

Journal of Advanced Research in Applied Sciences and Engineering Technology 54, Issue 2 (2026) 287-300

287

Journal of Advanced Research in Applied

Sciences and Engineering Technology

Journal homepage:
https://semarakilmu.com.my/journals/index.php/applied_sciences_eng_tech/index

ISSN: 2462-1943

Low Power RTL Implementation of Tiny-YOLO-v2 DCNN Hardware
Accelerator on Virtex-7 FPGA

Sherry Heshmat Hareth Korisa1,*, Khaled Ali Shehata1, Hassan Mostafa2

1 School of Electronics and Communication Engineering Arab academy for science and technology and maritime transport Cairo, Egypt
2 Department of Electronics and Communications Engineering, Cairo University, Egypt

 ABSTRACT

Deep Convolution Neural Networks (DCNNs) are widely used in real-time applications,
including image classification, speech recognition, and object detection. However, there
are challenges for real-time applications on portable devices like mobile phones or
embedded systems. Most object detection models are optimized for desktop
configurations, requiring fast GPUs. Shallower networks with fewer computational
complexities have been proposed for real-time detection, but ultimately compromise
detection accuracy. Performance and complexity trade-offs are significant for
computationally complex deep networks. This work aims to implement the CNN-based
object detection model Tiny-YOLO-v2 on a Field Programmable Gate Array (FPGA) using
Register Transfer Logic (RTL) as a native language. Hardware implementation is
synthesized on The AMD Virtex 7 FPGA VC709 Connectivity Kit using VHDL code on
Vivado 2020.1. This is the first, up to the authors' knowledge, RTL implementation of
the Tiny-YOLO-v2 object identification algorithm on FPGA. The power consumed by the
CNN layers equals 7.09W at a frequency of 100MHz.

Keywords:

Convolution Neural Networks (CNN);
Field Programmable Gate Array (FPGA);
Tiny-YOLO-v2; register transfer logic;
power consumption; speed

1. Introduction

CNNs are the state of art driven from the Artificial Neural Networks [1, 2] under the Deep Neural
Network (DNN) [3] umbrella which produce intelligent system that can automatically adapt to new
situations. CNNs have many applications such as object detection [4, 5], recognizing facial [6, 7],
autonomous cars [8-10], and robotics [11-13]. Furthermore, the later usually take many operations
to process. Those operations introduce the complexity of implementing the CNN algorithms, as the
hardware usually has limited bandwidth and on-chip memory. New Field Programmable Gate Array
(FPGA) is adapted by CNNs algorithms [14] due to their relatively high performance and flexibility.
Introducing Tiny-Yolo-v2, a well-known CNN object detection algorithm with a fixed point that
provides the benefits of low power consumption that can be used with the object detection datasets
from Pascal VOC [15] and COCO [16].

* Corresponding author.
E-mail address: sherry_heshmat@yahoo.com

https://doi.org/10.37934/araset.54.2.287300

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

288

1.1 Introduction to CNN and YOLO Network

CNN has a structure that is inspired by the idea of how the human visual cortex works. Each
neuron receives an input from a bunch of neurons from the previous layers, and it utilizes convolution
to calculate the input so that the positioning information is within the feature map. Through this
process, the number of parameters needed to learn the connection by looking at every single pair of
input and output is greatly reduced.

YOLO is one of the most popular CNNs object detection methods, which appeared in research
papers in 2016 and 2017 [17]. It works more efficiently in terms of the number of operations
compared to other object detection methods [18, 19]. The YOLO network predicts a set of rectangular
bounding boxes and assigns a class label [20, 21]. Performing these two tasks in the same network,
a single forward pass is able to detect a large number of classes. On the other hand, other object
detection methods require the network to make hundreds of predictions and conduct post-
processing at a later stage in order to detect each class in an image. Moreover, YOLO network shares
its resources among the classes, allowing it to make only a few predictions per image. The
architecture is trained with image input and finding objects in the Image Large Scale Visual
Recognition Challenge (ILSVRC). YOLO model has undergone continuous evolution [22, 23], resulting
in the development of newer and refined models such as the YOLO, YOLO-v2, YOLO-v3, Tiny YOLO-
v2, and YOLO-v4 successively.

2. Tiny YOLO-v2 Background

In this paper the hardware Tiny-YOLO-v2 network is implemented as the main principle, behind
its development is trade off the detection performance for higher throughput, reducing the network
complexity. As a result, the later takes up much less space in the form of model size while maintaining
an acceptable trade-off with respect to the network latency due to its significantly smaller network
size. Tiny-YOLO-v2 network [22] is a simplified network shown in Figure 1 compared to the full YOLO-
v2 network in Figure 2. Compared to YOLO-v2, Tiny-YOLO-v2 network uses half the number of layers
and, more importantly, requires only 3x3 and 1x1 convolutions as shown in Table 1.

Fig. 1. Tiny-YOLO-v2 architecture with CNN layers [22]

This layer reduction was necessary in order for Tiny-YOLO to fit on embedded-class GPUs, FPGAs,

and DSPs. Tiny-YOLO-v2 network has 9 convolution layers, and 6 maximum pooling layers presented
in Table 1. Here the convolution layers are followed by leaky Rectifier Linear Unit (ReLU) as an
activation function and batch normalization operation. Input image size to the network is (416 × 416)
to 20 output classes as the main YOLO but with faster training and detection.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

289

Fig. 2. Parallel engine unit [24]

Table 1
Tiny-YOLO-v2 network CNN layers
Number of layers Number of filters Filter size Stride Input matrix size Input depth Output depth

1 16 3x3 1 416x416 3 16
2 32 3x3 1 208x208 16 32
3 64 3x3 1 104x104 32 64
4 128 3x3 1 52x52 64 128
5 256 3x3 1 26x26 128 256
6 512 3x3 1 13x13 256 512
7 1024 3x3 1 13x13 512 1024
8 1024 3x3 1 13x13 1024 1024
9 125 1x1 1 13x13 1024 125

3. Hardware Low Power Tiny-YOLO-v2 Network RTL Implementation
3.1 CNNs Main Unit Blocks

Firstly, the main CNN block that represents the arithmetic and physical operations is
Multiplication and Accumulation (MAC), which is presented by the Parallel Engine (PE) unit in Figure
3. The MAC process is carried out by multiplying the input data of the image input Feature maps
(Fmaps) element by element with the training weights, also known as kernels filters. The
accumulation operation is carried out, as shown in Figure 2 with strides defined inside each
convolution layer; the output of the convolution layers is fed into output Fmaps after the different
kernel filters are applied.

Fig. 3. Row stationary dataflow for 2D CNN reuse
[24]

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

290

Secondly, after every convolution layer, Rectified Linear Unit (ReLU) layers are often positioned.
They serve as an introduction to a non-linear process. The network adapts to each given collection
of data thanks to its non-linear operation. ReLU returns all positive values after clamping all negative
values to 0. Thirdly, ReLU levels come before Local Response Normalization (LRN) layers. They are
employed to improve system accuracy and expedite the training process by normalizing the neuronal
response throughout the depth of the same geographical region. Fourthly, each Fmap dimension is
decreased by using Maximum Pooling (MaxPooling) layers, which also provide the most crucial
feature information.

3.2 Tiny-YOLO-v2 Network RTL Implementation

The layers of the inference phase implementation of the Tiny-YOLO v2 network architecture are
given in this section. Row stationary dataflow technique handles PE, which functions as a neuron in
our architecture, is the most important unit. The PE unit is seen in Figure 3; it is made up of two
Registers Files (RFs) for storing the input and the current filter, and a MAC operation for computing
partial sums that only use one memory space. The input can then be reused in the RF again since
there are overlaps in the input activations Fmaps between several sliding windows. Multiple PEs can
be used to finish the 2-D convolution after each PE processes a 1-D convolution, as seen in Figure 3.
Performing a general examination on Table 1, we considered that matrix size (13×13) of the input
matrix to be the heart of our system as shown in Figure 4. The reason for this is that convolution
layers (6, 7, 8, and 9) repeat it, correspondingly. Furthermore, the other convolution layers input size
of matrix is considered to double the size.

Fig. 4. Main convolution input matrix size (13 x 13)

3.2.1 Convolution layer (Conv-5)

In Conv-5 the size of the input matrix is (26 × 26) which is double the main convolution input

matrix size in Figure 5 with depth 128. As a result of that, implementation of one block of the main
convolution size of matrix is done but it will be reused as hardware four times represented by
(Division_1, Division_2, Division_3, and Division_4), as shown in Figure 5. In Figure 5, the green
shaded bordered line is zero padding technique. Given filter matrix equals (3 × 3) with stride equals
1.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

291

Fig. 5. Tiny-YOLO-v2 Conv-5 input matrix representation

Block diagram in Figure 6 shows Conv-5 implementation. At first reading from 4 input data MEMs

and 4 filter MEMs simultaneously. Finishing the whole 128 depths of one division will take 32 internal
MEMs to store the output of convolution process, secondly add the data of the 32 MEMs and store
it in one MEM called MEM-1 for Division-1. The third step repeats the previous two steps three more
times to finish the whole four divisions with depths 128 for one filter. Accordingly, the output of one
filter will be stored in 4 MEMs as shown in Figure 6. Finally repeating the previous three steps 256
times to finish the convolution process of the whole 256 filters. The output is 1024 MEMs size of the
memory is constant (13 × 13) total as a result of 4 multiplied by 256 which will make the total
memories used be equal to 1024. MaxPooling layer is used after it as illustrated in Figure 7 downsizing
the memories used to be equal to 256.

Fig. 6. Tiny-YOLO-v2 Conv-5 implementation blocks for one filter

Fig. 7. Memory block diagram used in Tiny-YOLO-v2 Conv-5

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

292

3.2.2 Convolution layer (Conv-4)

The input matrix to Conv-4 is (52 × 52) which is the double of that of Conv-5. Therefore, by using
the main size matrix (13x 13) number of Divisions will be equal to 16 to finish one filter as shown in
Figure 8. As a result, each filter will store its output in 16 memories and here Conv-4 has 128 filters
therefore the overall number of memories used are the result of multiplying 16 with 128 equals 2048.
Figure 9 shows the total memories used after MaxPooling which will be equal to 512.

Fig. 8. Tiny-YOLO-v2 Conv-4 implementation blocks for one filter

Fig. 9. Memory block diagram used in Tiny-YOLO-v2 Conv-4

3.2.3 Convolution layer (Conv-3)

Conv-3 has an input matrix size of (104 x 104), which is twice as large as that in Conv-4s. The
resultant memories taken by one filter to store its output is 64 corresponds to the number of divisions
needed as shown in Figure 10. The red shaded corresponds to the division need for Conv-5 to finish
one filter that has the main size (13 x 13). Also, the green includes the red part corresponds to the
division needed for Conv-4 to finish one filter. Finally, the whole figure represents the total number
of divisions which is translated to memories needed to finish one filter. Therefore, Figure 11 explains
the data flow operation for one filter. Numbers of filters in Conv-3 is equal to 64. In conclusion, the

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

293

total number of memories is 64 multiplied by 64 equals 4096 memories. The MaxPooling block, as
seen in Figure 12, reduced the amount of memory utilized in Conv-3 to 1024.

Fig. 10. Number of divisions used in Conv-3 to finish the output of one filter

Fig. 11. Tiny-YOLO-v2 Conv-3 implementation blocks for one filter

Fig. 12. Memory block diagram used in Tiny-YOLO-v2 Conv-3

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

294

3.2.4 Convolution layer (Conv-2)

The input matrix size of Conv-2 is (208 x 208) which is double the size of that in Conv-4. Number
of divisions used to finish one filter equals 256 which means reusing the main constant block size (13
x 13) equals 256 times. Figure 13 represents the data flow block diagram to get the output for one
filter. The number of memories used to store the output of one filter is equal to 256. For using 32
filters in Conv-2 therefore the total number of memories used will be equal to 32 multiplied by 256
which are 8192 memories as shown in Figure 14. After MaxPooling will minimise number of
memories to 2048.

Fig. 13. Tiny-YOLO-v2 Conv-2 implementation blocks for one filter

Fig. 14. Memory block diagram used in Tiny-YOLO-v2 Conv-2

3.2.5 Convolution layer (Conv-1)

The input matrix to Conv-1 is the main input picture feature data with matrix size (416 x 416) and
3 depths. Figure 15 illustrates the block diagram of data flow of Conv-1. To get the output of one
filter number of memories needed is equal to 1024. As a result, the total output memories are the

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

295

product of multiplying 16 with 1024 to be equal to 16384 memories as shown in Figure 16. After
passing the output into MaxPooling layer, the number of memories downsized to be 4096.

Fig. 15. Tiny-YOLO-v2 Conv-1 implementation blocks for one filter

Fig. 16. Memory block diagram used in Tiny-YOLO-v2 Conv-2

3.2.6 Convolution layers (Conv-6, Conv-7, and Conv-8)

Main convolution input matrix with size (13 x 13) is constant through the three layers as
presented in Table 1. Also, they are common in the filter size which is (3 x 3) and no MaxPooling block
after them. On the other hand, the difference is in the number of filters and their depth too. Figure
17 shows data flow block diagram for Conv-6 to finish all its filters. Taking 64 internal memories to
store the result after reading simultaneously from four input depths as illustrated in Figure 17. Conv-
6 has 512 filters and 256 depths while it`s outputs are stored in 512 memories. In Conv-7 number of
filters are 1024 with depth 512. Making 64 a constant number of internal memories. Therefore, as
shown in Figure 18 they must be reused twice to finish the whole number of depths for one filter.

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

296

Fig. 17. Tiny-YOLO-v2 Conv-6 implementation blocks

Fig. 18. Tiny-YOLO-v2 Conv-7 implementation blocks

Figure 19 illustrates the hardware blocks used for Conv-8. Conv-8 as shown in Table 1 has 1024

filters with 1024 depths for each. The procedure needs to be done four times in order to obtain the
result of one filter, since the internal memory count will remain constant at 64.

Fig. 19. Tiny-YOLO-v2 Conv-8 implementation blocks

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

297

3.2.7 Convolution layer (Conv-9)

Conv-9 has the same input matrix size which is (13 x 13) but it`s filter size is different. The size of
the filter is equal to (1 x 1) instead of (3 x 3) and number of filters is 125 with depth equals 1024.

4. Memory Hierarchy

The system has three memory hierarchy layers which are DRAM (SD card), GLOBAL BUFFERS
(filter, internal memories reused within the same layer, and memories used to store the output of
each layer), and Inter-PE CACHES. Figure 20 illustrates all of these layers in order to reduce energy
per access. All of the network’s weights and biases are kept in DRAMs. Weights for local reuse and
the input part are stored in the Inter-PE CACHES.

Fig. 20. Memory hierarchy

5. Experimental Results

The hardware implantation of each Convolution layer is done on AMD Virtex 7 FPGA VC709
Connectivity Kit. Table 2 shows the reports for hardware recourse utilization. The convolution layers
consume 29% of the LUT, 60.5% of the available BRAM, 28% of the BUFG, 2.3%of the FF and 2.4% of

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

298

DSP. The power consumed by the convolution layers equals 7.09W at frequency 100MHz. The
detailed utilization recourses of each convolution layer are presented in Table 3. There are more LUT
and FF in Conv-1 than in Conv-2. Moreover, Conv-2's LUT and FF are more than Conv-3's, and the
same sequence till the ninth convolution layer. The latter illustrates that the size of each CNN layer's
input matrix, as previously indicated in Table 1, is what causes the LUT and FF consumption in each
CNN layer. BRAM is forced as a constrain to be limited to 127. Furthermore, the last three convolution
layers (CNN-7, CNN-8, and CNN-9) were when the DSP was first employed, indicating that the depth
of each CNN affects the DSP consumption.

Table 2
Summary of hardware resources utilization
Resources Available Utilization

LUT 433200 29%
BRAM 1470 60.5%
BUFG 32 28.12%
FF 866400 2.3%

Table 3
Detailed hardware resources utilization for each convolution layer
Resources Conv-1 Conv-2 Conv-3 Conv-4 Conv-5 Conv-6 Conv-7 Conv-8 Conv-9

LUT 45841 21116 7319 29869 23905 271 4 0 158
BRAM 127 127 127 127 127 127 0 127 0
BUFG 1 1 1 1 1 1 1 1 1
FF 7068 6668 5568 332 84 0 16 0 85
DSP 0 0 0 0 0 0 28 28 28

The comparison between the suggested design and earlier research on the hardware

implementation of the Tiny-YOLO-v2 is presented in Table 4. When it comes to reducing power usage,
the proposed design using the Tiny-YOLO-v2 performs noticeably better than the Sim-YOLO-v2 that
was provided in [25-27].

Table 4
Detailed comparison of the YOLO-v2 hardware design proposal with previous work
Resources Sim-YOLO-v2 on

GPU [25]
Lightweight
YOLO-v2 [26]

Sim-YOLO-v2
[27]

OpenCL
Tiny-YOLO-v2 [28]

This work RTL Tiny-
YOLO-v2

Platform GTX Titan X Zynq
Ultrascale+

Virtex-7 VC707 Cyclone V PCIe AMD Virtex 7 FPGA
VC709

Frequency 1GHz 300MHz 200MHz 117MHz 100MHz
BRAM N/A 1706 1144 N/A 1470
DSPs N/A 377 272 122 84
FF
LUT
Power (W)
Throughput
(GOPs)

N/A
N/A
170
1512

370000
135000
N/A
610.9

115000
155000
18.29
1877

N/A
113000
N/A
21.6

866400
433200
7.09
1.6

4. Conclusions

In conclusion, the paper represents native RTL hardware implementation of Tiny-Yolo-v2 object
detection network. The implementation is synthesized on AMD Virtex 7 FPGA VC709 Connectivity Kit
operating on a frequency of 100 MHz. Moreover, memory hierarchy are used in the introduced

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

299

architecture design to dramatically reduce the power consumption to 7.09W compared to hundreds
of Watts in the previous work. Ultimately, the methods employed to get the latter satisfactory result
with 7.09W of power included employing native RTL for implementations, pipelining in each CNN
layer to obtain the overall result, and reusing some blocks in the Hardware rather
than reimplementing them.

Acknowledgement
The Electronics and Communication Engineering department of the Arab Academy for Science and
Technology, Maritime Transport, (AASTMT) provided support for this research. I also appreciate that
OneLab (https://onelab-eg.com/) and Hammam Lab at Cairo University allowed me to work there
and utilize their GPU.

References
[1] Wang, Meng, Weijie Fu, Xiangnan He, Shijie Hao, and Xindong Wu. "A survey on large-scale machine learning." IEEE

Transactions on Knowledge and Data Engineering 34, no. 6 (2020): 2574-2594.
https://doi.org/10.1109/TKDE.2020.3015777

[2] Litjens, Geert, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco Ciompi, Mohsen
Ghafoorian, Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I. Sánchez. "A survey on deep learning in
medical image analysis." Medical image analysis 42 (2017): 60-88. https://doi.org/10.1016/j.media.2017.07.005

[3] Zamri, Nurul Farhana Mohamad, Nooritawati Md Tahir, Megat Syahirul Megat Ali, Nur Dalila Khirul Ashar, and Ali
Abd Almisreb. "Real time snatch theft detection using deep learning networks." Journal of Advanced Research in
Applied Sciences and Engineering Technology 31, no. 1 (2023): 79-89. https://doi.org/10.37934/araset.31.1.7989

[4] Amjoud, Ayoub Benali, and Mustapha Amrouch. "Object detection using deep learning, CNNs and vision
transformers: A review." IEEE Access 11 (2023): 35479-35516. https://doi.org/10.1109/ACCESS.2023.3266093

[5] Yadav, Satya Prakash, Muskan Jindal, Preeti Rani, Victor Hugo C. de Albuquerque, Caio dos Santos Nascimento, and
Manoj Kumar. "An improved deep learning-based optimal object detection system from images." Multimedia Tools
and Applications 83, no. 10 (2024): 30045-30072. https://doi.org/10.1007/s11042-023-16736-5

[6] Munanday, Anbananthan Pillai, Norazlianie Sazali, Arjun Asogan, Devarajan Ramasamy, and Ahmad Shahir
Jamaludin. "The implementation of transfer learning by convolution neural network (CNN) for recognizing facial
emotions." Journal of Advanced Research in Applied Sciences and Engineering Technology 32, no. 2 (2023): 255-
276. https://doi.org/10.37934/araset.32.2.255276

[7] Munanday, Anbananthan Pillai, Norazlianie Sazali, Wan Sharuzi Wan Harun, Kumaran Kadirgama, and Ahmad
Shahir Jamaludin. "Analysis of convolutional neural networks for facial expression recognition on GPU, TPU and
CPU." Journal of Advanced Research in Applied Sciences and Engineering Technology 31, no. 3 (2023): 50-67.
https://doi.org/10.37934/araset.31.3.5067

[8] Geiger, Andreas, Philip Lenz, and Raquel Urtasun. "Are we ready for autonomous driving? the kitti vision benchmark
suite." In 2012 IEEE conference on computer vision and pattern recognition, pp. 3354-3361. IEEE, 2012.
https://doi.org/10.1109/CVPR.2012.6248074

[9] Tampuu, Ardi, Tambet Matiisen, Maksym Semikin, Dmytro Fishman, and Naveed Muhammad. "A survey of end-to-
end driving: Architectures and training methods." IEEE Transactions on Neural Networks and Learning Systems 33,
no. 4 (2020): 1364-1384. https://doi.org/10.1109/TNNLS.2020.3043505

[10] Rabecka, V. Darthy, and J. Britto Pari. "Assessing the performance of advanced object detection techniques for
autonomous cars." In 2023 International Conference on Networking and Communications (ICNWC), p. 1-7. IEEE,
2023. https://doi.org/10.1109/ICNWC57852.2023.10127360

[11] Sharma, Archit, Ahmed M. Ahmed, Rehaan Ahmad, and Chelsea Finn. "Self-improving robots: End-to-end
autonomous visuomotor reinforcement learning." arXiv preprint arXiv:2303.01488 (2023).
https://doi.org/10.48550/arXiv.2303.01488

[12] Aradi, Szilárd. "Survey of deep reinforcement learning for motion planning of autonomous vehicles." IEEE
Transactions on Intelligent Transportation Systems 23, no. 2 (2020): 740-759.
https://doi.org/10.1109/TITS.2020.3024655

[13] Ibrahim, Amin S., Adel Refky, and Abdelghany M Abdelghany. "Self-driving car based CNN deep learning
model." International Journal of Advanced Engineering and Business Sciences 4, no. 3 (2023).
https://doi.org/10.21608/ijaebs.2023.208574.1081

https://doi.org/10.1109/TKDE.2020.3015777
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.37934/araset.31.1.7989
https://doi.org/10.1109/ACCESS.2023.3266093
https://doi.org/10.1007/s11042-023-16736-5
https://doi.org/10.37934/araset.32.2.255276
https://doi.org/10.37934/araset.31.3.5067
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/TNNLS.2020.3043505
https://doi.org/10.1109/ICNWC57852.2023.10127360
https://doi.org/10.48550/arXiv.2303.01488
https://doi.org/10.1109/TITS.2020.3024655
https://doi.org/10.21608/ijaebs.2023.208574.1081

Journal of Advanced Research in Applied Sciences and Engineering Technology

Volume 54, Issue 2 (2026) 287-300

300

[14] Ye, Haobo. "Accelerating convolutional neural networks: Exploring FPGA-based architectures and challenges."
In Journal of Physics: Conference Series, 2786, no. 1, p. 012004. IOP Publishing, 2024.
https://doi.org/10.1088/1742-6596/2786/1/012004

[15] Everingham, Mark, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. "The pascal visual
object classes (voc) challenge." International journal of computer vision 88 (2010): 303-338.
https://doi.org/10.1007/s11263-009-0275-4

[16] Lin, Tsung-Yi, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C.
Lawrence Zitnick. "Microsoft coco: Common objects in context." In Computer Vision–ECCV 2014: 13th European
Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740-755. Springer International
Publishing, 2014. https://doi.org/10.1007/978-3-319-10602-1_48

[17] Redmon, J. "You only look once: Unified, real-time object detection." In Proceedings of the IEEE conference on
computer vision and pattern recognition, p. 779-788. 2016. https://doi.org/10.1109/CVPR.2016.91

[18] Sirisha, U., S. Phani Praveen, Parvathaneni Naga Srinivasu, Paolo Barsocchi, and Akash Kumar Bhoi. "Statistical
analysis of design aspects of various YOLO-based deep learning models for object detection." International Journal
of Computational Intelligence Systems 16, no. 1 (2023): 126. https://doi.org/10.1007/s44196-023-00302-w

[19] Agrawal, Prakhar, Garvi Jain, Saumya Shukla, Shivansh Gupta, Deepali Kothari, Rekha Jain, and Neeraj Malviya.
"YOLO algorithm implementation for real time object detection and tracking." In 2022 IEEE Students Conference on
Engineering and Systems (SCES), pp. 01-06. IEEE, 2022. https://doi.org/10.1109/SCES55490.2022.9887678

[20] Diwan, Tausif, G. Anirudh, and Jitendra V. Tembhurne. "Object detection using YOLO: Challenges, architectural
successors, datasets and applications." multimedia Tools and Applications 82, no. 6 (2023): 9243-9275.
https://doi.org/10.1007/s11042-022-13644-y

[21] Pan, Xingyu, Wenjun Yue, Tonglin Liao, Xinyi Tang, and Teoh Teik Toe. "The application and expansion of the YOLO
algorithm in the field of campus cat and dog identification." In 2023 IEEE 11th Joint International Information
Technology and Artificial Intelligence Conference (ITAIC), vol. 11, p. 17-22. IEEE, 2023.
https://doi.org/10.1109/ITAIC58329.2023.10409034

[22] HC, D. "An overview of you only look once: unified, real-time object detection." International Journal for Research
in Applied Science and Engineering Technology 8, no. 6 (2020): 607-609.
https://doi.org/10.22214/ijraset.2020.6098.

[23] Yao, ZhengBai, Will Douglas, Simon O’Keeffe, and Rudi Villing. "Faster yolo-lite: Faster object detection on robot
and edge devices." In Robot World Cup, pp. 226-237. Cham: Springer International Publishing, 2021.
https://doi.org/10.1007/978-3-030-98682-7_19

[24] Sze, Vivienne, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. "Efficient processing of deep neural networks: A tutorial
and survey." Proceedings of the IEEE 105, no. 12 (2017): 2295-2329. https://doi.org/10.1109/JPROC.2017.2761740

[25] Redmon, Joseph, and Ali Farhadi. "YOLO9000: better, faster, stronger." In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, p. 7263-7271. 2017. https://doi.org/10.1109/cvpr.2017.690.

[26] Nakahara, Hiroki, Haruyoshi Yonekawa, Tomoya Fujii, and Shimpei Sato. "A lightweight YOLOv2: A binarized CNN
with a parallel support vector regression for an FPGA." In Proceedings of the 2018 ACM/SIGDA International
Symposium on field-programmable gate arrays, p. 31-40. 2018. https://doi.org/10.1145/3174243.3174266

[27] Nguyen, Duy Thanh, Tuan Nghia Nguyen, Hyun Kim, and Hyuk-Jae Lee. "A high-throughput and power-efficient
FPGA implementation of YOLO CNN for object detection." IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 27, no. 8 (2019): 1861-1873. https://doi.org/10.1109/TVLSI.2019.2905242

[28] Yap, June Wai, Zulkalnain bin Mohd Yussof, Sani Irwan bin Salim, and Kim Chuan Lim. "Fixed point implementation
of tiny-yolo-v2 using opencl on fpga." International Journal of Advanced Computer Science and Applications 9, no.
10 (2018). https://doi.org/10.14569/IJACSA.2018.091062

https://doi.org/10.1088/1742-6596/2786/1/012004
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1007/s44196-023-00302-w
https://doi.org/10.1109/SCES55490.2022.9887678
https://doi.org/10.1007/s11042-022-13644-y
https://doi.org/10.1109/ITAIC58329.2023.10409034
https://doi.org/10.22214/ijraset.2020.6098
https://doi.org/10.1007/978-3-030-98682-7_19
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1109/cvpr.2017.690
https://doi.org/10.1145/3174243.3174266
https://doi.org/10.1109/TVLSI.2019.2905242
https://doi.org/10.14569/IJACSA.2018.091062

