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 ABSTRACT 

 
Methylation of the MGMT promoter is a molecular marker of predictive relevance in 
brain tumors. Methylation of the MGMT promoter is related to an improved prognosis 
and may influence therapy decisions. According to the most recent Malaysian National 
Cancer Registry Report (MNCRR) for 2012–2016, there were 2097 cases of brain tumors 
in Malaysia overall, with 1117 cases involving men and 908 cases involving women. This 
research aims to create prediction models for detecting MGMT promoter methylation 
in brain tumors. So, a dataset from the BraTS (Brain Tumor Segmentation) challenge, 
which included MRI scans and clinical data for patients with brain tumors, was utilized 
and explored using Exploratory Data Analysis (EDA) and data visualization techniques. 
The dataset has 306 methylation cases identified as “1” and 276 unmethylated cases 
identified as “0”. The average number of scans of train data for modality per patient is 
between 127 and 171, which provides a wealth of information for pattern learning while 
the average number of scans of test data for modality per patient is between 124 and 
165. In both sets, FLAIR has the least number of files while T2w has the highest number 
of files among them. Two models of deep learning approaches, ResNet50 and 
EfficientNetV2, were used to construct and form the prediction models. Various criteria 
were employed to evaluate the performance of the models. The T2w modality 
consistently achieved the highest validation accuracy, precision, recall, and F1-score for 
both the ResNet50 and EfficientNetV2 models. Specifically, the T2w modality achieved 
a validation accuracy of 0.9453 and a validation loss of 0.2417 for ResNet50. 
Furthermore, the brain tumor diagnosis interface utilized DICOM images from MRI 
scans to identify MGMT methylation status, aiding in therapy effectiveness prediction. 
Pre-trained ResNet50 model on T2w images was used for classification. The interface 
displayed the original MRI image, predicted state, and treatment effectiveness 
indication, while promptly notifying users of invalid or inadequate data for accurate 
analysis.  
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1. Introduction 
 

According to the Malaysian National Cancer Registry Report (2012-2016), 2097 Malaysians were 
diagnosed with brain tumors, with 1117 samples involving men and 908 samples involving women. 
Glioblastoma (GBM) is a form of brain tumor distinguished by molecular heterogeneity and 
methylation of genes [1]. Early detection is critical for successful therapy and patient recovery. 
Biopsies and computed tomography (CT) scans are frequently employed for diagnosis, while MRI is 
useful for visualizing the central nervous system (CNS) and vascular architecture [2]. Surgical removal 
may cause delays in making crucial therapy choices and might be affected by intra-tumoral 
heterogeneity [3, 4].   Given that the human skull is a hard and volume-limited shell, any unanticipated 
development may impact a person's function depending on the portion of the brain implicated [5]. 

DNA methyltransferase O6-Methylguanine (MGMT) is a DNA repair enzyme discovered in cells of 
glioblastoma that can repair alkylating chemical damage. Its presence or absence determines 
glioblastoma chemoresistance because it prevents both normal and malignant cells from dying [6]. 
GBM cells are less able to repair damage when the MGMT gene promoter is methylated, making 
them more vulnerable to alkylating therapy. The unmethylated MGMT gene promoter permits GBM 
cells to repair damage, limiting the efficacy of alkylating therapy [7, 8]. It is critical to develop non-
invasive image-based diagnostic techniques for determining MGMT promoter methylation status in 
brain tumors to minimize invasive procedures and minimize dangers. A meta-analysis of MRI 
characteristics discovered that methylated MGMT promoters were linked with decreased edoema, 
increased ADC, and decreased perfusion in glioblastoma [9]. 

With the advancement of artificial intelligence (AI) in the medical field [10], and other domains 
[11-15], there is an opportunity to more process of gathering all the quantitative information 
contained within the MR images, which may enable the classification and estimation of the genetic 
traits of glioma, which play such an important role in treatment management and prognosis [16]. 
Deep learning (DL) is a subset of Machine learning (ML) and AI in which image feature selection and 
classification procedures occur concurrently in one algorithm, obviating the requirement for human 
interaction during training. In general, it is end-to-end machine learning [17]. 

Some researchers have conducted their studies on detecting the status of MGMTp methylation 
using CNN. Chang et al., [18], obtained the images from the Cancer Imaging Archives for 259 patients. 
The performance evaluation of his model reaches an accuracy of (0.76 – 0.88). While Chen et al., [19], 
applied the CNN on a total of 106 GBM patients collected from The Cancer Imaging Archive with an 
accuracy of 0.827. Han et al., [20], proposed a similar method using CRNN on 159 unique patients' 
MRI scans acquired in 3 modalities from The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-
GBM) project and got an accuracy of 0.62.  

Chen et al., [21], investigated 111 patients with diffuse gliomas who participated in the 
retrospective review (56 with MGMT promoter methylation and 55 with MGMT promoter 
unmethylation) and achieved an AUC of 0.9 using a Resnet50-18 that was fed Radiomics 
characteristics. Kim et al., [22], examined a ResNet50 on FLAIR and T1wCE with an AUC of 0.65 on the 
BraTS 2021 dataset with a dataset from Seoul National University Hospital (SNUH).  

Yogananda et al., [9], applied Voxelwise classification and 3D-dense-UNets on 247 subjects from 
The Cancer Imaging Archive and The Cancer Genome Atlas using only T2WI and reach an AUC of 0.93. 
Lu et al., [23] investigated a total of 181 patients enrolled from their institution using the random 
survival forest (RSF) and obtained an AUC of 0.962. Lastly, Le et al., [24] used Binary classification on 
patients with GBM from the TCGA-GBM project, which included preoperative multimodal MRI 
(mMRI) scans from 262 participants with an accuracy of 0.887.  
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Deep learning algorithms and MRI images will be used in this project to predict the existence of 
MGMT promoter methylation in brain tumors. The study intends to discover where the methylation 
status emerges most frequently by analyzing the four modalities of MRI separately. Furthermore, this 
study aims to provide a user-friendly interface for forecasting MGMT promoter methylation, which 
is time-consuming and potentially prone to mistakes process at the moment. 

 
2. Methodology  
 

This section outlines the steps to develop and validate prediction models for detecting MGMT 
promoter methylation in brain tumors. The methodology includes data acquisition, image pre-
processing, deep learning models and evaluation, and Graphical User Interface (GUI) development.  

The flowchart in Figure 1 shows the steps of loading the data from the BraTS dataset to be used 
for applying the visualization technique to the image pre-processing. The data is pre-processed to 
handle missing values, deal with outliers, and transform variables as needed. The next step is to 
develop prediction models using appropriate deep learning algorithms. These models are then 
evaluated using appropriate metrics such as accuracy, precision, recall, and F1 to assess their 
performance. Based on the evaluation results, the models may be refined and optimized by adjusting 
model hyperparameters, trying different image pre-processing techniques, or different algorithms. If 
the models do not need to be refined and optimized, they are validated using the testing set and any 
additional validation datasets. Once the models have been validated, the best model can be used to 
predict the MGMT promoter methylation status of brain tumors and a GUI to predict the value of 
MGMT promoter for brain tumor prognosis. 

 

 
Fig. 1. Research flowchart 

 
The BraTS dataset was built up of retrospective MRI scans of brain tumors acquired from several 

institutions, each with its own imaging equipment and methodologies, resulting in a range of picture 
quality reflecting real-world clinical practice. The dataset contains 585 labeled patient samples, each 
of which contains T1w, T2w, T1Gd, and FLAIR imaging sequences. The sample sizes differ, and each 
corresponds to one of the four modalities. However, due to image errors stated by the host, three 
individuals (IDs 00109, 00123, and 00709) were eliminated from the collection, leading to a total of 
582 samples. The folder’s structure is shown in Figure 2. 
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Fig. 2. Folder structure of BraTS dataset 

 
2.1 Exploratory Data Analysis and Data Visualization 
 

Exploratory Data Analysis (EDA) and Data Visualization are essential tools for understanding the 
patterns and trends in a dataset. By analyzing and visualizing the data, we can uncover insights and 
relationships that may not be apparent at first glance, which can then inform further analysis and 
decision-making. The MGMT promoter methylation value can be represented using EDA and 
visualization as a 0 or 1. Due to the binary nature of the MGMT promoter methylation value, the data 
can be represented in a pie chart as 0: unmethylated and 1: methylated. Using correlation 
assumptions prior to data analysis through the EDA process enables the explicit articulation of the 
link between data or characteristics. It may be advantageous to explore, describe, and comprehend 
the significance of the data before selecting an acceptable analysis method to develop a prediction 
model. 
 
2.2 Image Pre-Processing 
 

Image pre-processing is the process of preparing images for further analysis or processing. It 
involves a series of steps to enhance the quality of the images, remove noise and artifacts, and adjust 
the images to a format that is more suitable for the intended application. Various techniques can be 
used for image pre-processing, depending on the application's specific requirements and the images' 
characteristics. Some common techniques include image resizing, cropping, rotation, color space 
conversion, enhancement, and denoising. Image pre-processing is an essential step in the analysis of 
medical images, such as those used to predict the presence of MGMT promoter methylation for the 
prognosis of brain tumors. Medical images often contain noise, artifacts, and other inconsistencies 
that can affect the accuracy and reliability of the analysis. Therefore, it is important to apply 
appropriate image pre-processing techniques to improve the quality of the images and remove any 
distractions that may interfere with the analysis. Image normalization, value of interest lookup table 
(VOI LUT) application, image type conversion, and image resizing are the proposed techniques for 
this study. 
 
2.3 Deep Learning Models 
 

Deep learning is a subset of machine learning that mimics the brain’s neural networks. It 
processes data and makes judgments without explicit programming by utilizing artificial neural 
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networks. It can extract patterns and relationships from big datasets. Deep learning has been used 
successfully for a variety of tasks, including image recognition and healthcare applications. However, 
it necessitates significant data and computer resources, and overfitting can be an issue. 

ResNet is a convolutional neural network developed by Microsoft Research in 2015 to address 
the issue of vanishing gradients in deep neural networks. It introduces skip connections to allow an 
easier flow of gradients through the network and improve learning and performance [25]. 
EfficientNetV2 is a convolutional neural network (CNN) architecture that researchers developed at 
Google as an improvement over the original EfficientNet architecture [26]. It is designed to be more 
efficient and perform better on a wide range of image classification tasks while using fewer resources 
such as computational power and memory. 
 
2.4 Performance Evaluation 
 

The confusion matrix will be used as a reference to evaluate the performance of the models. 
Evaluating the efficacy of a model is a vital step. Accuracy, Precision, Recall, and F1 are used to assess 
the proposed model's performance and can be calculated. Additionally, performance evaluation is 
used to assess how well the test dataset's MGMT value predictions are performed.  

In the context of a prediction model for MGMT methylation in tumors, true positives (TP) refer to 
cases where the model correctly predicts that a patient has MGMT methylation. On the other hand, 
true negatives (TN) are cases where the model accurately predicts that a patient does not have 
MGMT methylation. False positives (FP) occur when the model incorrectly predicts that a patient has 
MGMT methylation.  False negatives (FN), on the other hand, are instances where the model 
incorrectly predicts that a patient does not have MGMT methylation.  

For accuracy, it is the proportion of correctly identified samples to the total number of samples. 
 

Accuracy =
TN+TP

TN+FN+TP+FP
                   (1) 

 
Precision is expressed as the number of correctly identified positive samples divided by the total 

number of samples that were identified as positive. 
 

Precision =
TP

TP+FP
                    (2) 

 
The recall is calculated as the ratio between the number of positive samples correctly classified 

as Positive to the total number of positive samples. 
 

Recall =
TP

TP+FN
                     (3) 

 
F1 Score is needed when you want to seek a balance between precision and recall. 
 

F1 Score =
2×Precision×Recall

Precision+Recall
                   (4) 

 
2.5 Graphic User Interface Development 
 

A graphical user interface (GUI) allows users to interact with a computer or other device using 
visual elements such as icons, buttons, and windows. GUI applications provide a more intuitive and 
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user-friendly way for users to interact with the computer than command-line interfaces or text-based 
interfaces, which require users to enter commands or data using text-based commands.  
 
3. Results 
 

This section summarizes the associated results for data acquisition, exploratory data analysis 
(EDA) and data visualization, image pre-processing, deep learning models, performance evaluation 
of the model, and GUI for prediction of MGMT promoter methylation value.    
 
3.1 Data Acquisition  
 

During imaging, each modality in which the scan type specifies a focus. FLAIR, for example, 
captures the effect of cerebrospinal fluid (CSF) suppression, in which liquid signals like water are 
suppressed to highlight other parts. T2-weighted imaging, on the other hand, emphasizes differences 
in lateral tissue relaxation, and the combination of effects provides a comprehensive description of 
the lesion from multiple perspectives. Each sample in the dataset is represented by a quadruple of 
these four imaging modalities. Each Modality has two classes: methylated and unmethylated. Figures 
3 and 4 show the difference between methylated and unmethylated MGMT.    

 

 
Fig. 3. Methylated sample from the dataset 

 

 
Fig. 4. Unmethylated sample from the dataset 

 
3.2 Exploratory Data Analysis and Data Visualization 
 

Patients are separated into two groups, those with methylated MGMT and those without. The 
images are in DICOM format with a header comprising clinical data such as modality, orientation, and 
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MRI-specific data. The dataset has 306 methylation cases identified as “1” and 276 unmethylated 
cases identified as “0”, making it balanced.    

Figure 5 shows the Kernel density estimation (KDE), and Table 1 shows the number of MRI scans for 
each modality of train data after excluding some images due to issues. The average number of scans 
for modality per patient is between 127 and 171, which provides a wealth of information for pattern 
learning. 

 

 
Fig. 5. Kendal density of train set 

 

Table 1  
Number of files for each modality in the training set 
Scan Type FLAIR T1w T1wCE T2w 

Files 74,010 77,128 96,368 99,774 
Average Files per 
Case 

127 133 165 171 

Min Files in a case 15 19 19 19 
Max Files in a case 514 400 400 472 

 
Figure 6 shows the Kernel density estimation (KDE), and Table 2 shows the number of MRI scans 

performed for each test data modality. The average number of scans for modality per patient is 
between 124 and 165, which provides a wealth of information for pattern learning. 

 

 
Fig. 6. Kendal density of test set 
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Table 2  
Number of files for each modality in the testing set 
Scan Type FLAIR T1w T1wCE T2w 

Files 10,816 26,276 14,378 14,381 
Average Files per Case 124 137 165 165 
Min Files in a case 19 20 23 20 
Max Files in a case 412 352 352 464 

 
3.3 Image Pre-Processing 
 

In the beginning, black images must be removed. It has several effects on the model's 
performance. It reduces dataset noise by eliminating photos with little to no visual content. As a 
result, the dataset becomes cleaner and more concentrated, allowing the model to focus on essential 
patterns and attributes. 

Then, two essential operations are conducted during preprocessing: VOI LUT application and 
normalization. The VOI LUT is used to increase the contrast and visibility of regions of interest within 
the DICOM image. It converts the original pixel values to a new range, allowing for enhanced 
visualization and analysis. In addition, the normalization procedure ensures that the pixel values are 
uniform and standardized throughout the image. Normalizing the intensity values reduces 
differences in luminance and contrast between DICOM images, allowing for more precise 
comparisons and subsequent analysis. These preprocessing operations optimize the visual quality, 
uniformity, and interpretability of radiographic images of brain tumors, thereby augmenting the 
efficacy of subsequent image-based analysis and decision-making processes. 

The int16 format in DICOM images can store positive as well as negative numbers due to its 
greater range of values. Since it uses 16 bits per pixel, it requires more storage space and more RAM 
to operate. However, uint8, which uses 8 bits per pixel and expresses only positive numbers, is easier 
on storage space and more suited to visual representation. Converting to uint8 ensures that images 
will work with a wide range of image processing techniques and applications that typically work with 
uint8 images. 

Typically, MRI images have high resolution and large dimensions, such as 512x512 pixels. 
Nonetheless, processing such large images can be computationally and memory-intensive, 
particularly when working with enormous amounts of data. This can present difficulties for inference 
and training on devices with limited resources. To overcome these obstacles, images have been 
resized to 64x64 pixels. This operation substantially reduces the image's dimensions, resulting in 
decreased memory usage and computational complexity. By decreasing the scale of an image, the 
data can become more manageable, allowing devices to perform processing tasks more efficiently. 

 
3.4 Image Classification 
 

Image classification was performed on a dataset of Brain Tumor MRI images using the ResNet50 
and EfficientNetV2 architectures. The goal was to accurately classify the images into two categories: 
methylated and unmethylated for each sequence. The dataset consisted of a total of 202,285 images 
for training, evenly distributed for all MRI sequences between classes, and 50,573 images for 
validation. Here's a comparison table summarizing the class counts (Table 3). 
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Table 3 
MRI sequences comparison of methylated and unmethylated counts in training and validation sets after 
preprocessing 

MRI 
Sequences 

Methylated Unmethylated 

Training set Validation set Training set Validation set 

FLAIR 25,063 6,212 17,820 4,509 
T1w 24,324 6,043 22,142 5,574 
T1wCE 30,497 7,547 26,031 6,586 
T2w 33,544 8,410 22,864 5,692 
Total 113,428 28,212 88,857 22,361 

 
The model training method employed the use of MRI image slices as individual images within a 

specified directory structure. This technique in medical imaging analysis treats each slice of an MRI 
image as an individual image and allocates it to its corresponding class. This method enables more 
detailed analysis because each slice may have unique traits or patterns that contribute to the 
classification process. 

For each MRI sequence, two common architectures, ResNet50 and EfficientNetv2, were used to 
train the models, yielding a total of eight models for evaluation. The adoption of these models for 
each sequence of MRI shows insight into the performance and applicability of various architectures 
for the classification task at work. This method allows for a thorough examination of the models' 
performance and aids in determining the most effective architecture for each MRI sequence. 

ResNet-50 & EfficientNetV2 models are implemented with the deep learning application 
programming interface (API) known as “Keras”. Moreover, “sigmoid” function is used as the 
activation function in the output layer. The sigmoid function is a frequent activation function in ANN. 
It converts input values to a range of 0 to 1, making it useful for tasks requiring probability prediction.  
It is formally defined as f(x) = 1 / (1 + exp(-x)), where x is the input. The sigmoid function is important 
for applications like binary classification, which requires us to divide inputs into two separate classes: 
‘’methylated'' and ''unmethylated''. 

The micro average is used to compare the precision, recall, and F1-score values of different 
models' classification reports as shown in Table 4. The micro average is a statistic that computes 
these scores by aggregating all classes, taking the average values for each class. We gain a thorough 
assessment of the overall performance of the models by using the micro average, which considers 
the aggregate performance across all classes. The table provides a detailed examination of the 
performance metrics for ResNet50 and EfficientNetV2 models across various modalities such as 
FLAIR, T1w, T1wCE, and T2w. Accuracy, loss, precision, recall, and F1-score are among the measures 
assessed.  

 
Table 4 

 Classification Report of the Models 
 
Metrics 

ResNet50 EfficientNetV2 

FLAIR T1w T1wCE T2w FLAIR T1w T1wCE T2w 

Accuracy 0.9276 0.9172 0.9423 0.9453 0.8646 0.8922 0.8975 0.9097 
Loss 0.3284 0.3510 0.2583 0.2417 0.6777 0.4688 0.3980 0.4576 
Precision 0.93 0.92 0.94 0.95 0.86 0.89 0.90 0.91 
Recall 0.93 0.92 0.94 0.95 0.86 0.89 0.90 0.91 
F1-Score 0.93 0.92 0.94 0.95 0.86 0.89 0.90 0.91 

 
Both ResNet50 and EfficientNetV2 perform well across all modalities. ResNet50 routinely 

outperforms EfficientNetV2 in accuracy. ResNet50 achieves accuracies ranging from 0.92 to 0.95 
across all modalities, while EfficientNetV2 scores a bit lower, ranging from 0.86 to 0.91. This shows 
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that ResNet50 generalizes better to new data and performs better in classifying validation samples.  
ResNet50 consistently has lower losses than EfficientNetV2. This shows that ResNet50 can make 
more accurate predictions and minimize mistakes on the validation dataset. 

The T2w modality consistently produces the highest validation accuracy, precision, recall, and F1-
score for both the ResNet50 and EfficientNetV2 models, as shown in the Table 4. The T2w modality 
highlighted in the Table 4 has a validation accuracy of 0.9453 for ResNet50, suggesting that the model 
properly identifies 94.53% of the samples from this sequence. Similarly, T2w has the highest 
precision, recall, and F1-score among all sequences for both ResNet50 and EfficientNetV2. This 
implies that the T2w sequence for the ResNet50 algorithm contains significant features and patterns 
that enable the models to generate more accurate predictions. T2-weighted pictures are important 
in a variety of medical imaging activities because they provide essential information concerning fluid 
accumulation, edema, and lesions. The models' outstanding performance on T2w images 
demonstrates their capacity to successfully learn and apply the unique aspects of this modality. 

The BraTS RSNA-MICCAI Brain Tumor Radiogenomic Classification study did not release its results 
of the testing set, limiting comparing and measuring the accuracy of prediction outcomes with the 
actual results. As a result, a validation set has been utilized to analyze and evaluate the performance 
of estimations as discussed earlier. 
 
3.5 Graphic User Interface Development 
 

The brain tumor diagnosis interface uses DICOM images of MRI to determine MGMTp 
methylation status, which is an important biomarker for predicting the efficacy of Temozolomide 
(TMZ) alkylating treatment. When a DICOM file of a brain tumor is uploaded, the interface makes 
predictions using a pre-trained ResNet50 model of T2w. The model analyses the image, employs 
relevant preprocessing techniques, and determines whether the MGMTp methylation status is 
unmethylated. Based on the classification outcome, the user is shown the original MRI image, the 
estimated state, and an indicator of the efficiency of TMZ treatment as shown in Figure 7. This 
interface was designed using the library ‘Gradio’. 

If the model suggests that the brain tumor has MGMTp methylation in the case of a "methylated" 
classification. This shows that Temozolomide (TMZ) alkylating treatment is more likely to be effective. 
This classification result will be presented to the user, allowing them to potentially enhance patient 
outcomes. If the model suggests that a brain tumor is classified as "unmethylated". This indicates a 
decreased likelihood of a good response to TMZ alkylating therapy. This classification result will be 
presented to the user, allowing them to investigate other treatment options and make well-informed 
judgments based on the expected unmethylated status. The last case is when the interface recognizes 
"black images” as incorrect images in this scenario. It will show that the uploaded image is 
inappropriate for analysis since there is insufficient valid data. The user will be notified of the problem 
by an error message "Invalid Image". This message makes the user aware of the mistaken image and 
allows them to take relevant measures, such as re-uploading a genuine MRI scan for proper analysis. 
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Fig. 7. Graphical user interface 

 
4. Conclusions  
 

This study aimed to develop GUI to classify brain tumor images based on methylation status. A 
balanced dataset of DICOM images, consisting of methylated and unmethylated cases, was used. 
Image pre-processing techniques were applied to enhance the dataset's quality and computational 
efficiency. The ResNet50 and EfficientNetV2 models were employed, with the T2w modality 
consistently demonstrating superior performance, which achieved the best validation accuracy of 
0.9453 and a validation loss of 0.2417 for ResNet50. A user-friendly interface was created for easy 
image upload, analysis, and prediction of methylation status using it. The interface provides feedback 
on the predicted state and treatment effectiveness. In the case of invalid data, an error message 
prompts the user to provide accurate MRI scans. 

Considering the current context, exploring brain tumor data from Malaysia would be valuable. 
Analyzing data from the local population can provide insights into the unique characteristics, 
prevalence, and treatment outcomes of brain tumors in Malaysia. This localized approach can help 
in tailoring diagnostic and treatment strategies to the specific needs and demographics of the 
Malaysian population. 
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