steps must be involved to 
achieve that, starting by acquiring a suitable dataset, into finally generating the classification results 
and evaluating the chosen models. Therefore, the contributions of the study can be summed as 
follows: 
 

i. The development of these ML models facilitates a thorough assessment and comparison 
of their performance in classifying the 19 different classes of human sports activities. This 
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evaluation aids in understanding the advantages and weaknesses of the selected models 
to identify the most optimal approach for achieving accurate classification. 

ii. The used dataset is large considering the total number of samples, and it is also diverse in 
terms of the different human activities that it contains (19 different classes exist within the 
dataset). The dataset also contains data gathered in varying lighting conditions and 
environment, thereby improving its diversity.  

iii. The implementation and refining of these ML models aided in obtaining higher accuracy 
rates in human HAR classification. 

iv. Real-time HSAR classification based on sensor data was facilitated by the advancement of 
these ML models. This is a significant capability for applications where prompt and 
immediate activity recognition is required, such as in healthcare monitoring, interactive 
systems, and sports analytics. 

 
2. Literature Review 
 

 Deep learning (DL)-based models have performed well in several fields of study, including HAR 
[11, 12]. Many CNN-based models have also been developed recently, in addition to those based on 
RNN, and other DL approaches. However, the recognition accuracy of CNN models has been superior 
with great promise. The Temporal CNN framework, for instance, is a type of temporal model that 
employs a hierarchy of temporal convolutions. It was used in the study by Nair et al., [13] to learn 
long-term relationships from variable-length sequence data. Another study strived to address the 
problems of multimodal sensor fusion and normalization by developing a CNN-based method for 
sensor fusion [14]. Several CNN models were employed by Ronao et al., [15] to increase the HAR 
recognition accuracy. In the work by [16], the use of an ensemble of CNN models to achieve better 
performance than the individual models were proposed. 

RNN is another DL technique that has been extensively used for HAR owing to its unique ability 
to learn spatial data sequences. LSTM-based networks, for instance, are more appropriate for 
wearable/inertial sensor-based HAR owing to their ability to learn long-term relationships from any 
data sequence. Das et al., [16] combined LSTM and shallow RNN to create a lightweight model for 
activity recognition. The spatiotemporal characteristics for human activities classification were 
learned by the authors in [17] using LSTM-based models. Different authors have achieved different 
levels of increase in recognition accuracy using numerous hybrid models, such as CNN-RNN [18], 
CNN-LSTM [18], LSTM-CNN [19], and CNN-GRU hybridization [20]. 

Scholars have paid attention recently to the encoding of time-series data as images using DL 
based techniques, especially CNN because this technique allows the learning of visual structures and 
patterns and enables visual recognition and classification. Time series data are mostly encoded as 
images using the Markov Transition Field (MTF) and Grammian Anular Field (GAF) models as first 
presented in the study by [21]. The classification of the single GAF and MTF images, as well as the 
compound GSF-MTF images, was achieved using Tiled CNNs. As per Souza et al., [22], it is believed 
that different time series features may be contained in the frequency domain, however, they may 
not be seen in the temporal domain; hence, they considered the usage of recurrence plots as a 
different graphical representation for the classification of time series data. A method for the 
extraction of texture features from that graphical representation for use in time series data 
classification was also developed [23] suggested a similar method). Authors in [24] discovered a 
different kind of feature in the image representation of time series data that is not found in 1D sensor 
data. They visualized the recurrent nature of a route through phase space by first presenting a 2D 
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texture image of the sensor signal using recurrence plot. Then, various feature levels were extracted 
from the texture images using a CNN model.  

A two-stage strategy was proposed by Zhang et al., [25] as solution to the problem of 
dissimilarities in the distinctive sequence length and region scale. In the study, sensor data encoding 
was first performed using enhanced recurrence plots called Multi-scale Signed Recurrence Plots (MS-
RP) followed by the application of ResNet and fully convolutional networks for the image processing 
step. Hur et al., [26] introduced Iss2Image, a novel encoding method for the transformation of inertial 
sensor signal into an image with minimal distortion. Real-valued sensor readings were split by 
Iss2Image into three sections: integers, the first two decimal places, and the next two decimal places. 
A three-channel image was then encoded from the separated data. Daniel et al. suggested another 
encoding method that was comparable in [27]. The suggested INIM framework employed a residual 
network that has been trained on the ImageNet dataset [28] to recognize activity after initially 
encoding the signal of the sensor into 3D RGB images. A unique technique for encoding time series 
data into two-channel GAF images was presented by Qin et al., [29] ) through the unification of global 
and local time series features. Then, they demonstrated a fusion ResNet framework that discovered 
the angular velocity and acceleration feature correspondences in the generated GAF image pixels; a 
similar proposal was also made by the authors [30]. In contrast to earlier research, they employed 
four distinct activity image types and multimodally processed each one by convolving it through two 
spatial domain filters: the high-boost filter and the Prewitt filter. The deep features from many 
modalities were extracted using ResNet-18, and they were then fused using canonical correlation-
based fusion. Ultimately, activity recognition was accomplished using a multi-class SVM. The concept 
of employing the Fast Fourier Transform (FFT) to convert a 1D signal into a 2D signal is realized by 
the authors in [31]. The spectrogram is a frequency-domain image that shows the signal's 
composition over time across many frequencies. It is used as an input for a three-layered CNN model 
that extracts and classifies features. Sensor signals were encoded into spectrograms using Short-Time 
Fourier Transformation (STFT) by Lawal and Bano [32]. Another study suggested a condensed two-
stream CNN-like VGG-Net architecture for activity and location identification [33]. 

Enhancement of the overall accuracy of models in activity recognition via selection of the 
pertinent features using different FS-based strategies has been recommended [34]. In the study by 
San and Tiglao [35] a HAR model based on sensor fusion in smartphones was suggested feature 
ranking was achieved using a filter-based technique. An improved HAR approach was developed by 
Fan and Gao [36] using the Bee Swarm Optimization (BSO) with a deep Q network. In the work by 
Dewi and Chen [37], four classifiers (RF, SVM, KNN, and LDA) were compared on HAR datasets and 
RF achieved the best accuracy.  Daily activity recognition using a position-based FS approach for body 
sensors was proposed [38]; the system’s overall accuracy was assessed using a classifier, filter-based 
and correlation-based optimization approaches to ensure feature set reduction. Several academics 
have studied the application of GA, one of the most popular and old metaheuristic algorithms, in a 
variety of fields, including feature selection, image steganography, medical diagnostics, stock price 
prediction, image segmentation, and contrast enhancement. To determine an individual's fitness. 
Saitoh [39] presented a GA-based method for image contrast improvement that measured the 
strength of the spatial edges present in the image. By analyzing the grey levels of the input-output 
relationships, the original grey image was transformed into an image with enhanced contrast, and 
GA was utilized to search for a solution in global space.  

The authors in [40] adjusted the image's intensity information to provide an effective method of 
improving image contrast using a fuzzy intensification operator and GA; this increased the visibility 
information of an image. 
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It is clear from the discussion above that numerous scholars have attempted to categorize human 
activities by examining images of those activities. The task of identifying human activities from sensor 
data has always been fascinating and difficult. Certain movements, like walking and running, are 
easily identifiable, still, there are a few sophisticated behaviors that are challenging to categorize. 
The creation of an effective activity recognition model has the potential to advance multiple sectors, 
including sports, health, and psychological understanding. For this reason, the creation of capable 
HAR models was greatly aided by machine learning and deep learning-based techniques.  ML-based 
methods not only reduce processing time but also dramatically improve classification accuracy during 
the process. 
 
3. Proposed Method 
 

The objective of the proposed ML-HSAR model is to be able to classify different human sports 
activities from sensors through the use of several ML algorithms. Thus, a set of steps must be involved 
to achieve that, starting by acquiring a suitable dataset, into finally generating the classification 
results and evaluating the chosen models. The developed system’s workflow is depicted in Figure 1.  
 

 
Fig. 1. Workflow of the proposed classification system 

 
Initially, a suitable dataset containing 19 different classes of human sports activities is acquired. 

The choice of the dataset is essential since it is the cornerstone upon which the ML models will be 
trained and based on their results. The chosen dataset must have a suitable size in terms of the 
number of instances that it contains, as well as being diverse so that the ML models can learn details 
about several human activities, such that when presented with a random activity, the ML model can 
recognize it. After the dataset is acquired based on the mentioned criteria, data pre-processing must 
take place. Data pre-processing is a set of procedures to get the data ready to be used for training 
depending on the characteristics of the dataset and the requirements of the ML models to be used. 
After pre-processing, the data are fed into 4 different ML models, namely Decision Tree DT, XGBoost, 
K-NN, and RF. These ML models use the pre-processed data to learn patterns that identify each of 
the human activities, in what is referred to as a training stage. After training, the models are 
presented with new data “testing dataset” where they must classify each instance into one of the 
classes based on the learned data. The results obtained by each of the ML models in the testing stage 
are evaluated based on several metrics that determine how well each model performs in the task of 
classifying human activities.   
 
3.1 Dataset 
 

To achieve the task of training and testing ML models on human activities, a dataset comprising 
different human activities is selected. Thus, the chosen dataset offers an extensive examination of 
human activity recognition [8]. The dataset is diverse such that it provides 19 different types of 
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human activities that range from sedentary, and slightly active, to more active movements. These 
human activities were recorded from 8 different individuals whose ages range between 20 and 30 
years old. Each activity has been recorded in 5 minutes, whereas the dataset is comprised of 5-second 
increments of each activity, making up 480 segments for each activity and subject. The diversity of 
the activities is presented by the fact that they rely on daily postures and dynamic movement and 
include daily routine activities such as walking, going up and down the stairs, sitting, running on a 
treadmill, and even more rigorous activities such as playing basketball and many other similar 
activities.  

The activities present in the dataset are shown in Figure 2, where each type of activity is assigned 
a label, such as Jumping = A18, moving in elevator = A8, etc. In addition, the number of samples for 
each of the labeled activities is shown, such that each type or class of activity included 500 samples.   
 

 
Fig. 2. The activities present in the dataset, alongside their respective number of samples 

 
The dataset was captured through calibrated sensor units located in 5 regions of the body: right 

arm, right leg, torso, left arm, and left leg. Since the dataset is acquired from sensors, it comprises 
data of 25 Hz sampling frequency. The sensor units are also diverse in the type of sensors, where 
each unit contains the following sensors: gyroscopes, magnetometers, and accelerometers in three 
spatial dimensions.  

Gyroscopes [41] are sensors that measure angular velocity or rotation. They provide information 
about the rate at which an object or device is rotating around a particular axis. Magnetometers are 
sensors that detect and measure magnetic fields. They are utilized to determine the strength and 
orientation of magnetic fields in the surrounding environment. Accelerometers are sensors that 
measure acceleration or changes in velocity. They detect the rate of change of motion along multiple 
axes. 

The structure of the dataset consists of 45 columns and 125 rows in each of the 5-second 
segments, such that sensor type and unit are the basis for grouping. The description of the dataset 
and its structure is presented in Table 1.  
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Table 1 
Description of levels within the dataset and its structure 

Level Description 
Activities (a) 19 different activities (A1 to A19) are denoted by a distinct folder for each (a01, a02, …, a19). 
Subjects (p) 8 different subjects are selected to perform each of the 19 activities, where each of them is 

denoted by a subfolder included in the activity folder (p1, p2, …, p8). 
Segments (s) Each subject provides data that is separated into 60 segments, where a text file within the 

subject subfolder is dedicated for each (s01, s02, …, s60). 
Units 5 units were used for the collection of data; they were placed on the Right Arm (RA), Right 

Leg (RL), Torso (T), Left Arm (LA), and Left Leg (LL). 
Sensors Each unit comprises 9 sensors (x,y,z accelerometers, x,y,z gyroscopes, x,y,z magnetometers) 

for data collection. 
Data Structure Each text file contains 45 columns, representing the data collected from 9 sensors across 5 

units. There are 125 rows in each file, corresponding to a 5-second duration with a sampling 
rate of 25 Hz. Each column contains 125 samples of data collected from one sensor of one 
unit. Each row also contains data from all 45 sensor axes at specific sampling conditions 
(values are comma-separated). 

 
This implies that the acquired dataset is not large just in terms of the number of samples 

contained, but also in the type of considered activities. The dataset also contains recordings from 
different environments (indoor and outdoor spaces) to ensure a proper depiction of human activity 
scenarios. 
 
3.2 Dataset Pre-Processing 
 

Data preprocessing is performed before training ML models to ensure that the data is fit to be 
used by each of the employed ML models. The quality of images is improved after a pre-processing 
step as the distortions are removed and features are improved. With this process, the model can 
accurately use these features to perform classification tasks. Pre-processing also ensure that 
significant features are identified through analysis and aids in finding the relationships between 
them. Data pre-processing, as earlier stated, is comprised of techniques like data scaling, data 
augmentation, and data normalization. The employed pre-processing methods in this work are data 
normalization, followed by label encoding, and lastly data splitting into training and testing sets.  

As per Singh and Birmohan [42], data normalization involves the process of data value 
transformation into values in the range of 0 and 1; it is mostly done to ensure that the learning 
process is not dominated by any single feature due to differing scales. Data normalization also 
encourages convergence and positively influences model’s performance. The Min-Max strategy [43] 
(Eq. (1)) was adopted in this work for the data normalization process.  
 
Xnormalized =

!"!!"#
!!$%"!!"#

                                                                                                                                     (1) 

 
where X is the original feature values, Xmin is the minimum value of X, Xmax is the maximum value of 
X. 

In this work, label encoding was used for the conversion of the categorical or textual labels into 
numerical forms [44]. In this technique, each distinct label is assigned a unique integer value. In this 
paper, the primary goal of using label encoding is to convert categorical data into a format that the 
ML algorithms can comprehend and process, as these algorithms generally operate with numerical 
data. In this research, scikit-learn's LabelEncoder [45] was utilized to assign a unique integer to each 
activity label. 
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To make the most use of the utilized dataset, it is divided into a training dataset used to train the 
models and a testing dataset used to test the classifications of the models. The training dataset is 
used by the model to acquire and learn the patterns and features within each activity such that the 
model becomes able to recognize said activity by analyzing the patterns in the new data. On the other 
hand, the testing dataset is a group of new data not previously seen by the model, which requires 
classifications. Usually, a common practice is to divide the dataset into 80 % training data, and 20 % 
testing data, which was the case in this study.  This split ratio guarantees that the data are enough 
for effective model training and robust evaluation on an independent dataset. 
 
3.3 Machine Learning Models 
 

While machine learning models share common principles such as learning from data and making 
predictions, they can differ significantly in their approach, complexity, interpretability, and 
performance characteristics. In this study, 4 different machine learning algorithms are implemented 
which are XGBoost, DT, RF, and KNN; these 4 algorithms are described in the following sub-sections. 

KNN is categorized as a non-parametric algorithm, which implies that it does not assume any 
specific data distribution [46]. It is easy to comprehend and implement, and can handle both 
numerical and categorical features. As a simple powerful ML technique, KN is mostly used for 
classification and regression tasks. It allocates a class label to a test example during classification 
tasks, in consideration of the majority vote of its K nearest neighbors. If K, for instance, is set to 5 and 
the majority of the closest neighbors belong to class A, KNN will assign the test example to class A. 

Random Forest (RF) is an ML model known for its ability to handle extensive datasets, high-
dimensional features, and data with missing values or noise [47]. RF avoids the issue of overfitting 
and provides insights into the relevance of different features. RF can improve prediction performance 
by merging the outputs of numerous decision trees; hence, RF is considered an ensemble of decision 
trees, where each tree requires a random subset of the training data and another set of features to 
be trained. Throughout training, each tree autonomously learns from the data and can produce an 
independent prediction. Thus, the Random Forest algorithm ultimately reaches the results by 
combining the predictions of all the trees, through voting in the case of classification, or averaging in 
the case of regression.  

Besides, Decision Trees are highly efficient in classifying data and comparatively straightforward 
to train [48]. Nevertheless, they can be sensitive to data noise and become challenging to interpret 
when the tree structure becomes overly complex. The Decision Tree algorithm is a machine learning 
technique that creates a model in the shape of a tree to aid in decision-making processes. Data 
partitioning is based on various features, resulting in a hierarchical structure of decision nodes. Each 
internal node in the tree relates to a feature while each branch is considered a possible outcome 
associated with that feature. The leaves, or terminal nodes of the tree represent the final prediction. 

Also, XGBoost framework iteratively constructs an ensemble of weak prediction models, usually 
DT, merge their predictions to arrive at a more precise model [49]. In this model, each subsequent 
model is trained to correct the problems associated with the preceding models. The objective is to 
reduce the overall prediction discrepancy. In the XGBoost model, a distinctive regularization 
approach called "gradient boosting with trees" is employed; the model employs the gradient descent 
optimization algorithm for loss function minimization, making it capable of managing intricate 
relationships and capturing non-linear data patterns. 
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3.4 Evaluation Metrics and Tools  
 

The considered metrics for the evaluation of the proposed ML-HSAR model for performance in 
this work are recall, precision, accuracy, f1-score, and confusion matrix [50-52]. With these metrics, 
it is easy to understand the overall performance of the models, as well as their capacity to classify 
instances that belong to each class accurately. 

Recall is calculated to determine the ability of the model to correctly generate true positives out 
of the total number of true positives and false negatives; it is also called sensitivity or Hit rate, and 
computed as follows: 
 
Recall =  True Positives 

 True Positives + False Negatives 
           (2) 

 
Precision is a way of determining the ability of a model to generate true positive instances out of 

the total number of positives (TP + FP). Another notation for Precision is “Positive Predictive Value”. 
It is possible to calculate the precision value through the following equation: 
 
Precision =  True Positives 

 True Positives # False Positives 
           (3)                                                                                                                    

 
The F1-score metric is based on both recall and precision, which uses both values to determine 

the effectiveness of the evaluated model in capturing relevant instances while minimizing 
misclassifications. F1-score value becomes a critical evaluation metric in the cases of imbalanced data 
specifically. To calculate the F1-score value, the following equation is used: 
 
F1 Score = 2 ×  Precision × Recall 

 Precision # Recall 
            (4) 

 
Furthermore, one of the metrics that is most frequently chosen to evaluate the effectiveness of 

a machine-learning model is accuracy. The percentage of correctly classified instances relative to all 
instances is known as accuracy. Consequently, as indicated by the following equation, it is calculated 
by dividing the total number of accurate forecasts by the entire number of predictions. 
 
Accuracy =  Number of Correct Predictions 

 Total Number of Predictions 
            (5)                                                                                                                          

 
4. Results 
 

In this study, the aim is to implement machine learning models that are capable of classifying the 
human sports activities picked up by sensors into labeled activities such as jumping, running on a 
treadmill, walking, moving in an elevator, walking on a treadmill, cycling, playing basketball and many 
others from a specific dataset. Essentially, after training the ML models, namely KNN, DT, RF, and 
XGBoost, the models are tested and their performances are monitored and assessed to come up with 
a conclusion on how these models perform in this specific task, and how they compared to each other 
in terms of results.  

According to these described four metrics, it is possible to assess the performance of the used 
machine learning models individually as depicted in Figures 3, 4, 5, and 6. However, an additional 
method can be used to visualize exactly which classes were correctly classified and in case of 
misclassification, which class was specifically misclassified and what was the predicted classification 



Journal of Advanced Research in Applied Sciences and Engineering Technology 
Volume 52, Issue 1 (2025) 68-88 

77 
 

for that class. This method is termed Confusion Matrix [53], which is a visual representation in the 
form of a 19×19 grid in this case, since there are 19 different classes in this study.  
 

 
Fig. 3. The accuracy metric of the proposed ML-HSAR model for classifying  
the human sport activities 

 

         
 Fig. 4. The precision metric of the proposed ML-HSAR model for classifying  
human sport activities 

 

         
Fig. 5. The recall metric of the proposed ML-HSAR model for classifying the 
human sport activities 
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Fig. 6. The F1 metric of the proposed ML-HSAR model for classifying the  
human sport activities 

 
Starting with the DT model, which was the lowest-scoring model in terms of all the evaluation 

metrics, the model achieved an 88 % accuracy value, accompanied by a similar value (88 %) for each 
recall, precision, and F1-score. These results reflect on the fact that DT is susceptible to overfitting, 
which is evident in the model's performance, despite being easy to interpret and a reliable method 
for understanding how the decision-making process takes place. However, the model's performance 
can be improved by fine-tuning hyper-parameters and implementing pruning techniques. 

Figure 7 shows the confusion matrix achieved by the DT model. The figure shows that the model 
performed well while achieving high values along the diagonal, where it accurately assigned instances 
to their appropriate classes. The confusion matrix of the DT model indicates that it successfully 
identified the underlying patterns in the data and provided precise predictions for each class. In 
specific details, the confusion matrix of DT shows a few misclassifications in the A7 and A8 classes 
mostly. In addition, the A19 class showed numerous misclassifications, where 1 instance was 
misclassified as A1, 5 as A5, 7 as A8, 6 as A9, 2 as A10, 6 as A11, 5 as A12, 4 as A13, 8 as A14, 3 as 
A16, 6 as A18, and only 53 instances were correctly classified as A19. 

The KNN model achieved better results compared to the DT model in terms of recall, precision, 
F1 score, as well as accuracy. Specifically, the model achieved 91.7 % accuracy, with a high precision 
value of 93 %, a high recall value of 92 %, and a slightly lower F1-score value of 90 %. These values 
indicate that the model is capable of minimizing false positives (high precision) and capturing all 
relevant instances. In general, the KNN model demonstrates strong performance across multiple 
classes, with slight variations in precision and recall, indicating its suitability for the specific dataset. 

These results are also reflected in the confusion matrix of the KNN model, shown in Figure 8. The 
confusion matrix of KNN shows that it performs well diagonally and that it has some misclassifications 
in the A8 class, where 48 instances were classified as A7, and the remaining 39 instances were 
correctly classified as A8. Similar to DT, the KNN model also showed numerous misclassifications in 
the A19 class. In the A19 class, only 18 instances were correctly classified, whereas 20 were 
misclassified as A2, 22 as A7, 12 as A8, and 23 as A13. On the other hand, many classes such as A4, 
A5, and A6 as well as other classes were perfectly classified each time by the KNN model.  
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Fig. 7. Confusion matrix achieved by DT model 

 

 
Fig. 8. Confusion matrix of the KNN model 
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XGBoost model still performed better than the KNN model in terms of all the evaluation metrics. 
The highest score achieved by the XGBoost model was the accuracy score which was 98.95 %. The 
other 3 metrics were the same for KNN scoring 99 % in recall, precision, and F1-score. The exceptional 
performance of the XGBoost model can be attributed to its capacity to handle intricate relationships 
within the data, coupled with efficient tree-boosting techniques. The model consistently achieves 
outstanding scores in a majority of metrics, demonstrating its robustness and effectiveness. 

Furthermore, the XGBoost confusion matrix proves its exceptional performance in the different 
classes, where only a few misclassifications took place in classes such as A8 (5 misclassifications) and 
A19 (5 misclassifications). Thus, in comparison between DT, KNN, and XGBoost, it is clear that 
XGBoost classifies the A19 class with the highest accuracy over the other 2 models; these results are 
depicted in Figure 9. 
 

 
Fig. 9. Confusion matrix of XGBoost model 

 
Lastly, the best-performing machine learning model in this study was the Random Forest model 

which was able to achieve the highest accuracy, recall, precision, and f1-score. Random Forest 
achieved almost perfect accuracy in classifying activities which was 99.4 %. Similarly, 99.4 % value 
was achieved as precision, 99 % value was achieved as recall, and 99.2 % value was achieved as F1-
score. These results demonstrate the power of ensemble learning models in classification tasks. 
Random Forest excels in addressing high-dimensional data and preserving accuracy even when 
confronted with missing data. Its superiority over alternative algorithms is evident in terms of both 
overall accuracy and metrics specific to individual classes. 

The outstanding superior results of the RF model are also presented by its confusion matrix 
shown in Figure 10. The confusion matrix of RF shows that the only classes with misclassifications are 
A7, A8, A18, and A19. The A7 class showed only 3 misclassifications, A8 only 5 misclassifications, A18 
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only 2 misclassifications, and A19 only 1 misclassification. These results show that the Random Forest 
model was almost perfectly able to classify the A19 class, which was problematic for the rest of the 
algorithms. Additionally, RF perfectly classified all the remaining 15 classes. The model's resilience 
was enhanced by the combination of numerous decision trees. 
 

 
Fig. 10. Confusion matrix of Random Forest model 

 
In addition, the classifier's performance as its discrimination threshold changed was graphically 

displayed using ‘Area Under the ROC Curve,’ or "AUC." Plotting the True Positive Rate (TPR) against 
the False Positive Rate (FPR) at various threshold levels creates the ROC curve. The two-dimensional 
area under the curve, extending from (0, 0) to (1, 1), is quantified by the area under the ROC curve 
(AUC). 

The True Positive Rate (TPR) designates sensitivity or recall, and it is a representation of how 
many actual positives are identified correctly. On the other hand, the False Positive Rate (FPR) 
represents the probability of a false alarm by quantifying how many true negatives are identified as 
positives. 

As depicted in Figure 11, the AUC of the XGboost algorithm achieved a 1.0 value on several 
occasions, which indicates that this model was able to classify these classes without errors; the 
classes upon which XGBoost scored perfectly are: ‘Running on Treadmill (8 km/h)’, Cycling on Exercise 
Bike - Horizontal’, ’Lying on Back’, Rowing’, ‘Sitting’, ‘Lying on Right Side’, Cycling on Exercise Bike - 
Vertical’, and ‘Standing’. On the other hand, XGBoost performed well with some errors in some 
classes such as ‘Walking on Treadmill (4 km/h) - Inclined’, ‘Standing in Elevator Still’, Walking on 
Treadmill (4 km/h) - Flat’, ‘Playing Basketball’, ‘Walking in Parking Lot’, ‘Jumping’, Ascending Stairs’, 
Exercising on Stepper’, Moving in Elevator’, and ‘Descending Stairs’ where the AUC was near 1.0.  
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Similarly, as depicted in Figure 12, the KNN algorithm was capable of perfectly classifying many 
classes by achieving a 1.0 AUC value, such as in the case of ‘Running on Treadmill (8 km/h)’, Cycling 
on Exercise Bike - Vertical’, Exercising on Cross Trainer’, ‘Lying on Back’, ‘Rowing’, ‘Walking in Parking 
Lot’, Cycling on Exercise Bike - Horizontal’, and ‘Lying on Right Side’.  

 

 
Fig. 11. XGboost ROC-AUC curve 

 

 
Fig. 12. KNN ROC-AUC curve 

 
In other classes, AUC was nearly 1.0, which indicates that KNN also performed well in classifying 

the following classes with minimal errors: ‘Ascending Stairs’, ‘Walking on Treadmill (4 km/h) - 
Inclined’, ‘Moving in Elevator’, ‘Standing’, ‘Exercising on Stepper’, ‘Sitting’, ‘Jumping’, ‘Standing in 
Elevator Still’, ‘Descending Stairs’, and ‘Walking on Treadmill (4 km/h) - Flat’. On the other hand, KNN 
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did not reach a high AUC for the ‘playing basketball’ class, since the AUC was only 0.7877, which 
indicates some errors in classifying this class.  

Figure 13 shows that the Decision Tree model only managed an AUC equaling 1.0 for two classes: 
‘Lying on Right Side’, and ‘Lying on Back’, which indicates the perfect capability of classifying these 
classes without any errors. On the other hand, DT achieved AUC between 0.74 and 0.99 for each of 
the following classes: ‘Ascending Stairs’, ‘Exercising on Stepper’, ‘Cycling on Exercise Bike - 
Horizontal’, ‘Descending Stairs’, ‘Rowing’, ‘Exercising on Cross Trainer’, ‘Standing’, ‘Playing 
Basketball’, ‘Walking on Treadmill (4 km/h) - Inclined’, ‘Walking in Parking Lot’, ‘Standing in Elevator 
Still’, ‘Jumping’, ‘Running on Treadmill (8 km/h)’, ‘Moving in Elevator’, ‘Sitting’, ‘Cycling on Exercise 
Bike - Vertical’, and ‘Walking on Treadmill (4 km/h) - Flat’.  
 

 
Fig. 13. DT ROC-AUC curve 

 
Figure 14 shows that the AUC of the Random Forest algorithm was 1.0 in several classes, 

indicating classifying them perfectly without any errors. These classes are ‘Exercising on Cross 
Trainer’, ‘Jumping’, ‘Walking on Treadmill (4 km/h) - Flat’, ‘Standing’, ‘Rowing’, ‘Running on 
Treadmill (8 km/h)’, ‘Sitting’, ‘Descending Stairs’, ‘Cycling on Exercise Bike - Vertical’, ‘Lying on 
Right Side’, ‘Exercising on Stepper’, ‘Ascending Stairs’, ‘Walking on Treadmill (4 km/h) - Inclined’, 
‘Walking in Parking Lot’, ‘Lying on Back’, and ‘Cycling on Exercise Bike - Horizontal’. On the other 
hand, the RF model was incapable of classifying other classes with perfect precision, where the 
AUC reached near 1.0 but not exactly 1.0. The 3 classes that were not perfectly classified by RF 
are ‘Playing Basketball’, ‘Moving in Elevator’, and ‘Standing in Elevator Still’. 
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Fig. 14. RF ROC-AUC curve 

 
4.1 Research Benchmarking  
 

In this study, the performance of the utilized XGBoost, DT, RF, and KNN were evaluated based on 
metrics like accuracy, F1-score, precision, and recall. The 4 ML models achieved high accuracies and 
scored well in the other metrics in the task of classifying human sports activities. The problem of 
human activity classification using similar algorithms, datasets, and approaches has been reported; 
however, the comparison of the achieved performance of the proposed ML-HSAR model to those 
achieved by earlier models is important. 

Earlier, an innovative hybrid network structure was proposed by Koşar and Barshan (2023) that 
merges LSTM and 2D CNN branches for human activities identification using wearable motion sensors 
and DL techniques; the LSTM analyzed the raw signals while the 2D CNN processed the spectrograms. 
Later, the extracted features using CNN and LSTM were combined via concatenation to improve 
activity recognition accuracy. At last, the model reached 95.66 % and 92.95 % accuracies on the 
tested datasets [54]. 

Yurtman [55] also strived towards achieving activity recognition that cannot be influenced by the 
orientation or position of wearable sensors. The reported classification results were SVM (90.8 %), 
ANN (90.9 %), RF (88.5 %), KNN (87.4 %), and LDC (89.8 %) [55]. Table 2 presents the achieved results 
of the benchmarked models, in comparison to the results of the proposed approach. 

Table 2 shows that the proposed ML-HSAR models, specifically XGBoost and RF models, 
demonstrated remarkably higher accuracy, surpassing the performance reported in these similar 
studies. 
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Table 2 
Comparison of the accuracy of the propose algorithms and  
other models 
Model  Accuracy (%) 
Proposed KNN 91.70 
Proposed DT 88.00 
Proposed RF 99.40 
Proposed XGBoost 98.96 
CNN-LSTM dataset 1 [54]  95.66 
CNN-LSTM (dataset 2) [54]  92.95 
SVM [55]  90.80 
ANN [55]  90.90 
KNN [55] 87.40 
LDC [55] 89.80 
RF [55] 88.50 

 
5. Conclusions 
 

Sport Activity Recognition (SAR) involves the automated identification and classification of 
various sports activities or movements using sensor data or video analysis. It encompasses the 
recognition of activities like running, walking, cycling, swimming, basketball, soccer, and 
weightlifting. SAR systems commonly utilize machine learning methods to train models on extensive 
datasets that contain labeled instances of different sports activities. In this study, a dataset containing 
19 different types of human activities was used to train 4 machine learning algorithms, namely KNN, 
RF, XGBoosting, and DT to learn and identify these activities. After the dataset was acquired, pre-
processing was performed, and 80 % of the pre-processed data was used for training. On the other 
hand, after training, 20 % of the pre-processed data was used to assess the performance of the 4 ML 
models. Upon testing, it was evident that the ML algorithm with the optimal performance in terms 
of achieving the highest accuracy was RF with an accuracy of 99.4 % in identifying the 19 different 
activity classes. In addition, the proposed Random Forest model achieved better than other 
algorithms found in the literature.  
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