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 ABSTRACT 

 
Deep Convolution Neural Networks (DCNNs) are widely used in real-time applications, 
including image classification, speech recognition, and object detection. However, there 
are challenges for real-time applications on portable devices like mobile phones or 
embedded systems. Most object detection models are optimized for desktop 
configurations, requiring fast GPUs. Shallower networks with fewer computational 
complexities have been proposed for real-time detection, but ultimately compromise 
detection accuracy. Performance and complexity trade-offs are significant for 
computationally complex deep networks. This work aims to implement the CNN-based 
object detection model Tiny-YOLO-v2 on a Field Programmable Gate Array (FPGA) using 
Register Transfer Logic (RTL) as a native language. Hardware implementation is 
synthesized on The AMD Virtex 7 FPGA VC709 Connectivity Kit using VHDL code on 
Vivado 2020.1. This is the first, up to the authors' knowledge, RTL implementation of 
the Tiny-YOLO-v2 object identification algorithm on FPGA. The power consumed by the 
CNN layers equals 7.09W at a frequency of 100MHz.  
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1. Introduction 
 

CNNs are the state of art driven from the Artificial Neural Networks [1, 2] under the Deep Neural 
Network (DNN) [3] umbrella which produce intelligent system that can automatically adapt to new 
situations. CNNs have many applications such as object detection [4, 5], recognizing facial [6, 7], 
autonomous cars [8-10], and robotics [11-13]. Furthermore, the later usually take many operations 
to process. Those operations introduce the complexity of implementing the CNN algorithms, as the 
hardware usually has limited bandwidth and on-chip memory. New Field Programmable Gate Array 
(FPGA) is adapted by CNNs algorithms [14] due to their relatively high performance and flexibility. 
Introducing Tiny-Yolo-v2, a well-known CNN object detection algorithm with a fixed point that 
provides the benefits of low power consumption that can be used with the object detection datasets 
from Pascal VOC [15] and COCO [16].  
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1.1 Introduction to CNN and YOLO Network    
 

CNN has a structure that is inspired by the idea of how the human visual cortex works. Each 
neuron receives an input from a bunch of neurons from the previous layers, and it utilizes convolution 
to calculate the input so that the positioning information is within the feature map. Through this 
process, the number of parameters needed to learn the connection by looking at every single pair of 
input and output is greatly reduced.  

YOLO is one of the most popular CNNs object detection methods, which appeared in research 
papers in 2016 and 2017 [17]. It works more efficiently in terms of the number of operations 
compared to other object detection methods [18, 19]. The YOLO network predicts a set of rectangular 
bounding boxes and assigns a class label [20, 21].  Performing these two tasks in the same network, 
a single forward pass is able to detect a large number of classes. On the other hand, other object 
detection methods require the network to make hundreds of predictions and conduct post-
processing at a later stage in order to detect each class in an image. Moreover, YOLO network shares 
its resources among the classes, allowing it to make only a few predictions per image. The 
architecture is trained with image input and finding objects in the Image Large Scale Visual 
Recognition Challenge (ILSVRC). YOLO model has undergone continuous evolution [22, 23], resulting 
in the development of newer and refined models such as the YOLO, YOLO-v2, YOLO-v3, Tiny YOLO-
v2, and YOLO-v4 successively. 
 
2. Tiny YOLO-v2 Background 
 

In this paper the hardware Tiny-YOLO-v2 network is implemented as the main principle, behind 
its development is trade off the detection performance for higher throughput, reducing the network 
complexity. As a result, the later takes up much less space in the form of model size while maintaining 
an acceptable trade-off with respect to the network latency due to its significantly smaller network 
size. Tiny-YOLO-v2 network [22] is a simplified network shown in Figure 1 compared to the full YOLO-
v2 network in Figure 2. Compared to YOLO-v2, Tiny-YOLO-v2 network uses half the number of layers 
and, more importantly, requires only 3x3 and 1x1 convolutions as shown in Table 1.  
 

 
Fig. 1. Tiny-YOLO-v2 architecture with CNN layers [22] 

 
This layer reduction was necessary in order for Tiny-YOLO to fit on embedded-class GPUs, FPGAs, 

and DSPs. Tiny-YOLO-v2 network has 9 convolution layers, and 6 maximum pooling layers presented 
in Table 1. Here the convolution layers are followed by leaky Rectifier Linear Unit (ReLU) as an 
activation function and batch normalization operation. Input image size to the network is (416 × 416) 
to 20 output classes as the main YOLO but with faster training and detection. 
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Fig. 2. Parallel engine unit [24] 

 
Table 1 
Tiny-YOLO-v2 network CNN layers 
Number of layers Number of filters Filter size Stride Input matrix size Input depth Output depth 

1 16 3x3 1 416x416 3 16 
2 32 3x3 1  208x208  16 32 
3 64 3x3 1  104x104  32 64 
4 128 3x3 1  52x52  64 128 
5 256 3x3 1  26x26  128 256 
6 512 3x3 1  13x13  256 512 
7 1024 3x3 1  13x13  512 1024 
8 1024 3x3 1  13x13  1024 1024 
9 125 1x1 1  13x13  1024 125 

 
3. Hardware Low Power Tiny-YOLO-v2 Network RTL Implementation  
3.1 CNNs Main Unit Blocks 
 

Firstly, the main CNN block that represents the arithmetic and physical operations is 
Multiplication and Accumulation (MAC), which is presented by the Parallel Engine (PE) unit in Figure 
3. The MAC process is carried out by multiplying the input data of the image input Feature maps 
(Fmaps) element by element with the training weights, also known as kernels filters. The 
accumulation operation is carried out, as shown in Figure 2 with strides defined inside each 
convolution layer; the output of the convolution layers is fed into output Fmaps after the different 
kernel filters are applied.  
 

 
Fig. 3. Row stationary dataflow for 2D CNN reuse  
[24] 
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Secondly, after every convolution layer, Rectified Linear Unit (ReLU) layers are often positioned. 
They serve as an introduction to a non-linear process. The network adapts to each given collection 
of data thanks to its non-linear operation. ReLU returns all positive values after clamping all negative 
values to 0. Thirdly, ReLU levels come before Local Response Normalization (LRN) layers. They are 
employed to improve system accuracy and expedite the training process by normalizing the neuronal 
response throughout the depth of the same geographical region. Fourthly, each Fmap dimension is 
decreased by using Maximum Pooling (MaxPooling) layers, which also provide the most crucial 
feature information. 
 
3.2 Tiny-YOLO-v2 Network RTL Implementation 
 

The layers of the inference phase implementation of the Tiny-YOLO v2 network architecture are 
given in this section. Row stationary dataflow technique handles PE, which functions as a neuron in 
our architecture, is the most important unit. The PE unit is seen in Figure 3; it is made up of two 
Registers Files (RFs) for storing the input and the current filter, and a MAC operation for computing 
partial sums that only use one memory space. The input can then be reused in the RF again since 
there are overlaps in the input activations Fmaps between several sliding windows. Multiple PEs can 
be used to finish the 2-D convolution after each PE processes a 1-D convolution, as seen in Figure 3. 
Performing a general examination on Table 1, we considered that matrix size (13×13) of the input 
matrix to be the heart of our system as shown in Figure 4. The reason for this is that convolution 
layers (6, 7, 8, and 9) repeat it, correspondingly. Furthermore, the other convolution layers input size 
of matrix is considered to double the size. 
 

 
Fig. 4. Main convolution input matrix size (13 x 13) 

 
3.2.1 Convolution layer (Conv-5) 

 
In Conv-5 the size of the input matrix is (26 × 26) which is double the main convolution input 

matrix size in Figure 5 with depth 128. As a result of that, implementation of one block of the main 
convolution size of matrix is done but it will be reused as hardware four times represented by 
(Division_1, Division_2, Division_3, and Division_4), as shown in Figure 5. In Figure 5, the green 
shaded bordered line is zero padding technique. Given filter matrix equals (3 × 3) with stride equals 
1.  
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Fig. 5. Tiny-YOLO-v2 Conv-5 input matrix representation 

 
Block diagram in Figure 6 shows Conv-5 implementation. At first reading from 4 input data MEMs 

and 4 filter MEMs simultaneously. Finishing the whole 128 depths of one division will take 32 internal 
MEMs to store the output of convolution process, secondly add the data of the 32 MEMs and store 
it in one MEM called MEM-1 for Division-1. The third step repeats the previous two steps three more 
times to finish the whole four divisions with depths 128 for one filter. Accordingly, the output of one 
filter will be stored in 4 MEMs as shown in Figure 6. Finally repeating the previous three steps 256 
times to finish the convolution process of the whole 256 filters. The output is 1024 MEMs size of the 
memory is constant (13 × 13) total as a result of 4 multiplied by 256 which will make the total 
memories used be equal to 1024. MaxPooling layer is used after it as illustrated in Figure 7 downsizing 
the memories used to be equal to 256. 
 

 
Fig. 6. Tiny-YOLO-v2 Conv-5 implementation blocks for one filter 

 

 
Fig. 7. Memory block diagram used in Tiny-YOLO-v2 Conv-5 
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3.2.2 Convolution layer (Conv-4) 
 

The input matrix to Conv-4 is (52 × 52) which is the double of that of Conv-5. Therefore, by using 
the main size matrix (13x 13) number of Divisions will be equal to 16 to finish one filter as shown in 
Figure 8. As a result, each filter will store its output in 16 memories and here Conv-4 has 128 filters 
therefore the overall number of memories used are the result of multiplying 16 with 128 equals 2048. 
Figure 9 shows the total memories used after MaxPooling which will be equal to 512. 
 

 
Fig. 8. Tiny-YOLO-v2 Conv-4 implementation blocks for one filter 

 

 
Fig. 9. Memory block diagram used in Tiny-YOLO-v2 Conv-4 

 
3.2.3 Convolution layer (Conv-3) 
 

Conv-3 has an input matrix size of (104 x 104), which is twice as large as that in Conv-4s. The 
resultant memories taken by one filter to store its output is 64 corresponds to the number of divisions 
needed as shown in Figure 10. The red shaded corresponds to the division need for Conv-5 to finish 
one filter that has the main size (13 x 13). Also, the green includes the red part corresponds to the 
division needed for Conv-4 to finish one filter. Finally, the whole figure represents the total number 
of divisions which is translated to memories needed to finish one filter. Therefore, Figure 11 explains 
the data flow operation for one filter. Numbers of filters in Conv-3 is equal to 64. In conclusion, the 
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total number of memories is 64 multiplied by 64 equals 4096 memories. The MaxPooling block, as 
seen in Figure 12, reduced the amount of memory utilized in Conv-3 to 1024. 
 

 
Fig. 10. Number of divisions used in Conv-3 to finish the output of one filter 

 

 
Fig. 11. Tiny-YOLO-v2 Conv-3 implementation blocks for one filter 

 

 
Fig. 12. Memory block diagram used in Tiny-YOLO-v2 Conv-3 
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3.2.4 Convolution layer (Conv-2) 
 

The input matrix size of Conv-2 is (208 x 208) which is double the size of that in Conv-4. Number 
of divisions used to finish one filter equals 256 which means reusing the main constant block size (13 
x 13) equals 256 times. Figure 13 represents the data flow block diagram to get the output for one 
filter. The number of memories used to store the output of one filter is equal to 256. For using 32 
filters in Conv-2 therefore the total number of memories used will be equal to 32 multiplied by 256 
which are 8192 memories as shown in Figure 14. After MaxPooling will minimise number of 
memories to 2048. 
 

 
Fig. 13. Tiny-YOLO-v2 Conv-2 implementation blocks for one filter 

 

 
Fig. 14. Memory block diagram used in Tiny-YOLO-v2 Conv-2 

 
3.2.5 Convolution layer (Conv-1) 
 

The input matrix to Conv-1 is the main input picture feature data with matrix size (416 x 416) and 
3 depths. Figure 15 illustrates the block diagram of data flow of Conv-1. To get the output of one 
filter number of memories needed is equal to 1024. As a result, the total output memories are the 
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product of multiplying 16 with 1024 to be equal to 16384 memories as shown in Figure 16. After 
passing the output into MaxPooling layer, the number of memories downsized to be 4096. 
 

 
Fig. 15. Tiny-YOLO-v2 Conv-1 implementation blocks for one filter 

 

 
Fig. 16. Memory block diagram used in Tiny-YOLO-v2 Conv-2 

 
3.2.6 Convolution layers (Conv-6, Conv-7, and Conv-8) 
 

Main convolution input matrix with size (13 x 13) is constant through the three layers as 
presented in Table 1. Also, they are common in the filter size which is (3 x 3) and no MaxPooling block 
after them. On the other hand, the difference is in the number of filters and their depth too. Figure 
17 shows data flow block diagram for Conv-6 to finish all its filters. Taking 64 internal memories to 
store the result after reading simultaneously from four input depths as illustrated in Figure 17. Conv-
6 has 512 filters and 256 depths while it`s outputs are stored in 512 memories. In Conv-7 number of 
filters are 1024 with depth 512. Making 64 a constant number of internal memories. Therefore, as 
shown in Figure 18 they must be reused twice to finish the whole number of depths for one filter. 
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Fig. 17. Tiny-YOLO-v2 Conv-6 implementation blocks 

 

 
Fig. 18. Tiny-YOLO-v2 Conv-7 implementation blocks 

 
Figure 19 illustrates the hardware blocks used for Conv-8. Conv-8 as shown in Table 1 has 1024 

filters with 1024 depths for each. The procedure needs to be done four times in order to obtain the 
result of one filter, since the internal memory count will remain constant at 64. 
 

 
Fig. 19. Tiny-YOLO-v2 Conv-8 implementation blocks 
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3.2.7 Convolution layer (Conv-9) 
 

Conv-9 has the same input matrix size which is (13 x 13) but it`s filter size is different. The size of 
the filter is equal to (1 x 1) instead of (3 x 3) and number of filters is 125 with depth equals 1024. 
 
4. Memory Hierarchy 
 

The system has three memory hierarchy layers which are DRAM (SD card), GLOBAL BUFFERS 
(filter, internal memories reused within the same layer, and memories used to store the output of 
each layer), and Inter-PE CACHES. Figure 20 illustrates all of these layers in order to reduce energy 
per access. All of the network’s weights and biases are kept in DRAMs. Weights for local reuse and 
the input part are stored in the Inter-PE CACHES. 

 

 
Fig. 20. Memory hierarchy 

 
5. Experimental Results 
 

The hardware implantation of each Convolution layer is done on AMD Virtex 7 FPGA VC709 
Connectivity Kit. Table 2 shows the reports for hardware recourse utilization. The convolution layers 
consume 29% of the LUT, 60.5% of the available BRAM, 28% of the BUFG, 2.3%of the FF and 2.4% of 
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DSP. The power consumed by the convolution layers equals 7.09W at frequency 100MHz. The 
detailed utilization recourses of each convolution layer are presented in Table 3. There are more LUT 
and FF in Conv-1 than in Conv-2. Moreover, Conv-2's LUT and FF are more than Conv-3's, and the 
same sequence till the ninth convolution layer. The latter illustrates that the size of each CNN layer's 
input matrix, as previously indicated in Table 1, is what causes the LUT and FF consumption in each 
CNN layer. BRAM is forced as a constrain to be limited to 127. Furthermore, the last three convolution 
layers (CNN-7, CNN-8, and CNN-9) were when the DSP was first employed, indicating that the depth 
of each CNN affects the DSP consumption. 
 

Table 2 
Summary of hardware resources utilization 
Resources Available Utilization 

LUT 433200 29% 
BRAM 1470 60.5% 
BUFG 32 28.12% 
FF 866400 2.3% 

 
Table 3 
Detailed hardware resources utilization for each convolution layer 
Resources Conv-1 Conv-2 Conv-3 Conv-4 Conv-5 Conv-6 Conv-7 Conv-8 Conv-9 

LUT 45841 21116 7319 29869 23905 271 4 0 158 
BRAM 127 127 127 127 127 127 0 127 0 
BUFG 1 1 1 1 1 1 1 1 1 
FF 7068 6668 5568 332 84 0 16 0 85 
DSP 0 0 0 0 0 0 28 28 28 

 
The comparison between the suggested design and earlier research on the hardware 

implementation of the Tiny-YOLO-v2 is presented in Table 4. When it comes to reducing power usage, 
the proposed design using the Tiny-YOLO-v2 performs noticeably better than the Sim-YOLO-v2 that 
was provided in [25-27].  
 

Table 4 
Detailed comparison of the YOLO-v2 hardware design proposal with previous work 
Resources Sim-YOLO-v2 on 

GPU [25] 
Lightweight 
YOLO-v2 [26] 

Sim-YOLO-v2 
[27] 

OpenCL 
Tiny-YOLO-v2 [28] 

This work RTL Tiny- 
YOLO-v2 

Platform  GTX Titan X   Zynq 
Ultrascale+  

Virtex-7 VC707  Cyclone V PCIe AMD Virtex 7 FPGA 
VC709 

Frequency 1GHz 300MHz 200MHz 117MHz 100MHz 
BRAM N/A 1706 1144 N/A 1470 
DSPs N/A 377 272 122 84 
FF 
LUT 
Power (W) 
Throughput 
(GOPs)  

N/A 
N/A 
170 
1512 

370000 
135000 
N/A 
610.9 

115000 
155000 
18.29 
1877 

N/A 
113000 
N/A 
21.6  

866400 
433200 
7.09 
1.6 

 
4. Conclusions 
 

In conclusion, the paper represents native RTL hardware implementation of Tiny-Yolo-v2 object 
detection network. The implementation is synthesized on AMD Virtex 7 FPGA VC709 Connectivity Kit 
operating on a frequency of 100 MHz. Moreover, memory hierarchy are used in the introduced 
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architecture design to dramatically reduce the power consumption to 7.09W compared to hundreds 
of Watts in the previous work. Ultimately, the methods employed to get the latter satisfactory result 
with 7.09W of power included employing native RTL for implementations, pipelining in each CNN 
layer to obtain the overall result, and reusing some blocks in the Hardware rather 
than reimplementing them. 
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