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ABSTRACT 

High accuracy and dynamic range have been some of the most prominent challenges when it comes to fine-scale turbulence 
measurements. The current commercial LDA processors, which perform the signal processing of Doppler bursts directly using 
hardware components, are essentially black boxes and in particular are renown for suffering from practical limitations that reduce 
the measurement reliability and accuracy. A transparently functioning novel LDA, utilizing advanced technologies and up-to-date 
hardware and software has therefore been developed to enhance the measurement quality and the dynamic range. In addition, the 
self-developed software comes with a highly flexible functionality for the signal processing and data interpretation. The LDA setup 
and the combined forward/side scattering optical alignment (to minimize the effective measuring volume) are described first, 
followed by a description of the signal processing aspects. The round turbulent jet has been used as the test bed since it presents a 
wide range of degree of difficulty for the LDA processor (accuracy, dynamic range etc.) across the different radial distances and 
downstream development. The data are diagnosed for dynamic range in residence and interarrival times, and compared to a typical 
hardware driven processor. The radial profiles of measured mean streamwise velocity and variance agree well with previous studies 
of the round jet. The spatial turbulent kinetic energy spectra in the fully developed region perfectly match the expected (and in this 
region well established) -5/3 power law even for the largest measured distances from the centerline (where shear and turbulence 
intensity are significant). 
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1. Introduction 

 
Despite its omnipresence in various applications, e.g., combustion engines and weather 

forecast, turbulence has long been an area of classical physics which is yet to be completely defined 
and discovered [1-2]. While the equilibrium aspects of stationary turbulence has been thoroughly 
investigated and understood [3-5], the non-equilibrium counterparts are still largely underexplored. 
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Vassilicos and his team [6-9] have raised serious questions to the established theory based on 
accumulated evidence from both experimental and simulation-based investigations. 

One of the main reasons for the lack of our understanding of these non-equilibrium flows is 
that they are notoriously difficult to measure accurately since they are typically shear flows of high 
turbulence intensity and of great variations in dynamic range. If implemented and analysed correctly, 
the laser Doppler anemometer (LDA in the following) is the most accurate existing instrument to 
measure these difficult flows, since it has inherently a wide dynamic range, unlike e.g., correlation-
based Particle Image Velocimetry, and it has the ability to, without ambiguity, distinguish between 
and discern the velocity components, unlike e.g., hotwires. Furthermore, a major challenge 
subsequently arises in measuring the kinetic energy spectrum, which is a powerful tool that can map 
the energy across all turbulence scales and provides valuable information about turbulence 
generation and its assumed cascade development more precisely [10]. Similar challenges arise when 
measuring the physical space counterparts, such as correlations (e.g., covariances) and structure 
functions (which are central to the nowadays debated Kolmogorov equilibrium description(s) of 
turbulence)  [4,5,11]. 

LDA is one of the most preferred measurements techniques in these challenging turbulent 
flow measurement since it has been significantly recognized for its unique favourable properties in 
various experimental investigations [12-14]. It can truly distinguish the spatial velocity components 
of a flow from each other [15] and therefore produce reliable data. However, existing commercial 
LDA systems have been restricted with some practical limitations, e.g., for turbulence measurements 
that require high dynamic range and signal-to-noise ratio [16,17]. A more detailed discussion of the 
practical limitations can be found in[18].  

It is therefore of great interest to develop a novel, well-functioning, LDA system that is able 
to measure turbulence more accurately. With a more well-functioning LDA processor, it is possible 
to credibly measure turbulence in experimentally challenging regions, e.g., non-equilibrium, high 
intensity  and high shear regions, to test the debatable universal equilibrium theory of Kolmogorov 
[3-5,11].  

 
2. Methodology 
2.1 Flow Generation Facility  
 

The axisymmetric turbulent round jet has been a popular research subject for turbulent flow 
investigations since many years [19]. Moreover, in the fully developed region, it was proven to 
produce results that are in good agreement with the classical Kolmogorov theory of turbulence [20-
22]. At the same time, this flow presents a wide variation of degree of shear and turbulence 
intensities across the downstream and radial directions, which is why it has been chosen as the test 
bed for validation of turbulence measurement with our LDA system.  

The axisymmetric turbulent round jet used for this measurement is a replica of the one used 
by Velte et al., [18]. It is fitted with an outer nozzle at the end, having an exit diameter D = 10 mm 
and contraction ratio of 3.2:1. Pressurized air is injected through the jet together with the glycerin 
particles (around 1-5 µm) at regulated pressure values. The particles have been proven to be 
sufficiently small to faithfully track the flow to a sufficient degree, while also scattering light 
sufficiently well to be well detectable by the LDA system [23]. The jet is mounted on a two-axis 
traversing system which is driven by, for each axis, a hybrid two-phase stepper motor and 
computerized by a motion control software, RemoteWin for maneuvering the jet along streamwise 
(x) and radial (r) directions. With this, the jet centreline can be easily traversed to different 
coordinates within the flow for turbulence measurement at high spatial resolution. The choice of 
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traversing the jet instead of the LDA optics is based on the sensitivity in alignment of the LDA optics, 
since this is a combined forward/side scattering system (as will be described below). 

 
2.2 Laser Doppler Anemometer 
 

The LDA is operated in the burst-mode [24] consists of a continuous wave laser beam with 
wavelength, λ = 532 nm split into two coherent beams. The two beams are directed through a dual 
Bragg cell (BC in the following) in order to distinguish the moving direction of the particles along the 
measured component axis [25,26]. This issue was remarked to be critical, in particular within the flow 
region where fluctuations and turbulence intensities are high [27], since the velocity variations are 
more likely to exist in both directions. The frequency of one of the beams is shifted by 40 MHz, which 
value is known from the BC module used, while the frequency of the other beam is shifted by 37 
MHz. The two beams consequently experience 3 MHz of effective frequency shift, fs which creates 
movement of the interference fringes in the direction opposite to the main flow direction. This value 
is sufficient for acquiring the maximum Doppler frequency or velocity from our measurement [14]. 

The parallel beams are then passed through a converging lens and focused to intersect at a 
focal point of 200 mm based on the dual-beam principle [28-30]. The volume where the frequency 
shifted beams intersect, commonly referred to as the measurement volume (MV in the following), is 
where the local velocity of the flow is measured [31].   

The working block diagram for acquiring the data from LDA is depicted in Fig. 1. The 
photodetector receives the light scattered by each seeding particle and converts the photons into 
photocurrent. The detector is also coupled to a photomultiplier that amplifies the photocurrent 
internally before passing through the load resistor in the filter circuit. A first-order low pass filter 
(load resistor,      R=270 Ω) is connected between the photomultiplier which has capacitance value of 
22 pF, and the amplifier, giving a resulting cut-off frequency of around 26 MHz. The analog frequency 
modulated signal is then delivered to and visualized through a high-end oscilloscope. An A/D 
converter is also embedded in the scope yielding a 13 bits resolution. In order to utilize this 
resolution, the amplitude on the oscilloscope must be set such that most of the bursts can be seen 
in their full size. Some of the largest burst are allowed to be clipped in order to get most of the bursts 
digitized with the full resolution, which is critical in computing the energy spectra. The clipping was 
shown not to cause any biasing of the Doppler frequency. 

 

 
Fig. 1. Block diagram for data acquisition of the LDA system   

 
The experimental setup (see Fig. 2) is enclosed in a large tent of dimensions 3 x 5.8 x 3.1 m3, 

made out of black canvas to minimize light pollution and to create an undisturbed environment for 
the jet to freely develop. With the jet positioned at the back of the enclosure, the jet flow generated 
in the facility should be expected to correspond well to a free jet up until x/D=70, which is sufficient 
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for the purpose of our current experiments and future investigations [22,32]. The LDA system is 
operated in a forward-scattering detection mode by mounting the detector at 45o from the MV in 
order to minimize the light extinction from the Mie scattering and improve the signal-to-noise ratio 
[33]. Such configuration will also result in a smaller and nearly spherical MV (since the optical cross-
section of the detector dictates the effective MV) to obtain unbiased measurement especially in a 
highly turbulent flow and achieve the highest possible spatial resolution [34]. A schematic side view 
of the setup is also shown in Fig. 3. 
 
2.3 Optical alignment 
 

Operating the system in a combined a forward/side scattering mode demanded thorough and 
rigid adjustment on the optical parts in order to assure good quality of the Doppler signals from the 
measurement. It is difficult to see by naked eye whether the two beams do in fact overlap to produce 
an MV. Therefore, a microscope objective is used to produce magnified beam spots on the wall of 
the tent (see Fig. 4). The beams are aligned accordingly to make them overlap to a good 
approximation. Precedent to this alignment, the MV was first assured to be at the distance equal to 
the focal length of the focusing lens, i.e., 200 mm. Apart from that, the working distance between 
the detector and the MV should also be determined by the  focal length of the focusing lens [35], i.e., 
200 mm, or at 1:1 ratio to the focal length. 

In addition, the photodetector must be well aligned with the MV. By looking through the 
photodetector, there is a black pinhole located in the middle of a circular area. The photodetector, 
which is mounted to a holder, needs to be adjusted so that the pinhole resides at the center of the 
beam intersection as in Fig. 5. However, a more reliable test of signal quality is to simply observe the 
burst signal from an analog scope which is temporarily channeled from the output of the amplifier. 
The pinhole’s position at which the highest burst S/N ratio is observed on the scope should be chosen 
for the measurement. The amplifier is also set to an optimum value in a way that the high value of 
current setting should not cut the burst off too much.   

 
 

 
Fig. 2. LDA system in a large tent (3 x 5.8 x 3.1 m3) 
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Fig. 3. Schematic drawing (side view) of the LDA setup, displaying 
a 90o (side scattering) configuration. However, the detector is 
mounted at 45o from the MV during the measurements 
 

 
Fig. 4. Alignment of the beams’ overlapping 

 
 

 
Fig. 5. Pinhole alignment with MV through the photodetector 

 
2.4 LDA Measurements 

A series of measurements spanning from x/D=5 up to x/D=30 downstream from the jet exit 
were carried out with the LDA system. For each downstream position, measurements were acquired 
at several points in the radial direction across the shear region, as depicted in Fig.6.   
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Fig. 6. Schematic of the measurement points (MP), which are listed in detail in Appendix I. 
 

The jet input pressure was set to give an exit velocity, U0 of 32 m/s (Re=25000). Seeding 
particles were fed into the flow at a pressure of 1.2 bar which resulted in an optimum number of 
Doppler bursts (spatial seeding density resolving the relevant scales without significant burst-
overlap) as seen from the scope (see Fig. 7). The seeding was allowed to distribute uniformly 
throughout the ambient air to improve the homogeneity of the seeding. The laser was adjusted to 
nearly reach its maximum intensity (1.29 W), along with 70 µA amplifying current on the 
photomultiplier. 

All the above mentioned parameters were consistently used throughout the whole 
measurement except for the sampling rate of the raw burst-signal and the record length, which were 
optimized to accommodate to the flow variations. The sampling rate of the raw burst signal was 
chosen to fulfil the Nyquist sampling rate in relation to the Doppler frequency. The maximum 
frequency was determined from the built-in spectrum analyzer of the scope as in Fig. 8, prior to data 
recording at every measurement point. A sampling rate of either 12.5 MHz or 25 MHz was chosen 
for all measurement points, accommodating to the variations in flow conditions at each 
measurement point. The resulting record lengths were 2 s and 1 s, respectively, which are long 
enough to obtain sufficient statistics from the flow.  A total of 400 records were taken at each 
measurement point. 

 

 
Fig. 7. Doppler bursts acquired from the scope 

 

 
Fig. 8. Range of Doppler frequency at one particular measurement point 
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2.5. Signal processing 
 

The output measured at each measurement point is an equidistantly sampled digital record 
of electrical current and the acquired signal is in the form of an array of discrete points. Beside all the 
measured Doppler bursts, the signal also contains various sources of noise, e.g., quantum noise from 
the photomultiplier, thermal noise from the detector’s circuit or optical noise from the surroundings 
[13]. This noise needs to be minimized to clearly reveal (to the processor) the desired burst. By 
transforming the signal to frequency space, most of the frequencies are clustered around a range 
(see Fig. 9) with frequencies corresponding to the measured velocities. Anything outside this range 
is considered as unwanted noise and therefore not to be processed. By using the calibration factor, 
d (from d=u⁄fD , where u is the local instantaneous flow velocity and fD is the Doppler frequency), and 
since the approximate velocity is known, it is possible to remove potentially unphysical 
velocities/Doppler frequencies. In this case, the frequencies in the centre correspond to velocities 
between -40 to 40 m/s, and anything outside of this range is deemed unrealistic. 

 

 
Fig. 9. Simple band pass filter (band within the red lines) to isolate Doppler bursts 

 
In order to detect the individual Doppler bursts, it is necessary to find their envelope. This is 

done by using the Hilbert transform, which shifts the function by π/2. A sum signal is created, which 
is the original signal squared added to the Hilbert transformed signal squared. This yields an envelope 
of the signal, which is shown in Fig. 10. However, the signal is still too noisy to detect the individual 
bursts properly. Therefore, the envelope signal is filtered by a running convolution that is adjusted 
to remove noise at frequencies above the minimum burst length. The frequency is chosen to avoid 
bias, which could otherwise reduce the number of high velocity bursts. The result of the convolution 
is shown in Fig. 11, which also illustrates two horizontal lines known as trigger lines that are used to 
detect every burst having an amplitude higher than the upper trigger line. The burst is recorded until 
the amplitude gets below the lower trigger line. This method, commonly known as Schmidt 
triggering, is used to reduce the probability for detection of a noise spike. After detection, each burst 
is analyzed using the fast Fourier transform (FFT) in order to find the Doppler frequency. The 
challenge is now to extract a single frequency in finding the corresponding particle velocity. A single 
burst is shown in Fig. 12. Even though the Doppler burst is fairly visible, there are still many 
frequencies present throughout its extent. 

In order to find the corresponding velocity from each Doppler burst, the FFT is applied to each 
burst as shown in Fig. 13. Only one of the obtained frequencies should correspond to the velocity for 
the particle moving through the MV. The situation is further complicated by the fact that, in addition 
to frequencies due to the noise, the Doppler frequency itself can change across the burst as the 
seeding particles may have a varying velocity when transiting through the finite sized MV. This is 
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natural, since the spatial velocity gradients in turbulence are expected to become larger for smaller 
flow scales. A Gaussian function is therefore fitted across the Doppler peak and its maximum value 
is used as the frequency of the Doppler shift (see Fig. 14). This method is effective since the Doppler 
burst has the shape of a Gaussian function, and transforming such a function to Fourier space, will 
result in a Gaussian function as well. 
 

  
Fig. 10. The sum signal 

 
Fig. 11. Convoluted sum signal now used to 

detect Doppler bursts using a Schmidt trigger 
system (illustrated by the two horizontal red 

lines) 
 

 

  
Fig. 12. An example of a filtered Doppler burst 

with several frequencies contained 
Fig. 13. FFT of a single (band pass filtered) 

burst 
 

 

 
Fig. 14. Gaussian fit across the Doppler peak. Red square: 
measured points.Green square: suggested function for the fit. 
Blue curve: best fit to the measured points 
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2.6 Diagnosis of processed signal 
 

Since our software driven LDA processor was initially developed to overcome the practical 
limitations of the hardware based ones [18], the processed signals from both types of processors will 
be simultaneously diagnosed. For this purpose, the data acquired from the commercial LDA system 
by Vetel et al., [18] are taken into consideration.  

A central problem with the commercial hardware driven systems that the authors have 
experienced with is that both the long and short residence times are not well-represented in the data 
set due to the hardware limitations in the burst sampling. An accurate representation of these  
residence times is necessary for measuring unbiased statistics, in particular for high intensity and 
high shear flows, as has been shown from first principles [18]. This misrepresentation of the residence 
times should not be problematic using this software driven system, which is highly flexible in this 
regard.  

This can be illustrated with a simple diagnostics tool for LDA data quality, namely by scatter 
plotting the instantaneous velocities against their respective residence/transit times. For large 
positive convection velocities and relatively low turbulence intensities, the scatter plot should take 
on the familiar 'banana' shape, where high velocities are represented by small residence times and 
low velocities by long residence times [23]. For average convection velocities close to zero, the data 
should be distributed evenly around the residence time axis and reach high values. The traditional 
processors are clearly limited in this respect, as was seen in [18].  

This is illustrated in Fig. 15, where the novel software driven processor is compared to a 
commercial counterpart in a turbulent round jet at 30 jet exit diameters downstream and two 
different radial distances; r=26 mm and 52 mm. The slight differences in global scatter distribution 
appear due to different validation of measured data between the processors as well as slightly 
different flows as similar, but different, jet generators have been used. This is, however, not critical 
to the current comparison.  

Much longer residence times can be captured at the lowest (near zero) velocities by our novel 
processor compared to that of the commercial one, which maximum value is abruptly limited at the 
outermost off-axis positions (52 mm). The length of the longest measurable bursts as defined in the 
commercial hardware has effectively limited the maximum burst length and consequently the quality 
of low mean velocity (high intensity) result. One may optimize the hardware driven LDA 
measurements with improved settings, but the inherent problem with long residence time clipping 
is in principle better countered using the flexible software driven processor. 

Another critical effect due to  digitization could be found in the interarrival times [17], [36]. A 
closer examination showed that the processor had a finite data transfer time for each measured 
burst, which effectively limited the minimum attainable time between measurements. This can be 
illustrated, e.g., by a zoomed-in scatter plot of the individual velocities against the difference in arrival 
time between neighbouring bursts (see Fig. 16). The vertical lines and the separations between them 
show the digitization and dead time effect, respectively. In power spectra computed using the 
residence time weighted discrete Fourier transform (DFT), this dead time was shown to produce 
oscillations in the high frequency end of the spectrum [18], originating from the Fourier transform of 
the dead time window. These regular interarrival time intervals appear to originate from data 
transfer times, during which new measurements cannot be acquired. 
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Fig. 15. Velocity vs. residence time scatter plots for a r = 26 and 27 mm, b r = 52 and 51 mm. Red circle: 
hardware driven LDA processor, Blue diamond: software driven LDA processor 

This dead time introduced has consequently been reported to have been removed in newer 
generations of the LDA processors for some of the commercial producers (private communication). 
However, the dead time effect of the finite measuring volume (no more than one particle allowed in 
the MV at any time when operating in burst-mode), which is a conceptual limitation of the optics, 
apparently must remain also in the current processor. The reduced effective MV size from operating 
the LDA in the combined forward/side scattering configuration does however aid in reducing this 
problem.  

 
Fig. 16. A zoomed-in of the velocity and the difference in arrival time between neighbouring points. Red 
circle: hardware driven LDA processor at r = 52 mm, Blue diamond: software driven LDA processor at r = 51 
mm 
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2.7 Analysis 
 

The output of all previous steps results in a temporal record of randomly sampled velocities, ui(t), 
since the seeding particles enter the MV randomly (the random arrivals of the particles in the MV 
effectively dictate the sampling) [37]. With optimal seeding density (data rate), one can maximize 
the highest frequency (smallest scale) resolvable, while keeping the amount of overlapping bursts 

(more than one particle in the MV simultaneously) to a minimum. This is important in getting a 
higher dynamic range of the power spectrum [38]. The random sampling prevents the use of the 

FFT, which requires equidistant samples. Instead, the discrete Fourier transform (DFT) must be 
used, which computes the transform at the actual (random) sampling times. This manner of 

computing the Fourier transform is usually slower than the FFT. However, we have developed a fast 
array processing algorithm for the DFT which makes it comparable in computational speed to the 

FFT [18], [38]. The velocity power spectrum can now be computed using Equation (1):  
 

𝑆!(𝑓) =
"
#
𝑢'!(𝑓)𝑢'!(𝑓)∗                                   (1) 

 
where T is the length of the time record and  𝑢'!(𝑓) is the Fourier transform of ui(t). For randomly 
sampled data, computing the Fourier transform of the velocities (or any statistics for that matter) 
requires special care and, as has been shown from first principles, should be carried out using 
residence time weighting to obtain unbiased statistics [13], [17], [18], [36], [38], [39]. The spectra 
display the kinetic energy distributed across the measured bandwidth of frequencies.  

To avoid scrambling of energy due to the fluctuating convection velocity and similar effects 
[39], [40], the energy spectra presented in the Results part are plotted in the wavenumber, k, domain:  

 
𝑆!(𝑘) =

"
%
𝑢'!(𝑘)𝑢'!(𝑘)∗                                   (2) 

 
where L is the length of the spatial record and 𝑢'!(𝑘) is the Fourier transform of ui(s). The spatial 
record has been computed based on the convection record method [41] which does in an exact 
manner what Taylor's hypothesis only approximates [34]. Thereby, the spectral scrambling and 

other adverse effects of the time spectra are effectively avoided.  
 
3. Results and Discussions 
 

Previous studies have shown that the mean velocity profile of a typical fully developed 
turbulent round jet flow should follow the well-known Gaussian distribution [42], [43]. This behavior 
is also observed in the results obtained from our measurement (see Fig. 17) which covered only one 
half of the jet (up to a maximum of ~45 mm in the radial direction), since we assumed symmetry. 
Note that, the radial distance is normalized by the exit diameter of the jet. For each profile, the mean 
velocity is the highest at the jet centerline and approaching zero at large distances away from the 
centerline, as expected. The shape is also tapering off in the upstream direction. Meanwhile, as also 
expected, the streamwise velocity variance profiles (see Fig. 18) indicate the positions of maximum 
shear at each highest value, from which they also spread and taper with the downstream 
development.  

As a quantitative test of the accuracy of the LDA velocity measurements, it is illustrative to 
test momentum conservation of the round turbulent jet. Momentum is conserved for a jet in an 
infinite environment, which is well approximated here for a jet exit diameter D=10 mm and an 
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enclosure of 3 x 5.8 m2. The velocity moment profiles can be tested using the momentum integral 
approximated to second order in [32], which is valid in the fully developed jet region. We find that 
the ratio between the momentum flux per unit mass at x/D=30 to that at the jet exit is M/M0 =0.99. 
More details on the calculations can be found in Appendix II. This shows that the profiles of the 
velocity moments obtained at x/D=30 from Fig. 17 and 18 satisfy momentum conservation, as 
expected. These convincing results also support that our LDA system is well suited for this kind of 
highly challenging measurement especially in the outer jet where velocity fluctuations are large, 
which demands a high dynamic range to accurately measure the small velocity changes [44].  

  
 

 

Fig. 17. Radial profiles of the mean streamwise velocity at x/D = 5, 10, 15, 20 and 30 with fifth-order 
polynomial curve fits  

 

Fig. 18. Radial profiles of the local streamwise velocity variance at x/D = 5, 10, 15, 20 and 30 with fifth-order 
polynomial curve fits 
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The shape of the kinetic energy spectrum was also previously investigated in the fully 
developed (equilibrium) region [20], [45], which for the current nozzle corresponds to approximately 
x/D=30 or beyond, where turbulence has become fully developed. For a clear comparison, each 
spectrum has been normalized with their respective mean square velocity value in Fig. 19. The results  
show good agreement with the expected -5/3 power law for an (assumed) inertial range [3], [20]. 
Previous experimental investigations have been done by [46] using stereoscopic Particle Image 
Velocimetry, which results are clearly consistent with the present ones. The range within which each 
spectrum follows the -5/3 slope is also significant from our results, even for large radial distances 
from the centerline, strongly supporting that our novel LDA system is highly reliable even for high 
intensity and shear turbulence measurement. 

 

 

Fig. 19. Radial development of spatial turbulent kinetic energy spectra (based on the streamwise velocity 
component) at x/D = 30. From heavy to light purple: off-axis position 0, 3, 6, 9, 12 mm. From heavy to light 

blue: 15, 18, 21, 24, 27 mm. From heavy to light brown: 30, 33, 36, 39 mm. From heavy to light green: 42, 45 
mm  

 

 

Fig. 20. Downstream development of spatial turbulent kinetic energy spectra (based on the streamwise 
velocity component) along the centerline (r = 0). From heavy to light blue: x/D = 5, 10, 15, 20, 30 
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Spectra at the centerline for every downstream position are also shown in Fig. 20, which 
demonstrates significant deviations from the power law as the position of measurement moved away 
from the equilibrium region. 
 
5. Conclusions 
 

A high dynamic range, transparent and accurate novel LDA system has successfully been 
developed. Measurement results have been compared to a typical classical hardware driven 
processor. Detailed diagnostics of the measurements shows that the novel software driven processor 
can successfully counter several of the limitations of the hardware driven counterpart, including 
quantization and clipping of the data. Both hardware and software have also been tested and 
validated for data acquisition and processing, respectively, which provides results that are in a good 
agreement with previous studies on turbulent round jets, even for challenging large off-axis 
distances. This proven functionality opens up an opportunity to further investigate the dynamics of 
significantly more challenging high intensity and high shear flows (in particular potentially non-
equilibrium flows) to properly test the well-known local equilibrium hypothesis for the structure of 
the small-scale turbulence. Finally, all the important findings provided from this study should be of 
direct relevance to turbulence theoreticians and computational fluid dynamist alike, e.g., involving 
the air-jet  weaving  machines [47], wind turbine [48][49], micro wind turbine [50], transonic 
compressor [51] and vortex generators [52]. 
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Appendix A 

List of measurement points for Figure 6 

 Radial distance [mm] 
MP x/D=5 x/D=10 x/D=15 x/D=20 x/D=30 
r0 0 0 0 0 0 
r1 1 1 1.5 2 3 
r2 2 2 3 4 6 
r3 3 3 4.5 6 9 
r4 4 4 6 8 12 
r5 5 5 7.5 10 15 
r6 6 6 9 12 18 
r7 7 7 10.5 14 21 
r8 8 8 12 16 24 
r9 9 9 13.5 18 27 
r10 10 10 15 20 30 
r11 11 11 16.5 22 33 
r12 12 12 18 24 36 
r13 13 13 19.5 26 39 
r14 14 14 21 28 42 
r15 N/A 15 22.5 30 45 
r16 N/A 16 24 32 N/A 
r17 N/A 17 25.5 34 N/A 
r18 N/A 18 27 36 N/A 
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Appendix B 

Detailed steps to estimate the momentum integral, M at x/D=30 

The momentum flux per unit mass at the jet exit is calculated by 

𝑀! = 𝜋 $"
#
%
#
𝑢'# = 0.0962	𝑚$/𝑠#              (B.1)             

At 30 jet exit diameters downstream of the jet nozzle, the momentum across the jet should be the same since 
the momentum is conserved for a free turbulent jet. The momentum integral to second order can be expressed 
as  

𝑀 = 2𝜋 ∫ 2𝑢'# + 𝑢#''' − %
#
5	𝑣#''' + 𝑤#''''	89 𝑟	𝑑𝑟∞

!                 (B.2) 

as shown in [32]. 

This integral requires knowledge about the second order moments of the two additional components of 
velocity, namely v-variance, 𝒗𝟐''' and w-variance, 𝑤#''''. It has previously been established that the static statistical 
moments in a turbulent round jet obey axisymmetry [53]. Furthermore, [32] provides usable quantitative data 
on the relation between the variances of the velocity components.  The Reynolds stress profiles of Figure 9-11 
in [32] are digitized and replotted all together in Fig. 21. 

 

Fig. 21 Streamwise, radial and azimuthal components of turbulence kinetic energy (normalized by the square 
of the centreline velocity) at x/D=30 
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The ratio between each pair of profiles has been plotted in Fig. 22. The average ratio between each pair of 
variance profiles has also been computed accordingly: 

 𝑣#''' 𝑤#''''⁄  ≈ 0.95                  (B.3) 

𝑣#''' 𝑢#	''''⁄ ≈ 0.60                    (B.4) 

𝑤#'''' 𝑢#'''⁄  ≈ 0.63                                     (B.5) 

 

 

Fig. 22 Ratio between two different components 

Substituting Equation (B.4) and (B.5) into Equation (B.2) resulted in: 

 

𝑀 = 2𝜋>∫ 𝑢'#𝑟	𝑑𝑟 − 0.39∫ 𝑢#'''𝑟	𝑑𝑟'!"#
!

'!"#
! @               (B.6) 

 

where rmax = 45 mm. The mean streamwise velocity and variance profiles (particularly for x/D=30) in the integral 
are based on the fifth-order polynomial obtained by replotting the profiles over the non-normalized radial 
distance, r, which is given by 

𝑢'(𝑟) = (8.53 × 10(	)	𝑟* − (1.13 × 10(	)	𝑟$ 						+ (5.88 × 10*	)	𝑟+ − (1.4 × 10$)𝑟#= -5.365 

𝑢#'''(𝑟) = 2.35	𝑟* − 0.084	𝑟$ − 0.001𝑟+ − 0.0002	𝑟# = −4.07𝑥10 − 7 

 

 
 

 


